Today’s Lecture

- Introduction to
 - Testing concepts
 - Testing terminology
 - Testing Strategies

Testing

- Experiments with Behavior
- Requires Execution Model
- Executing a System to Observe its Behavior
- Can be Expensive
- Testing is “Easy” if the System is Deterministic and Takes No Inputs
- Exhaustive Testing is Usually Impractical

Modeling for Software Testing

- Formal Models of Programs Are Employed
 - To make the process of testing programs systematic
 - To increase the probability that testing will reveal faults
Testing Formalized: Basics

• Let P be a program, D be the input domain of P, and R be the output range of P; P acts as a function $P : D \rightarrow R$
• Let R_O denote the requirements on output values of P, as stated in P’s specification; P is correct iff for all $d \in D$, $P(d)$ satisfies R_O

Testing Formalized: Test Cases

• A test case is an element d of D
• A test set T is a finite subset of D
• P is correct for T if it is correct for all elements of T; T is called successful for P
• T is ideal if, whenever P is incorrect, there exists $d \in T$ such that P is incorrect for d
• If T is ideal and T is successful for P, then P is correct

Testing Formalized: Test Selection

• A test selection criterion C is a subset of 2^D (the set of all finite subsets of D); C gives a condition that must be satisfied by a test set
• T satisfies C if it belongs to C
• C is consistent if, for any pair T_1 and T_2, both satisfying C, T_1 is successful iff T_2 is successful
Testing Formalized: Test Selection

- C is complete if, whenever P is incorrect, there is an unsuccessful T that satisfies C
- If C is consistent and complete, then any T satisfying C could be used to decide the correctness of P
- C₁ is finer than C₂ if, for any P, for all T₁ satisfying C₁, there exists T₂ subset of T₁ and T₂ satisfies C₂

Testing Strategies

- Based on Experience and Intuition
 – Empirical basis for “good” testing criteria
 – Automated support for clerical/repetitive chores
- Testing Criteria are Used to Choose Representative Test Cases
 – Criteria group inputs into equivalence classes
 – Reduces the number of test cases

Testing Strategies

- Principle of Complete Coverage
 – If all the classes together exercise the whole input, then coverage is complete
- The Partition Advantage
 – If classes are a partition of D, then any element of a class will do
- Partition Overlap
 – If a criteria overlaps more than one partition, then a good representative test case can reduce the number of test cases needed overall

Testing Approaches

- Black Box Testing
 – Tests are selected based on specification of intended functionality
 – Tester can only see interface to test subject
 – Emphasis on proper use of test subject
- White Box Testing
 – Tests are selected based on internal structure
 – Tester can see inside test subject
 – Emphasis on proper structure of test subject