CSCI 5832
Natural Language Processing

Jim Martin
Lecture 6

1/31/08

Today 1/31

• Probability
 • Basic probability
 • Conditional probability
 • Bayes Rule
• Language Modeling (N-grams)
 • N-gram Intro
 • The Chain Rule
 • Smoothing: Add-1

Probability Basics

• Experiment (trial)
 • Repeatable procedure with well-defined possible outcomes
• Sample Space (S)
 • the set of all possible outcomes
 • finite or infinite
• Example
 • coin toss experiment
 • possible outcomes: $S = \{\text{heads, tails}\}$
• Example
 • die toss experiment
 • possible outcomes: $S = \{1,2,3,4,5,6\}$

1/31/08

Slides from Sandiway Fong
Probability Basics

• Definition of sample space depends on what we are asking
 • Sample Space (S): the set of all possible outcomes
 • Example
 • die toss experiment for whether the number is even or odd
 • possible outcomes: {even, odd}
 • not {1, 2, 3, 4, 5, 6}

More Definitions

• Events
 • an event is any subset of outcomes from the sample space
 • Example
 • Die toss experiment
 • Let A represent the event such that the outcome of the die toss experiment is divisible by 3
 • A = {3, 6}
 • A is a subset of the sample space S = {1, 2, 3, 4, 5, 6}
 • Example
 • Draw a card from a deck
 • suppose sample space S = {heart, spade, club, diamond} (four suits)
 • let A represent the event of drawing a heart
 • let B represent the event of drawing a red card
 • A = {heart}
 • B = {heart, diamond}

Probability Basics

• Some definitions
 • Counting
 • suppose operation \(o_i \) can be performed in \(n_i \) ways, then
 • a sequence of \(k \) operations \(o_1, o_2, ..., o_k \)
 • can be performed in \(n_1 \times n_2 \times \cdots \times n_k \) ways
 • Example
 • die toss experiment, 6 possible outcomes
 • two dice are thrown at the same time
 • number of sample points in sample space = 6 \(\times \) 6 = 36
Definition of Probability

- The probability law assigns to an event a number between 0 and 1 called $P(A)$
- Also called the probability of A
- This encodes our knowledge or belief about the collective likelihood of all the elements of A
- Probability law must satisfy certain properties

Probability Axioms

- Nonnegativity
 - $P(A) \geq 0$, for every event A
- Additivity
 - If A and B are two disjoint events, then the probability of their union satisfies:
 - $P(A \cup B) = P(A) + P(B)$
- Normalization
 - The probability of the entire sample space S is equal to 1, i.e. $P(S) = 1$

An example

- An experiment involving a single coin toss
- There are two possible outcomes, H and T
- Sample space S is $\{H, T\}$
- If coin is fair, should assign equal probabilities to 2 outcomes
- Since they have to sum to 1
 - $P((H)) = 0.5$
 - $P((T)) = 0.5$
 - $P((H,T)) = P((H))+P((T)) = 1.0$
Another example

- Experiment involving 3 coin tosses
- Outcome is a 3-long string of H or T
- S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTTT}
- Assume each outcome is equiprobable
 - "Uniform distribution"
- What is probability of the event that exactly 2 heads occur?
 - A = {HHT, HTH, THH}
 - P(A) = P(HHT) + P(HTH) + P(THH)
 - = 1/8 + 1/8 + 1/8
 - = 3/8

Probability definitions

- In summary:
 \[
 P(E) = \frac{\text{number of outcomes corresponding to event } E}{\text{total number of outcomes}}
 \]
- Probability of drawing a spade from 52 well-shuffled playing cards:

Probabilities of two events

- If two events A and B are independent then
 - P(A and B) = P(A) x P(B)
- If we flip a fair coin twice
 - What is the probability that they are both heads?
- If draw a card from a deck, then put it back, draw a card from the deck again
 - What is the probability that both drawn cards are hearts?
How about non-uniform probabilities?

- A biased coin, twice as likely to come up tails as heads, is tossed twice.
- What is the probability that at least one head occurs?
- Sample space = \{hh, ht, th, tt\}
- Sample points/probability for the event:
 - ht: \(\frac{1}{3} \times \frac{2}{3} = \frac{2}{9}\)
 - hh: \(\frac{1}{3} \times \frac{1}{3} = \frac{1}{9}\)
 - th: \(\frac{2}{3} \times \frac{1}{3} = \frac{2}{9}\)
 - tt: \(\frac{2}{3} \times \frac{2}{3} = \frac{4}{9}\)
- Answer: \(\frac{5}{9} \approx 0.56\) (sum of weights in red)

Moving toward language

- What’s the probability of drawing a 2 from a deck of 52 cards with four 2s?
 - What’s the probability of a random word (from a random dictionary page) being a verb?
- Probability and part of speech tags
 - What’s the probability of a random word (from a random dictionary page) being a verb?
 - How to compute each of these
 - All words = just count all the words in the dictionary
 - # of ways to get a verb: number of words which are verbs!
 - If a dictionary has 50,000 entries, and 10,000 are verbs…. \(P(V) = \frac{10000}{50000} = 0.20\)
Conditional Probability

- A way to reason about the outcome of an experiment based on partial information
 - In a word guessing game the first letter for the word is a “t”. What is the likelihood that the second letter is an “h”?
 - How likely is it that a person has a disease given that a medical test was negative?
 - A spot shows up on a radar screen. How likely is it that it corresponds to an aircraft?

More precisely

- Given an experiment, a corresponding sample space S, and a probability law
- Suppose we know that the outcome is within some given event B
- We want to quantify the likelihood that the outcome also belongs to some other given event A.
- We need a new probability law that gives us the conditional probability of A given B
- \(P(A|B) \)

An intuition

- A is “it’s snowing now”.
- \(P(A) \) in normally arid Colorado is .01
- B is “it was snowing ten minutes ago”
- \(P(A|B) \) means “what is the probability of it snowing now if it was snowing 10 minutes ago”
- \(P(A|B) \) is probably way higher than \(P(A) \)
- Perhaps \(P(A|B) \) is .10
- Intuition: The knowledge about B should change (update) our estimate of the probability of A.
Conditional probability

• One of the following 30 items is chosen at random
• What is $P(X)$, the probability that it is an X?
• What is $P(X|\text{red})$, the probability that it is an X given that it is red?

\[
\begin{array}{ccccccc}
\circ & x & x & x & o & o \\
\circ & x & x & o & x & o \\
\circ & o & o & x & o & x \\
\circ & o & o & o & x & o \\
\circ & x & x & x & x & o \\
\end{array}
\]

Conditional Probability

• let A and B be events
• $p(B|A) =$ the probability of event B occurring given event A occurs
• definition: $p(B|A) = \frac{p(A \cap B)}{p(A)}$

\[
\begin{array}{c}
A \\
\cap \\
B
\end{array}
\]

Conditional probability

• $P(A|B) = \frac{P(A \cap B)}{P(B)}$
• Or

\[
\begin{array}{c}
A \\
\cap \\
B
\end{array}
\]

Note: $P(A,B) = P(A|B) \cdot P(B)$
Also: $P(A,B) = P(B,A)$
Independence

- What is \(P(A,B) \) if \(A \) and \(B \) are independent?
- \(P(A,B) = P(A) \cdot P(B) \) iff \(A,B \) independent.

\[
P(\text{heads,tails}) = P(\text{heads}) \cdot P(\text{tails}) = .5 \cdot .5 = .25
\]

Note: \(P(A|B) = P(A) \) iff \(A,B \) independent
Also: \(P(B|A) = P(B) \) iff \(A,B \) independent

Bayes Theorem

- Swap the conditioning
- Sometimes easier to estimate one kind of dependence than the other

Deriving Bayes Rule
Summary

- Probability
- Conditional Probability
- Independence
- Bayes Rule

How Many Words?

- I do uh main- mainly business data processing
 - Fragments
 - Filled pauses
- Are cat and cats the same word?
- Some terminology
 - Lemma: a set of lexical forms having the same stem, major part of speech, and rough word sense
 - Cat and cats = same lemma
 - Wordform: the full inflected surface form.
 - Cat and cats = different wordforms

How Many Words?

- they picnicked by the pool then lay back on the grass and looked at the stars
 - 16 tokens
 - 14 types
- Brown et al (1992) large corpus
 - 583 million wordform tokens
 - 293,181 wordform types
- Google
 - Crawl 1,024,908,267,229 English tokens
 - 13,588,391 wordform types
Language Modeling

• We want to compute
 \(P(w_1,w_2,w_3,w_4,w_5\ldots w_n) \), the probability of a sequence
• Alternatively we want to compute
 \(P(w_5|w_1,w_2,w_3,w_4,w_5) \): the probability of a word given some previous words
• The model that computes \(P(W) \) or \(P(w_n|w_1,w_2\ldots w_{n-1}) \) is called the language model.

Computing \(P(W) \)

• How to compute this joint probability:
 • \(P(\text{"the"","other"","day"","I"","was","walking","along" ","and","saw","a","lizard")} \)
 • Intuition: let’s rely on the Chain Rule of Probability

The Chain Rule

• Recall the definition of conditional probabilities
• Rewriting:
 \(\frac{P(A|B)}{P(A)} = \frac{P(B|A)P(A)}{P(A)} \)
 \(\frac{P(B|A)}{P(B)} = \frac{P(A|B)P(B)}{P(B)} \)
• More generally
 \(P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C) \)
• In general
 \(P(x_1,x_2,x_3,\ldots x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1,x_2)\ldots P(x_n|x_1\ldots x_{n-1}) \)
The Chain Rule

\[P(w^n) = P(w_1)P(w_2|w_1)P(w_3|w_2) \cdots P(w_n|w_{n-1}) = \prod_{k=1}^{n} P(w_k|w_{k-1}) \]

- \(P("\text{the big red dog was"}) = \)
- \(P(\text{the})P(\text{big} | \text{the})P(\text{red} | \text{the big})P(\text{dog} | \text{the big red})P(\text{was} | \text{the big red dog}) \)

Very Easy Estimate

- How to estimate?
 - \(P(\text{the} | \text{its water is so transparent that}) \)

\[P(\text{the} | \text{its water is so transparent that}) = \frac{\text{Count(its water is so transparent that the)}}{\text{Count(its water is so transparent that)}} \]

- According to Google those counts are 5/9.
 - Unfortunately... 2 of those are to these slides... So its really
 - \(3/7 \)
Unfortunately

- There are a lot of possible sentences
- In general, we’ll never be able to get enough data to compute the statistics for those long prefixes
- \[P(\text{lizard}|\text{the,other,day,I,was,walking,along,and,saw,a}) \]

Markov Assumption

- Make the simplifying assumption
 - \[P(\text{lizard}|\text{the,other,day,I,was,walking,along,and,saw,a}) = P(\text{lizard}|a) \]
 - Or maybe
 - \[P(\text{lizard}|\text{the,other,day,I,was,walking,along,and,saw,a}) = P(\text{lizard}|\text{saw,a}) \]
 - Or maybe... You get the idea.

Markov Assumption

So for each component in the product replace with the approximation (assuming a prefix of \(N \))

\[[x_{t-1}] = [x_{t-2}] = \ldots = [x_0] \]

Bigram version

\[[x_t, x_{t-1}] = [x_{t-2}, x_{t-3}] \]
Estimating bigram probabilities

- The Maximum Likelihood Estimate

\[
P(w_n | w_{n-N+1}) = \frac{C(w_{n-N+1}w_n)}{C(w_{n-N+1})}
\]

An example

- \(<s> I am Sam </s>
- \(<s> Sam I am </s>
- \(<s> I do not like green eggs and ham </s>

\[
P(\text{I} | \text{<s>}) = \frac{1}{3} = .33
\]
\[
P(\text{Sam} | \text{<s>}) = \frac{1}{2} = .5
\]
\[
P(\text{I} | \text{Sam}) = \frac{1}{2} = .5
\]
\[
P(\text{do} | 1) = \frac{1}{3} = .33
\]

Maximum Likelihood Estimates

- The maximum likelihood estimate of some parameter of a model M from a training set T
 - is the estimate that maximizes the likelihood of the training set T given the model M
 - Suppose the word Chinese occurs 400 times in a corpus of a million words (Brown corpus)
 - What is the probability that a random word from some other text from the same distribution will be “Chinese”
 - MLE estimate is \(400/1000000 = .004\)
 - This may be a bad estimate for some other corpus
 - But it is the estimate that makes it most likely that “Chinese” will occur 400 times in a million word corpus.
Berkeley Restaurant Project

Sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw Bigram Counts

- Out of 9222 sentences: Count(col | row)

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>5</td>
<td>827</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>want</td>
<td>2</td>
<td>0</td>
<td>608</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>686</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>211</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>chinese</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Raw Bigram Probabilities

- Normalize by unigrams:

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>2533</td>
<td>927</td>
<td>746</td>
<td>158</td>
<td>1093</td>
<td>341</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>want</td>
<td>0.002</td>
<td>0.33</td>
<td>0</td>
<td>0.0016</td>
<td>0.0015</td>
<td>0.0006</td>
<td>0.0004</td>
<td>0.00079</td>
</tr>
<tr>
<td>to</td>
<td>0.00083</td>
<td>0</td>
<td>0</td>
<td>0.0017</td>
<td>0.00011</td>
<td>0.00065</td>
<td>0.00065</td>
<td>0.0054</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0027</td>
<td>0.0021</td>
<td>0.0027</td>
<td>0.00065</td>
<td>0.0025</td>
</tr>
<tr>
<td>chinese</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.52</td>
<td>0.0063</td>
<td>0</td>
<td>0.0054</td>
</tr>
<tr>
<td>food</td>
<td>0.014</td>
<td>0</td>
<td>0.014</td>
<td>0</td>
<td>0.00092</td>
<td>0.0037</td>
<td>0</td>
<td>0.0054</td>
</tr>
<tr>
<td>lunch</td>
<td>0.0059</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0029</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>0.00036</td>
<td>0</td>
<td>0.0006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bigram Estimates of Sentence Probabilities

- \(P(<s> I \text{ want} \text{ english} \text{ food } </s>) = \)
 \(p(i|<s>) \times p(\text{want}|i) \times p(\text{english}|\text{want}) \times p(\text{food}|\text{english}) \times p(</s>|\text{food}) = .000031 \)

Kinds of knowledge?

- \(P(\text{english}|\text{want}) = .0011 \)
- \(P(\text{chinese}|\text{want}) = .0065 \)
- \(P(\text{to}|\text{want}) = .66 \)
- \(P(\text{eat} \mid \text{to}) = .28 \)
- \(P(\text{food} \mid \text{to}) = 0 \)
- \(P(\text{want} \mid \text{spend}) = 0 \)
- \(P(i \mid <s>) = .25 \)

The Shannon Visualization Method

- Generate random sentences:
 - Choose a random bigram <s>, w according to its probability
 - Now choose a random bigram (w, x) according to its probability
 - And so on until we choose </s>
 - Then string the words together
- \(<s> I\)
 \(I\text{ want to eat Chinese food } </s>\)
Shakespeare

• In his renowned sunlight hour book. Which, of sure on trul but now ay device
 and yet I had
 16
 What man a
 16
 16
 16

• Bill the free speaker, or, a man to kill lest you err
 16
 16

• The sun tinnest and sight have not enough to doth it
 of. Sleep now we must
 16

• What man a
 16

• Why close stood forth thy canopy, farewell, he is the palehold for the King Henry
 16

• Low hang, follow
 16
 16

• What we, land on the earth I rest and sent to all ient and nation building, and the
 first performance
 16

• State Measure, if I see many good directions found if there at a strong open core
 round of four or a liberal triumph grown away, Falstaff's nature
 16

• Swear-prince, Falstaff shall the
 16

• This shall blind it should be blinded (unintendeth a man)
 16

• Indeed the droller and had a very good heart
 16

• 16

• Keep Harry, What I will do seek, the truer Gloucester. Eretual some of the
 16

• Such a knot been serv'd as
 16

• So you do well nor what I am
 16

• Indeed the best! and yet long, Mervy. So a devil Legible
 16

Shakespeare as corpus

• N=884,647 tokens, V=29,066

• Shakespeare produced 300,000 bigram types out of $V^2 = 844$ million possible bigrams: so, 99.96% of the possible bigrams were never seen (have zero entries in the table)

• Quadigrams worse: What's coming out looks like Shakespeare because it Is Shakespeare

The Wall Street Journal is Not Shakespeare

\begin{tabular}{|l|}
\hline
\textbf{Bigram:} Months the my issue of year foreign new exchange’s september were recession exchange new endorsed a acquire to six executives \\
\hline
\textbf{Bigram:} Last December through the way to preserve the Hudson corporation N. R. E. C. Taylor would seem to complete the major central planners one point five percent of U. S. E. has already old M. X. corporation of living on information such as more frequently fishing to keep her \\
\hline
\textbf{Bigram:} They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions \\
\hline
\end{tabular}
Next Time

- Finish Chapter 4
 - Next issues
 - How do you tell how good a model is?
 - What to do with zeroes?
 - Start on Chapter 5