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Abstract. In this paper, we define timed relational abstractions faifyieg
sampled data control systems. Sampled data control systenssst of a plant,
modeled as a hybrid system and a synchronous controllerleds a discrete
transition system. The controller computes control in@and/or sends control
events to the plant based on the periodically sampled stake glant. The cor-
rectness of the system depends on the controller designlbasian appropriate
choice of the controller sampling period.

Our approach constructs a timed relational abstractiohehybrid plant by re-
placing the continuous plant dynamics by relations. Thek&ions map a state
of the plant to states reachable within the sampling timegeke present tech-
niques for building timed relational abstractions, whiéing care of discrete
transitions that can be taken by the plant between samples.rdsulting ab-
stractions are better suited for the verification of samplath control systems.
The abstractions focus on the states that can be observéa lopntroller at the
sample times, while abstracting away behaviors betweemplsatimes conser-
vatively. The resulting abstractions are discrete, iréhsitate transition systems.
Thus conventional verification tools can be used to verifigtyaproperties of
these abstractions. We use k-induction to prove safetyepties and bounded
model checking (BMC) to find potential falsifications. We geat our idea, its
implementation and results on many benchmark examples.

1 Introduction

We present techniques for verifying safety properties afdad data control systems
using timed relational abstractions. Sampled data coeyrstems consist of a discrete
controller that periodically senses the state of a contisuyghysical plant, and actuates
by setting inputs or sending control commands to the plaar@ed data control sys-
tems are quite common in practice. Complex (network) coisiystems often involve
many control tasks that are scheduled periodically, wittheask controlling a different
aspect of the plant. The cadencing of these tasks to enflecsafety and stability of
the system is an important problem. The choice of samplimgp@és crucial: a small
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sampling time can place infeasible constraints on the sdhmegpolicy, whereas large
sampling times can cause instabilities or safety violation

In this paper, we consider a simple and natural model of a Eghgata control
system. The controller is modeled by an infinite state (lijpgransition system. It com-
municates synchronously with a plant modeled by an affinaitiydutomaton. The
controller runs periodically with a fixed sampling periéd > 0. At each time period,
the controller senses the state of the plant and performsatiem actions that may in-
clude (a) setting control input signals for the plant, and‘@@emmanding” the plant to
execute a controlled discrete transition, resulting inrestantaneous jump and a mode
change in the plant.

Our verification approach uses the idea of timed relatiaatibn, extending the idea
of untimed relational abstractions [35]. A timed relatibalstraction considers the set
of states of the plant that are potentially observable bgtimroller at the sample times,
while safely abstracting away all the intermediate staleshis end, we build relations
that map a state of the plant at the beginning of a samplinggér states that can be
reached at the end. Using these relations, the entire parte safely abstracted away
by a discrete, infinite-state transition system. This sysie composed together with
the controller to yield an overall discrete system that caaibalyzed by existing tools
such as k-induction [36], bounded model-checking [5] anstralot interpretation [10,
22], while exploiting advances in abstract domains, SAT @R solvers.

There are two key challenges in constructing the timed abistn: (a) dealing with
the continuous dynamics inside a mode, and (b) handlinghaatous transitions that
can be taken by the plant between two sampling periods. Rtesg with affine dy-
namics the former problem is solved by computing a matriboeegmtial for the matrices
defining the dynamics in each mode [27]. However, the nurakeixponential compu-
tation is potentially unsound due to round-off and trurmagrrors. Likewise, solving
for autonomous transitions involves computing a symbolitrin exponential to deal
with the unknown switching times for each transition. Tovedboth problems, we ex-
ploit advances in interval arithmetic to compute guarashteeclosures to the matrix
exponential [28, 29, 18, 6]. This yields interval lineamaténs. We then usetamplate
based mechanism using SMT solvers to abstract the resirtenyal linear relations in
terms of relations expressible in linear arithmetic.

We have implemented our approach to relationalization aedemt an extensive
evaluation over a set of benchmark systems. Our evaluagdionms a relational ab-
straction of the plant using the techniques described snghper. The resulting abstrac-
tion is analyzed using the SAL tool-set from SRI [32, 40]. Tasults of our evaluation
are quite promising: we show that our techniques can suttlgssandle complex sam-
pled data control systems efficiently and soundly. We compar approach with the
SpaceEx tool that implements symbolic model checking fiin@hybrid automata us-
ing support functions [16]. Our approach compares quiterily with the various
options available in SpaceEx: providing safety proofs immeases where SpaceEx
fails to prove safety over finite time horizons. On the othemdh, we note that the finite
time horizon bounds on the reachable state-space esttlishSpaceEx can some-
times be used as strengthenings£erinduction in our approach to obtain significant



speedups. Our implementation, the data from our expersradahg with an extended
version of the paper will be available onlike

Motivating Examples: We discuss two simple motivating examples that clearlygillu
trate the need for verification of sampled data control syste
Consider a proportional-integral (PI) controller defingddd := —30x — y
composed with a plant defined by= 5z + u, 3 = x. With a periodT; = 0.1s, the
controller is able to stabilize the plant but fails to do sthwé periodl’s = 0.5s.
Consider an inverted pendulum controller:

—-16, y>2V 1l6z—y < —10
u = 16, y< -2V 16z —y > 10 .
u, otherwise

The linearized plant has the dynamics- y § = 20z + 16y + 4. If the controller is

implemented in the continuous domain, it results in a stappéem. However, a digital

implementation, regardless of the sampling period, is laabstabilize the pendulum.
We now discuss the related work.

Relational Abstractions: Relational abstractions have been used primarily for check
ing liveness properties [4, 30]. There are many subtlerdibns between the various
forms of relational abstractions used. Transition invadg30], used in termination
proofs, relate the current stateday previous state at a given program location. Like-
wise, progress invariants relate the current state anaftirediatelyprevious state at a
given location [20]. Podelski and Wagner provide a verifaaprocedure for (region)
stability properties of hybrid systems [31], wherein theyide binary reachability re-
lationsover trajectories of a hybrid system, similar in spirit toedational abstraction.
Note that Podelski and Wagner use a hybrid system readlyaibiil to compute their
abstractions in the first place. The techniques in this papérour previous work [35]
are meant to solve the reachability problem using theséaoata

Our previous work explored the idea of abstracting the dyinamnside each dis-
crete mode of a hybrid automaton by amntimed relational abstractiof85]. The rela-
tional abstractions presented here capture the relaijphgtween the current state at
timet = ty and any state reachable at time- ¢y, + T units. The consideration of the
sampling timeT’, is essential for verifying sampled data control systemstheumore,
it is also important to note that unlike untimed relationa$®@action, it is essential for
the abstraction presented here to account for the plastsete transitions that can be
taken in the time interval € [ty, to + T4

Abstractions of Hybrid Systems: Discrete abstractiondiave been widely stud-
ied and applied for verifying safety properties of hybricstgms [1, 39]. The use of
counterexample-guided abstraction refinement has also ibgestigated in the past
[1, 8]. In this paper, the proposed abstraction yields ardtedut infinite state system.
Hybridization is a technique for converting nonlinear syss into affine hybrid sys-
tems by subdividing the invariant region into numerous sglims and approximating

! http://systems.cs.colorado.edu/research/cyberphysic al/
relational



the dynamics as a hybrid system by means of a linear diffialéntlusion in each re-
gion [23, 3, 11]. However, such a subdivision is expensivihasiumber of dimensions
increases and often infeasible if the invariant region isaumded.

Flowpipe Construction: Reasoning about the reachable set of states for flows of
affine hybrid systems through flowpipe approximation hagylbeen dominant ap-
proach for checking safety properties [37], using variogpresentations for sets of
states including ellipsoids [25], zonotopes [17], templablyhedra [33], and support
functions [19]. The tool SpaceEx implements numerous iwgments to these tech-
niques with impressive performance on some benchmarksandhge number of sys-
tem variables [16].

Synchronous Systems: Techniques for verifying synchronous system models, with
piecewise constant continuous dynamics, have been stimlihe past, notably by
Halbwachs et al. [22] and as part of the NBAC tool by Jeannal.g24]. Our work
considers a synchronous controller with affine hybrid glaRrtirthermore, we consider
the idea of an up front relationalization of the plant dyneenenabling a verification
procedure to focus purely on discrete systems.

2 Sampled Data Control Systems

Let R denote the set of real numbers. We ase. ., z with subscripts to denote (col-
umn) vectors andi, ... ., Z to denote matrices. Forra x n matrix A, the row vector
A;, for1 < i < m, denotes thé*" row.

We discuss models for sampled data
control systems. Figure 1 shows the
schematic diagram for such a control sys-
tem consisting of a discrete controllerSample Clockz,

communicating with a hybrid plant. The

controller has a time periodl; > 0. Ev- i _Tsense~~_

ery T, time units, the controller “senses” | controller Plant
the state of the hybrid plant and synchro- | (Program) (Hybrid Aut.)
nizes to change the mode of the plant. actuate

The commands can take the form of (a)

events enabling a discrete transition gfjg 1. Schematic for a Sampled Data Con-
the plant, or (b) values for control in-yo| System.

puts that are assumed to be held constant

throughout the sample time period. We

model the controller as a discrete transition system [26].

Definition 1 (Discrete Transition System).A discrete transition systedT is a tuple
(L,z, T, O) wherein,L is a finite set ofdiscrete locationse : (x1,...,z,) is a set
of variables with variabler; of typetype(z;); T is a set of discrete transitiong; < L
is the initial location; and9|[x] is an assertion capturing the initial values for

Each transitionr € 7T is of the form(¢, m, p-), wherein/ is the pre-location of the
transition andm is the post-location. The relation. [x, =] represents the transition
relation over current state variables and next state variables’.



We now discuss the overall model for the plant as a hybridraaton with con-
trolled and uncontrolled transitions.

Definition 2 (Plant Model). A plantP is an extended hybrid automaton described by
atuple(z,u,Q,F, X, T, q, Xo), wherein,

— x: (z1,...,2,) denotes the continuous state variables, and(u, ..., u.,) the
control inputs,

— @ is afinite set of discrete modeg. € @ is the initial mode and¥, the initial set
of states.

— F maps each discrete mode= @ to an ODEfil—”tc = Fy(x,u,t).

— X maps each discrete mode= Q) to a mode invarianft'(q) C R™.

— T represents a set of discrete transitions. Each transitien7 is atuple(s, t,v, U)
whereins, t represent the pre- and post- mode respectively] is the transition
guard assertion, and/ maps each variable; € x to an update functio/; ().
The transition relation for- is defined ap, (z,z’) : v(x) A o' = U(x).

— We patrtition the transitions iy as autonomous transitiong,,; and controlled
transitionsT;,-;. Autonomous transitions can be taken by the plant non-detestically,
whenever enabled. On the other hand, controlled transstieme taken upon an ex-
plicit command by the controller.

The state of the plant is a tuple, =, w) consisting of the current modg state
valuesz and controller inputt. Note that the control input is set at the beginning of a
time period, and is assumed to remain constant througheuygetiod.

The overall sampled data control system is a tugleP, i, Ts) of a discrete con-
troller transition systeng, a hybrid plant modeP and a mapping: from variables in
C to control inputsu of P. A given sampling timel; > 0 specifies the periodicity
of the controller execution. The state of the system is gred by the joint state of
the plantocp andoc of the controller. We assume that the computations of the con
troller take zero (or negligible time) compared to the sangpperiod. Furthermore,
we assume that the commands issued by the controller are ifotin of an inputu
for the next time period, and/or a command to execute a destnansition . Finally, to
avoid considering improbable “race conditions”, we assthméthe plant itself may not
execute autonomous discrete transitions at sample tint@nicss when the controller
executeg. The overall system evolves in one of two ways:

1. At sample time$ = nT, for n € Z, a controlled transition is taken based on the
current state of the plant and the controller. The transitipdates the controller
state, the values of the plant inputs and can also commanglahéto execute a
discrete transition out of its current mode.

2. Between two sample timese (nTs, (n + 1)Ty), the state of the plant evolves ac-
cording to its current modg continuous variables and inputu. If an autonomous
transitionr € 7,. is enabled, then it may be non-deterministically execuseithe
plant, possibly changing the plant’s state instantangousl

2 This assumption can be relaxed to allow such simultanecesuions, provided the plant and
the controller do not attempt to update the same state Veriab



A plant is affineiff (a) for each discrete mode, the dynamics are of the form
‘fi—f = Az + Byu + by, (b) the initial condition® and guardsy- for each transitionr,
are linear arithmetic formulae, and (c) the update funetiénare affine.

Why Autonomous Transitions? The ability to model autonomous transitions is quite
important in practice. Real life plants are often multi mogd@éh mode changes that
can be effected by exogenous user inputs, disturbancesingygtem failures and other
exceptional situations. Examples include pump failuresootusion events observed in
models of drug administration using infusion pumps [2, 3di]safe models of space-
craft control systems, wherein exogenous disturbancesrgaun cause mode changes [7].
Another reason for autonomous transitions includes theatiraglof actuation delays.
Autonomous transitions can be used to model delays betwadrotler commands and
their actuation in networked control systems.

3 Relationalization

In this section, we discuss the notion of timed relatioraians for plants in a sam-
pled data control system. The basic idea behind relatipai#din is to build a relation
Rp(q, o', q,z,u) of all possible pairs of statelg’, ') and (¢, =) such that (a) the
plantis in the statég, ) at the start time = ¢, (b) it reaches the state’, =) at time

t = to+ T, and (c)u is the constant controller input fore (¢o, to + T]. Note that the

discrete modesg, ¢’ may be different, depending on whether an autonomous tiamsi
is taken by the plant between two samplings.

Let us suppose a relatioRp can be built that can characterize all p&jgs, «')
that a controller can observe at the next time step, given(tha) was observed at
the current time step and was the control input. As a result, we may construct a
purely discrete abstraction of the sampled data contréésysvherein the behavior of
the plant between two samplings is entirely capturedilpy Therefore, the resulting
discrete transition system can be verified using a host afogabes for verification of
discrete programs. Furthermore, since our goal is to pmrgafety verification, we do
not need to compute the exact relatiBp, but only an over-approximation of it.

We will now describe techniques for constructing timedtietaal abstractions.

Example 1.Consider the hybrid plant model shown in Figure 2 with twdestariables
x,y and no control inputs. The matrices defining the dynamics are

—-1.51.2 1.0 2 1.2 —0.6
Ar: ( 1.3 0.2) b1 (-o.s) Az (0.1 —3.6) bz (—0.6) '
There are two modesy andn, with an autonomous transition from ng to n; and
a controlled transitiom, from n; back tong. Relationalization of this automaton will
need to consides cases: (a) the automaton remains entirely inside the mead#fir-

ing a sample interval, (b) the automaton remains entiredidenmoden; and (c) the
automaton switches from moag to n; sometime during a sampling interval.

We first discuss relational abstraction for the case whempldrgt remains in some
modeg during a sampling period without any autonomous transitiaken in between.



start—i{ng : 2 = A1z + by

dt
(lz| >= 10
.| Viyl >=10)
T2 e 8,12,
’

y' € [-0.5,.5]

:%:A2$+bz

Fig. 2. A simple affine hybrid automaton with an autonomous tramsiti; and controlled tran-
sition 7. Some sample trajectories of the automaton are shown wétlaabtonomous transition
being taken. The red colored trajectories belong to magand the blue colored trajectories to
moden;. The guard set is shown in thick lines.

This situation is abstracted by a relati&(x, u, ') that relates all plant statés, )
at some time and statgq, ') at timet¢ + T with control inputu. The resultingR,
for eachq € @ will form a disjunct in the overall relatio® » for the plant.

Definition 3 (Timed Relational Abstraction). Consider a continuous system specified
by a time invariant ODE;—f = f(x,u) for x € X and control inputas € U.

A relation R(x, u, z’) is atimed relational abstractionith sample timeél’s of the
continuous system iff for all time trajectoriagt) of the ODE with constant control
inputu(t) = u, we havgz(0), u, (Ty)) € R.

Since we assume that the dynamics are time invariant, thingtéime of the observa-
tion can be arbitrarily set tty = 0. Time varying dynamics can be treated by lifting this
assumption and specifying the value of the titvas part of the state of the system.

We now consider the timed relational abstraction for a systéth affine dynamics
given by‘fi—f = Ax + Bu + b. We note that the solution of the ODE can be written
asz(t) = ¢"z(0) + ['_, e~ (Bu(s) + b) ds. If the matrix A is invertible and
u(s) = ufor s € [0,T;), we may write the resulting relation as

x(T,) = e 22(0) + A~ (eTA — I)(Bu + b).

For generald, we write the result as

x(T,) = e 42(0) + P(A, T,)(Bu + b), whereinP(A,t) =

J=0

In theory, givenT, and A, we may compute the matrice$:# and P(A,T,) to
arbitrary precision. This yields an affine expression#(ry) in terms ofz(0), u.

In practice, however, arbitrary precision computatiorheféxponential map is often
impractical, unless the matriz is known to be diagonalizable with restrictions on its
eigenvalues, or nilpotent. Therefore, for a general matrixve resort to error-prone
numerical computations ef *4 andP(A, T,).



The loss of soundness can be alleviated by using sopheticatmerical approxi-
mation schemes [27]. In particular, we can estimate bothiogstusing interval arith-
metic calculations as’** € [E,, E,] andP(A, T;) € [Ps, P;] by taking into account
the arithmetic and truncation errors of the resulting poseries expansions [6, 29,
18]. Therefore, the resulting relationalization obtaingéhterval linear of the form
x' € [Es, Es|x — [Py, P](Bu + b) which stands for the logical formula

R(z,u,2'): (3E € [E,,E,|, P € [P;,P]) ' = Ex — P(Bu+b).

As such, the relation above cannot be expressed in lingingetic. We will expand
upon the treatment of interval linear relations later irs tection.

Example 2.Going back to the system in Ex. 1, we find relational abstoastior mode
ng when the system does not take an autonomous transitiomwiitbisampling period
of 0.2 time units. Using a numerically computed matrix exponéntiee obtain the
0.7669 O.214> 0.1635
0232 1.07 /¥ \ —0.079
arithmetic based method described by Goldsztejn [18], vtainlthe relation

relationz’ = ( . On the other hand, using the interval

e [0.7669282852020186, 0.7669282852020187] [0.2139643726426075, 0.2139643726426076)
® [0.2317947337083272, 0.2317947337083273] [1.0700444963848672, 1.0700444963848673] z

+ [0.1635149326785402, 0.1635149326785403]
[—0.0789845829507958, —0.0789845829507957] ) °

While pathological cases for matrix exponential compotatare known (Cf. Gold-
sztejn [18]), the rather tight interval bounds for the exgutial seem to be quite com-
mon in our benchmarks, and therefore, the use of numericaltlyputed matrix ex-
ponentials may be quite satisfactory for many applicatiarteerein the dynamics are
obtained as an approximation of the physical reality in tret filace.
Applying the same for mode,, we obtain the relatiom’ = (1'5245 0'2181) T+
' 0.0182 0.4885
—0.1626
—0.0867
less centered around the numerically computed value.

. Once again, an interval computation yields intervals afthil0—1¢ or

3.1 Dealing with Autonomous Transitions

Thus far, we have described a simple relationalization mehender the assumption
that no autonomous transitions were taken by the plant gaisampling time period.
We will now describe the treatment of autonomous transitiiat can be taken by the
plant between two successive samplings. In general, tearea priori bound on the
number of such transitions that a plant can take in any giegiog (n7%, (n + 1)T%).
Even if the plant is assumed to be non-Zeno, any relatioai@diz has to capture the
effects of the plant executing a finite but unbounded numb#aasitions. We remedy
this situation by making two assumptions regarding thetpl@) There is a minimum
dwell time Tp > 0 for each modey of the plant. In other words, whenever a run of
the plant enters some modg it remains there for at leadty time units before an



autonomous transition is enabled. (b) No autonomous tiansican be taken precisely
at the time instant = 57 for j € Z.

The first assumption provides a bound = %-‘D—‘ on the maximum number of

autonomous transitions taken inside a sampling interalttits paper, we will assume
that N = 1 to simplify the presentation, i.e., the controller is asednto sample the
plant fast enough to restrict the number of autonomousitians in any sample pe-
riod to at most 1. The second assumption allows us to use aémelatdinterleaving
semanticavhen the relationalization of the plant and the system areposed. This
assumption fails if the execution time of the controller & negligible compared to
the time scale of the plant dynamics, as is sometimes the Haseever, if bounds are
known on the execution times, we may compute relationatinatof the plant for two
time steps, one for the controller step and the other for dingpding period. Likewise,
the basic ideas presented here extend to more sophisttaateexecution schedules for
control tasks.

Let us assume that a single autonomous tran-
sition 7 : {(q1,¢q2,p) is taken during the time
t € (0,Ts). Our goal is to derive a relation
R.((q1,z),u, (g2, ")) characterizing all possi-
ble pairs of stategq;, ) and (g2, ') so that the
plant may evolve from continuous statén mode
¢1 attimet = 0 to the statéqo, ') attimet = T
with the transitionr taken at some time instant
0 < t < Ts. The resultingR; for eachr € T,
will form a disjunct of the overall relatio® p for
the plant.

Figure 3 summarizes the situation diagram
matically. We lety be the valuation to continu-Fig. 3. Schematic for relational ab-
ous variables just prior te being taken and,’ straction of a single autonomous
be the valuation just after is taken. Lett be transition.
the time instant at which is taken. Let the dy-
namics in modey; for i« = 1,2 be given by
d2 — Az + Biu + b;. Thereforex = ety — P(4,—t)(Biu +b1) A 2/ =
e(Te=t 429/ _ P(Ay, T, — t)(Bou + by). The overall relation is given by

(¢, )

x=e My — P(A1,—t)(Biu+by)
Re(z,u,z'): 3t,y,y) | ' =e T4y _ P(Ay, Ty — t)(Bau + by) 1)
0<t<Ts A p(y,y")

Note that we have chosen to encaee- e~ 41y instead of encoding the dynamics in
the forward directiony = e*41 2. This seemingly arbitrary choice will be seen to make
the subsequent quantifier elimination problem easier.

Eliminating Quantifiers: The main problem with the relatioR, derived in Eqn. (1)
is that the matrices andP(A;, t) are, in generatranscendental functioref time. It

is computationally intractable to manipulate these refatiinside decision procedures.
To further complicate matters, the variablis existentially quantified. Removing this



quantifier poses yet another challenge. However, our gdhbwito derive an over-
approximation ofR, expressible in linear arithmetic.

To this end, the main challenge is to construct a good quality linear over-
approximatiomR%(x, u, ') of the relationR .. We address this challenge using interval
arithmetic techniques.

Interval Over-approximation We subdivide the intervgDd, Ts] into M > 0 subin-
tervals each of widthf = Z:. Next, we consider each subinterval of the fotne
[i6, (i + 1)&) and use interval arithmetic evaluation for the functietts and P(A;,t)
to obtain a conservative approximation valid for the sudoval. In effect, we over-
approximateR, as a disjunction

Ri: \/ Guy) |2 B Foly — P2 Pel(Boutbo) A |, ()
0si<M pr(Y,y')

wherein[E; 1, E; 1] is a safe interval enclosure of ((+1)%~©141 while [E; 5, F; 2] is
an enclosure of(Ts~[1.(+1)9) A2 | ikewise,[P; 1, P;.1] and[P; 2, P; 2] are safe enclo-
sures ofP (A1, [—(i + 1)d, —id]) and P(Aq, (Ts — [id, (i + 1)d])), respectively.

The resulting over-approximation is a disjunctionidfinterval linear relations. In
effect, the transcendental relatidty in Eq. (1) is over-approximated by an algebraic
(bilinear) relationRL. The over-approximation error be made as small as necelsgary
increasing the number of subdivisiohs, and by using a more expensive procedure for
deriving a better approximation of the exponentials byrivets. The problem of eval-
uating safe interval enclosures to the matrigés®2]4 and P(A, [t1,t,]) uses the idea
of scaling and squaring with Horner’s rule for evaluating thuncated power series,
precisely as described by Goldsztejn [18]. A convenienktrised in our implementa-
tion folds the computation af[*1-*2] and P(A, [t1, t2])(Bu + b) into a single matrix

exponential computation for a block matrix of the fo(n’zn)4 OB 8) .

Example 3.Consider the hybrid automaton described in Ex. 1. We wishottsicler
the relational abstraction when is taken sometime during the sampling period &f
seconds. To this end, we will chood¢ = 2 and consider two possible intervals for
the switching timet when the transitiom; is takenJ; : [0,0.1) andJ> : [0.1,0.2].
Considering interval/;, we obtain the following relation (intervals are roundedto
significant digits for presentation):

<[o.99,1.17] [—0.13,0.01]) < [-0.11,0] \ |
Ry : (3y) [—0.14,0.0] [0.98,1.01] [—0.01,0.05]
T ) ([1.23,1.53] [0.09,0.25]) y ([—0.16,—0.07]

[0.0,0.02] [0.48,0.7] [—0.1, —0.04] NyeG,

Templatization The next step is to usetamplatizatiortechnique to effectively elim-
inate the quantifierg, ¢’ from the relationR! in Equation (2) while, at the same time,

10



over-approximating the result by means of a linear aritlomater-approximation. Re-
call that each disjunct in Equation 2 is emterval linear assertiorof the form

:BE[Ejjl,T] —[ ](Blu+b1)/\
c )

J
(Ej2, Ejly’ [_ Pjo](Bau + bs) A pr(y,y)
An interval linear constraint of the forfp_"_, I;2; + Io < 0 is a place holder for a
bi-linear constraintzg‘:1 w;z; +wo < 0, whereinuwy, . .., w, are freshly introduced
variables and eact; Is constrained by requiring that; € I;.

In order to eliminatey, vy’ from this relation, a technique for eliminating quanti-
fiers for real arithmetic such as Cylindrical Algebraic Degmsition (CAD) [9], or
a more efficient version for quadratic polynomials is cafled[41, 13, 38]. However,
the downside of using such complex techniques include (a)vitell known that QE
over non-linear constraints is a hard problem with limitedlability, and (b) the result
after elimination will, in general, be a set of polynomiaéqualities (semi-algebraic
constraint). Therefore, the resulting relationalizatiogly not be easy to reason with for
existing tools.

We present a more efficient alternative that side steps thenaltion altogether,
relying instead on the use of templates and optimization:

1. We choose a set of template expressigrig, ', u) involving the variables:, w
andx’. We discuss a natural choice for these templates subsdyuent

2. For eacle;, we carry out the optimizatiornin ey, s.t. ij-(w, y,u,y’,x’). If the
problem is feasible and bounded, theallows us to conclude that

I
R] (ma Yy, u, y/a w/) = ek(wa u, wl) Z ag .
As a result by choosing sonté€ > 0 templates:, . . ., ex, we obtain an assertion
ei(z,u, ') >a1 Aex>as A - A ez, u, ) > ak.

This assertion serves as an over- apprommaﬂdh’twth the quantified variableg, y’
eliminated through optimization. We now prowde a natucdieme for the choice of
templates, and then discuss how the optimization problemdoh template expression
can be solved.

The overall relationalization of the plafp is the disjunction of the relationg,,
for each mode, an&’, for each autonomous transition

Theorem 1. For any pairs of states : (¢,«) ando’ : (¢, ') such thate’ is reach-
able fromz in T, seconds for constant control input the computed relational ab-
stractionRp satisfiesRp (0,0’ u).

Choosing Template Expressions A natural choice for template expression presents
itself in our setup by considering the midpoints of the inéds used in the matrix ex-
ponential computations. We note thais the state obtained starting frammand evolv-

ing in mode1 for time [i4, (¢ + 1)d). Likewise,a’ is obtained by evolving according
to the statey’ for time [Ts — (¢ + 1)8, T — 6). Finally, ¥y’ = U(y), whereinU is
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the affine update map for transition In practice,d is chosen to be small enough to
yield tight enclosures te!4: andP(4;, t) matrices. Therefore, a natural choice of tem-
plate expression is obtained by considering the midpoifttssatime intervals involved.
Specifically, we consider the affine expressions defined by

x' — eTsmtm)A2 (] (etm A1) wheret,, = (i + %)6.
Example 4.In Ex. 3, we showed the interval linear relation obtained bypsidering
switching times in the interval € [0.0,0.1]. The midpoint of this interval ig,, = 0.05.
Therefore, we consider the modg taken for time0.05 units followed by0.15 units
of model for generating a suitable template. These template expresare given by
e : ¥/ —1.31x—0.25y andes : 3’ —0.05z — 0.6y. We seek to bound these expressions
to obtain a linear arithmetic over-approximation.

Encoding Optimization Next, we turn our attention to setting up the optimization
problem for a given template expressien + dx’. The intermediate statgg y’ are
related by interval linear expressions of the form

x' € [Es, by + [P, Ps), x € [E1, Erly + [P, P1].

To set up the optimization problem, we substitute theseesgions forz, =’ in the
template to obtaie([Ey, E1 |y + [P1, P1]) + d([E2, Ex|y’ + [Pz, P»]). This s, in fact,
an interval linear expression involving y’. The overall optimization problem reduces
to: min [¢, €y + [d, d]y’ + [co, @] St p- (y, y'). Here[e, ] = c[E1, En], [d.d] =
d[Ey, E»] and[cy, %) = c[Py, Pi| + d[P», P»]. The problem has an interval linear
objective and linear constraints. We now show that the caimts can be encoded into
a disjunctive linear program.

Theorem 2. The optimization of an interval linear objective w.r.t lareconstraints
min [¢,€] X zs.t. Az < b,
can be equivalently expressed as a linear program with digjue constraints:
min czt —€z7 st Azt —Az7 <b, 2tz >0,z =0V 2, =0
wherez = zT — z~.

Proof. We may decompose any vecterasz = z* — z—, wherez™, 2~ > 0, and
enforcez;"z; = 0. Next, consider the objectije, €] x (27— 2z 7). Since correspondent
entries inz™, z~ cannot be positive at the same time, we may write the objeetiva
linear expressiomz" — €z~. Finally, the complementarity conditioff z; = 0 is
rewritten as:;” =0 Vv z; = 0.

A simple approach to solve the optimization problem forutistive constraints is to
use a linear arithmetic SMT solver to repeatedly obtainibdasolutionsz™, z~. For
a given feasible solution output by the SMT solver, we fix aimad set of the values
for z*, 2~ to zero to enforce the complementarity constraints;” = 0, leaving the
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remaining variables as unknowns. An LP solver is then usezbtopute an optimal
value f* for the objective functiorf, based on the remaining constraints. This yields a
potential optimum. Next, we addtdocking constraintf > f* to the SMT solver and
search for a different solution. The process is carried otit the SMT solver returns
UNSAT. At this point, we output the last optimal solution ke final value.

Example 5.Continuing with the examples worked out in Ex. 3, we perfoha bpti-
mization of the template expressions chosen in Ex. 4 to olitairelational abstraction:

R: g, —1.0<131z+0.25y — 2’ <1.24 A —0.32 < 0.05z + 0.6y —y' < 0.51.

Likewise, considering the time intervad} : [0.1, 0.2] for the switching time, we obtain
the abstraction:

R g, —1<0.94240.25y—2' < 0.88 A —0.54 <= 0.172+0.9y—y" <= 0.7708.

The overall timed relational abstraction for the samplieg@d wherer; can be taken
sometime in between B, : R ;, V Ry j,.

4 Experimental Evaluation

We first briefly describe our implementation of the relatilcatzstractor using the tech-
niques presented here.

Implementation: The relational abstractor takes in a plant descriptioruidiclg the
sample timél’;, and outputs the relation as a SAL transition system [32%.rEftational-
ization is performed for the continuous dynamics in each ertmdcomputing a matrix
exponential. A numerical approximation of the matrix exgotial function is obtained
using Pade’s approximation [27]. We have also implemenfaeedure that provides
a sound interval enclosure of the exponential function avrval matrices using the
ideas described by Goldsztejn [18]. However, this procedsiused solely for dealing
with autonomous transitions.

Autonomous transition between modes are handled usinddgbdatams presented
so far. We implicitly assume minimum dwell time greater tlauequal to the sampling
time for the controller. The optimization problems encauatl for autonomous transi-
tions are solved using the SMT solver Z3 [12]. SAL providésiaduction and BMC
engine using the solver Yices [14]. This was used for anaty#ie resulting composed
transition system for our evaluations.

Benchmarks: Table 1 shows the benchmarks used in our evaluation alomgtkeir
sources. The benchmarks vary in dimensionality and numicigaiesitions. Note that
many benchmarks do not contain autonomous transitionedadr benchmark, we per-
formed the relational abstraction for different samplimgesT;, and used SAL to an-
alyze safety properties.

The NAV benchmarks, due to Ivancic and Fehnker [15], modelréigle traveling
through many2 D cells that each have a different dynamics. We consider twsives
of this benchmark (a) the transitions in the benchmark dieterpreted as controlled,
commanded by a controller, or (b) transitions are autonaonature. Starting with
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Model |Description # Var|# Modg# Trs ||Prop.  |Description
InvPen |Inverted Pendulum Control|[5 |1 1 05(0.05)|Angle § € [—0.05, 0.05]
SNCS  |Network Control System [42P 1 2 P (x,y) € [-100, 100>

Py (z,y) € [-10*,10%)?
ACC Adaptive Cruise Control [21]4 1 2 SAFE  |No collision between cars.
ACC-T |ACC +transmission [21] |3 20 24 SAFE |No collision between cars.
Heat-x |Room heater [15] 9 8 20 LB Lower bounds on temp.

Cf. [15]

Nav-y NAV benchmarks [15] 4 [7,16] ([9,16]||RA Cell Ais unreachable

RB Cell B is unreachable
Toy Example 1 2 2 5 bnd(k) |n1 = |z| <k
Ring(n,m)Cf. Section 4 n m+l  |m+l ||bnd(k) |na=|z| <k

Table 1. The benchmarks used in our experiments at a glance.

all controlled transitions, we introduce uncontrolleds#ions incrementally into these
benchmarks.

Ring Benchmarks: We created a set of sampled data control systems with autmmem
transitions. We consider a plant with+ 1 modes, wherein modes, ..., m; are
governed by stable dynamics, while moekg ; is an unstable mode. The controller
seeks to stabilize this mode by periodically sensing thetjslatate and applies a control
that reverts it back to mode ;.

The benchmarkinstané&ng(n,k)  consists of, state variables and+1 modes.
The autonomous transitions are added from mioemodei + 1 for ¢ < &, while the
controlled transition leads from mode+ 1 to model. The dynamics in each mode is
of the form‘fl—f = A;(x —b;), wherein, for the stable modes is a Hurwitz matrix and
b; is a designated equilibrium fon,;. For the unstable mode, we ensure thAathas a
positive eigenvalue. The switch from; tom;, takes place inside a bdl; —e, b; +€].
The controller periodically senses the plant and whengser- ¢ for some fixede, it
brings the dynamics back into the b{ < ¢ while transitioning to modez;. We wish
to check whether all trajectories lie inside a Hax < ¢ + d, for varying toleranced.

Results: Table 2 shows the experimental results on benchmarks thawdoave au-
tonomous transitions. Our experiments are attempted usingerous values of sample
times for each property until either a proof is obtained fur tontroller or the SAL
tool fails due to a timeout. In the absence of autonomousitians, the relational-
ization time for all these benchmarks was well untlesecond. We also note that the
counterexamples generated by SAL can be concretized, #iecémed abstractions
involving matrix exponentials are seen to be quite precise.

Table 3 shows the results for systems with controlled andrenmhous transitions.
These include the system from Ex. 1, lRimg(n,k)  systems for varying. and the
NAV benchmark instances as we increase the number of autmmtmansitions. We
observe that making all the transitions autonomous leads dounterexample. This
counterexample may potentially be an artifact of the presisoss due to relation-
alization of autonomous transitions. Future work will cioles the refinement of these
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Model [Prop Ts ||ResultDepthTime
InvPen |60,(0.05) [0.1 ||[CE |1 0.1
0.0§|P 12 |0.9 Model| T [Prod[resul{deptttime
SNCS |P 1.7 ||P 2 0.1 Heatl|LB[1 [[CE [4 [0.1
P, 1.8 ||CE |93 5.6 2 |I[CE |8 0.1
ACC |SAFE 0.1 (|P 7 0.1 0.1 ||P 37 |1967
gap(100)(0.1 ||P 4 0.1 Heat2[LB[1 [[CE |4 [0.1
ACC-T |SAFE 1 P 14 |2.2 0.2 ||P 17 |160
Nav 1-71 RB ||P <11 <5 Heat3|LB |1 CE |2 0.1
1 RA |[CE |<13 |2 0.2 |CE |17 (27
Navsg |1 RB [[CE |7 0.27 0.1 |[F 30 |>1h
0.2 RB ||F 25 > 1h Heat4|LB |1 CE |2 0.1
Nav9 |1 RB [[P 19 [213.0 0.1 |CE |10 |1.22
1 RA |ICE |9 0.37 0.02||F 25 |>1h
Nav 10 |1 RB ||[CE |19 28.37
0.5 RB ||F 25 > 1h

Table 2. Results on benchmarks without autonomous transitionstirdlngs were measured in
seconds on a laptop running Intel Core i7-2820Q 2.30GHzgwwmr (x8664 arch) with 8GB
RAM running Ubuntu 11.04 Linux 2.6.38-13. Legen@E indicates true counter-example,
indicates proofsk indicates failure due to timeout.

counterexamples by subdividing the transition switchinggtintervals further based on
spurious counterexamples. We note that the time for relalivation remains a small
fraction of the time needed to check the system. The relalimation scheme can be
improved further if SMT solvers such as Z3 can be modified ppsut the optimization
of objective functions.

Comparison With SpaceEx: We now compare the results obtained for our approach
with the SpaceEx tool over the same set of benchmarks [16]erforming the com-
parison with SpaceEx, we reiterate two key points of diffiees (a) SpaceEx handles
general hybrid systems with support for synchronous tirggiered semantics as well
as the standard event-triggered semantics given by guadiseaets. Our technique is
specialized to sampled data control systems. (b) Spacég&mptis to characterize the
reachable sets for all time instances, whereas our appfoaakes on proving proper-
ties at the periodic sampling times.

Typically, running the benchmarks in SpaceEx required shmapfrom a range
of parameters including template domains, underlying @npntation, flowpipe tol-
erances, error tolerances, local and global time horizondlienits on the nhumber of
iteration. We ran SpaceEx for each benchmark using multipteon sets, choosing the
option that provided the “best answer” with as few warninggassible. However, it
may be possible to obtain qualitatively different resultsg choices for the parameters
that were unexplored in our experiments. A detailed tabhersarizing our experiences
is available upon request.

Table 4 presents a summary of the results obtained by ruriageEx on our
benchmarks. We note that in many cases, SpaceEx did not agfadd point. There-
fore, whenever a property proof was obtained, we reporgiftitoof was obtained over
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Model Prop result|depthTsa [Tre
Toy bnd(8) |P 2 0.1 |< .1|||ModellProgTs [# Aut.|[resulidepthtime
bnd(6) |P 2 0.1 Navl [RB (0.2/6 P 9 199
bnd(5.5)|P |2 |0.3 14 P |9 (72
bnd(5) |CE ||70 |204 21 [P |9 |96
Ring(3,4) [bnd(20) [P [[10 [5.2 [0.8 24 |F |9 |169
bnd(15) [P ||30 |451 Al |ICE |9 |161
Ring(5,4) |bnd(25) |P 10 (34.7|2.8 Nav2 [RB |0.2/20 P 9 92
bnd(20) [P ||10 |[56.2 21 |[F |9 |160
bnd(15) |F 20 |[>1h All CE |7 151
Ring(7,4) [bnd(25) [P |[10 |[157 [11.9] [Nav3 |RB [0.222 [P |9 [83
bnd(20) |P 10 (357 All CE |6 13
bnd(15) |F 20 (>1h Nav4 [RB |0.29 P 18 {130
Ring(9,4) [bnd(25) [P [[10 [515 [19.1 20 |F |18 |>1h
bnd(20) |P 10 (2929 All CE |6 7
Ring(11,4)bnd(25) |F 10 |> 1h|150

Table 3.Results on systems with autonomous transitions. For the bE\¢thmarks, autonomous
transitions between cells were incrementally enabled theecontrolled transitions until all tran-
sitions were autonomoug.,; refers to running time for SAL and...; the running time for the
relationalization.

a finite time horizon. Likewise, for cases where the propesg not proved, we ran
SpaceEx for the minimum number of iterations until a podntiolation is observed.

The comparison between our approaches clearly showcases aothe relative
merits and demerits of our approach vis-a-vis SpaceEx.eragr many benchmarks
wherein our approach is able to establish the property avirfmite time horizon using
k-induction, whereas SpaceEx either proves the propertyafiaite time horizon or
fails. On the other hand, the NAV benchmarks are an intergstise where SpaceEx’s
performance is at par or clearly superior to that of our agpino

For some of the Ring examples, we observed that using thedsooiotained by
SpaceEx as inductive strengthenings enabledktireluction technique to prove the
property for a smaller value @f, leading to improved running times.

Our future work will focus on an integration of the approazitensidered here
in combination with tools such as SpaceEx to achieve infimitézon safety property
proofs. Another important area of future research will beextend our approach to
analyze non linear hybrid systems, which are much moreemgithg.
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