Lecture 19: Structural Testing

Kenneth M. Anderson
Software Methods and Tools
CSCI 3308 - Fall Semester, 2003
(Happy Halloween!)

Today's Lecture
- Discuss Structural Testing
 - Terminology
 - Techniques
 - Examples

Structural Testing
- Structural Testing supplies another criteria to answer the question:
 - "How many test cases are enough?"
- Recall that functional testing's criteria was "Test all functions"
- Structural Testing’s criteria is “Test all code”
 - Structural Testing is also known as white box testing, because now we look at a program's source code to help create test cases

Control Flow Graphs (CFGs)
- Structural Testing is based on CFGs
- Control flow graphs capture the various ways in which a program can execute
 - A node in a CFG represents a program statement
 - An edge in the CFG represents the ability for a program to flow from its current statement to the statement at the other end of the edge
 - If an edge is associated with a conditional, label the edge with the conditional's value, either true or false
A Sample Ada Program

```
function P return INTEGER is
begin
  X, Y: INTEGER;
  READ(X); READ(Y);
  while (X > 10) loop
    X := X – 10;
    exit when X = 10;
  end loop;
  if (Y < 20 and then X mod 2 = 0) then
    Y := Y + 20;
  else
    Y := Y – 20;
  end if;
  return 2 * X + Y;
end P;
```

P’s Control Flow Graph (CFG)

Types of Coverage

- **Statement Coverage**
 - Every statement is executed at least once
- **Edge Coverage**
 - Every edge is traversed at least once
- **Condition Coverage**
 - For binary logical operators (&&, ||), the individual components are evaluated in every possible combination of true and false
- **Relational Coverage**
 - For relational operators (<, >, <=, >=) the equal condition is treated as a separate branch
- **Path Coverage**
 - Every possible path is executed at least once

White-box Testing Criteria

- **Statement Coverage**
 - Execute each statement at least once
- **Pick test case and plot its path through the CFG
 - Keep picking test cases until all statements are covered
All-Statements Coverage of P

Test Case 1: X=20, Y = 10

Test Case 2: X = 20, Y = 30

Combined: Complete Coverage

Example all-statements-adequate test set:
(X = 20, Y = 10)
(X = 20, Y = 30)
White-box Testing Criteria

- Edge Coverage
 - Traverse each edge at least once
 - Pick test case and plot its path through CFG
 - Keep picking test cases until all edges are covered
- Also known as Branch Coverage
 - We must traverse each conditional (such as an if statement) along its true and false edge

All-Edges Coverage of P

Test Case 1: X = 20, Y = 10

Example all-edges-adequate test set:
(X = 20, Y = 10)

Test Case 2: X = 15, Y = 30

Example all-edges-adequate test set:
(X = 20, Y = 10)
(X = 15, Y = 30)
Example all-edges-adequate test set:
(X = 20, Y = 10)
(X = 15, Y = 30)

White-box Testing Criteria

- **Condition Coverage**
 - Traverse all edges at least once but
 - in binary logical operators (also known as short circuit operators), all possible combinations of true and false must be tested
 - Pick test case and plot its path through CFG; keep creating test cases until all conditions are covered

Example all-conditions-adequate test set:
(X = 20, Y = 10)
Test Case 2: $X = 5$, $Y = 30$

Example all-conditions-adequate test set:

- $(X = 20, Y = 10)$
- $(X = 5, Y = 30)$

Test Case 3: $X = 21$, $Y = 10$

Example all-conditions-adequate test set:

- $(X = 20, Y = 10)$
- $(X = 5, Y = 30)$
- $(X = 21, Y = 10)$

Combined: Complete Coverage

Example all-conditions-adequate test set:

- $(X = 20, Y = 10)$
- $(X = 5, Y = 30)$
- $(X = 21, Y = 10)$

Relational Coverage

- Relational Coverage
 - This is a form of edge coverage in which any relational operator (<, >, <=, and >=) has its equal condition treated as a separate branch
 - So, “if (x < y)” should be treated as
 - if (x < y)
 - ...
 - else if (x == y)
 - ...
 - else if (x > y)
 - ...

October 31, 2003 © University of Colorado, 2003
Relational Coverage, continued

- Relational coverage is thus a stronger form of edge coverage
- It is saying that for each conditional you should have at least three test cases
 - \(x < y, x > y, x == y \)
- Combine this approach with conditional coverage and you have the strongest form of edge coverage possible

Path Coverage

- **Path Coverage**
 - Traverse each path at least once
- **Problem**
 - Way too many paths, even in simple programs
- **Approach**
 - Use heuristics
 - e.g. for each loop take loop zero, one, and multiple times

Example

- How many paths does the following program fragment have?
 - \(a << cin; b = 0; \)
 - while (\(a > 0 \)) {
 - \(a--; b++; \)
 }
 - if (\(b > 5 \)) {
 - printf("b > 5");
 } else {
 - printf("b <= 5");
 }

- For any particular value of \(a \), there is only one path possible
- but since \(a \) is entered by user, there are an infinite number of possible paths!

Path Coverage, continued

- **In general**
 - for loops
 - traversing a loop zero, one, two, … times is each a different path, so a loop has a potentially infinite number of paths
 - for conditionals
 - traverse true and false branches
 - for a program consisting of only if statements
 - if \(x \) is the number of if statements, there are a total of \(2^x \) paths!
- As such, path coverage is an infeasible testing criteria in the general case; so use heuristics to approximate it, as discussed previously