
Appeared in 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA) 2003

MANTIS: System Support for MultimodAl NeTworks of
In-situ Sensors

H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng, R. Han
University of Colorado at Boulder
Department of Computer Science

Contact author: rhan@cs.colorado.edu

ABSTRACT

The MANTIS MultimodAl system for NeTworks of In-situ
wireless Sensors provides a new multithreaded embedded
operating system integrated with a general-purpose single-board
hardware platform to enable flexible and rapid prototyping of
wireless sensor networks. The key design goals of MANTIS are
ease of use, i.e. a small learning curve that encourages novice
programmers to rapidly prototype novel sensor networking
applications in software and hardware, as well as flexibility, so
that expert researchers can leverage or develop advanced software
features and hardware extensions to suit the needs of advanced
research in wireless sensor networks.
Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design - real-time
systems and embedded systems, interactive systems. C.3
[Computer Systems Organization] Special-purpose and
Application-based Systems - real-time and embedded systems.

General Terms
Design, Experimentation, Performance, Security, Human Factors.

Keywords
Wireless sensor networks, operating systems, lightweight,
multimodal prototyping, dynamic reprogramming, GPS.

1. INTRODUCTION
The growing popularity of wireless sensor networks (WSNs) has
placed increasing demands upon the infrastructure of today's
general-purpose hardware/software sensor systems [1,2,3,4] to
support improved flexibility, ease of use, and lower cost. The
MANTIS MultimodAl system for NeTworks of In-situ wireless
Sensors provides a new multithreaded embedded operating
system integrated with a general-purpose single-board hardware
platform to enable flexible and rapid prototyping of wireless
sensor networks. The key design goals of MANTIS are ease of
use, i.e. a small learning curve that encourages novice

programmers to rapidly prototype novel sensor networking
applications, as well as flexibility, so that expert researchers can
continue to adapt and extend the hardware/software system to suit
the needs of advanced research.

The first goal in the design of the MANTIS OS (MOS) was to
meet the objective of ease of use or convenience while also
adapting MOS to the resource constraints of wireless sensor
networks, namely limited memory and power. To lower the
barrier to entry into the field of sensor networks and encourage
novice application developers, early design choices of MOS
adhered to familiar themes in programming languages and
operating systems design. For these reasons, MOS selected as its
model the classical structure of layered multithreaded operating
systems, which includes multithreading, pre-emptive scheduling
with time slicing, I/O synchronization via mutual exclusion, a
standard network stack, and device drivers. Familiarity with these
classical structures lowers the learning curve for novice
developers. A key challenge has been to adapt these classical
structures to the limited memory of sensor nodes. At present, the
MOS kernel is able to achieve multithreaded pre-emptively
scheduled execution with standard I/O synchronization and a
network protocol stack, all for less than 500 bytes of RAM, not
including individual thread stack sizes.

Another means by which MOS achieves the goal of ease of use is
via its choice of a standard programming language. In particular,
the entire kernel and API are written in standard C. This design
choice not only considerably flattens the learning curve, due to
the vast number of programmers with prior experience in C, but
also accrues many of the other benefits of a standard
programming language, including cross-platform support and
reuse of a vast legacy code base. For example, a standard stop-
and-wait reliable protocol as well as a standard RC5 security
algorithm [5] are both available in C, and have been ported into
the MOS kernel. The choice of C also eases development of
cross-platform multimodal prototyping environments on X86 PCs,
as explained below. As a result, MOS has the potential to
considerably shorten development cycles by enabling rapid
prototyping of applications as well as rapid testing and debugging
of additions and modifications to our MOS kernel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WSNA '03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-764-8/03/0009…$5.00.

The second objective of MOS is to promote flexibility for
advanced research in sensor networks. Towards this end, MOS
supports useful yet sophisticated features that are tailored to
advanced sensor networks, including dynamic reprogramming of
sensor nodes via wireless, remote debugging of sensor nodes, and
multimodal prototyping of virtual and deployed sensor nodes.

Appeared in 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA) 2003

Hardware

MANTIS System API

Kernel/Scheduler

N
et

w
or

k
St

ac
k

MANTIS OS

Device Drivers

T3

C
om

m
an

d
Se

rv
er

T4 T5
User-level

threads

Hardware

MANTIS System API

Kernel/Scheduler

N
et

w
or

k
St

ac
k

N
et

w
or

k
St

ac
k

MANTIS OS

Device Drivers

T3

C
om

m
an

d
Se

rv
er

C
om

m
an

d
Se

rv
er

T4 T5
User-level

threads

Figure 1. MANTIS OS architecture compresses a
classic multithreaded layered operating system design
into <500 bytes of RA

In the remainder of the paper, Section 2 describes the MOS
architecture, how it offers a convenient environment for
development of WSN applications., and how it achieves a
lightweight implementation. Section 3 provides a detailed
overview of advanced MOS features. Section 4 focuses on the
hardware. Section 5 describes deployed applications, and Section
6 finishes with future work.

2. LIGHTWEIGHT MANTIS OPERATING
SYSTEM DESIGN
In this section, we describe the architecture of the MANTIS
operating system, which adheres to a classical layered
multithreaded design, as shown in Figure 1. The top application
and API layers provide an opportunity to observe how the choice
of a simple C API promotes ease of use, cross-platform
portability, and reuse of a large installed code base. In the lower
layers of MOS, we describe our novel adaptation of classical OS
structures to achieve a small memory footprint.

M.

sense_and_forward.c

#include <stdio.h>
#include "led.h"
#include "scheduler.h"
#include "network.h"
#include "adc.h"

void test_adc_send();

void start(void){
 net_init(CHANNEL_1);
 thread_new(mos_inetd, 128,
PRIORITY_NORMAL);
 thread_new(test_adc_send, 128,
PRIORITY_NORMAL);
}

void test_adc_send(){
 uint8_t value;
 adc_open();
 set_addr(0x11);
 set_radio_power(0xff);

 while(1){
 led_yellow_toggle();
 value =
adc_convert_eight_polling(ADC_CH_2);
 mos_send_to(0x41, 0x02, &value,
0x01, FLOODING);
 }
}

Figure 2. Sample application C code, sense-and-
forward.c.

2.1 Applications
MANTIS provides a convenient environment for creating WSN
applications. Figure 2 illustrates a simple yet commonly used
“sense_and_forward” application, which is available along with
the complete MANTIS software release 0.1 at
http://mantis.cs.colorado.edu/. This simple application, which
runs on a sensor Nymph (see Section 4), toggles a yellow LED,
reads a sensor value from an analog to digital converter (ADC)
port and then transmits the value of the sensor over the radio.

All applications begin with start. Before transmitting, the
network must be initialized first by calling net_init before any
threads are spawned. Then two threads are spawned with
thread_new. One call spawns the mos_inetd, which is provided,
and the other call spawns the test_adc_send application, which
has been developed by the user. Thus, an application may
conveniently be built of more than one thread.

Within the test_adc_send thread, reading a sensor requires that an
analog-to-digital converter (ADC) be opened with adc_open.
The node address is set as well as the radio frequency power, by
calling set_addr and set_radio_power, respectively. With these
preliminaries completed, the application can now toggle an LED,
read the sensor value from the ADC and send it over the radio, by
calling the led_yellow_toggle, adc_convert_eight_polling and
mos_send_to.

All of the function calls mentioned so far are part of the MANTIS
System Application Programming Interface (API). The program
is compact and requires a fairly shallow learning curve for C
programmers. Early empirical experience with MOS suggests
that application developers can rapidly prototype new
applications in this environment. Applications such as a sensor-
enabled conductor's wand [6] of Section 5 were prototyped in
hours, while applications such as a frequency-hopping protocol
and a port of the RC5 security standard were completed in less
than two nights.

2.2 System APIs
MANTIS provides a comprehensive set of System APIs for I/O
and system interaction. For a complete list and information on all
the APIs please refer to http://mantis.cs.colorado.edu/. For the

http://mantis.cs.colorado.edu/
http://mantis.cs.colorado.edu/

Appeared in 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA) 2003

preceding sense_and_forward application example, the APIs that
were used in the application can be categorized as:

Networking: net_init, set_addr, set_radio_power, mos_send_to

On board sensors (ADC): adc_convert_eight_polling,
adc_open

Visual Feedback (LEDs): led_yellow_toggle

Scheduler: thread_new

The choice of a C language API simplifies cross-platform support
and the development of a multimodal prototyping environment.
The MANTIS System API is preserved across both physical
sensor nodes as well as virtual sensor nodes running on X86
platforms. As a result, the same C code developed for MANTIS
sensor Nymphs with ATMEL microcontrollers [7] can be
compiled to run on X86 PCs with little to no alteration.

2.3 Kernel and Scheduler
The design of the MOS kernel resembles classical, UNIX-style
schedulers. The services provided are a subset of POSIX threads
[8], most notably priority-based thread scheduling with round-
robin semantics within a priority level. Binary (mutex) and
counting semaphores are also supported. The goal of the MOS
kernel design is to implement these familiar services in a manner
efficient enough for the resource-constrained environment of a
sensor node.
The most limited resource on a MANTIS node is the RAM.
There are two logically distinct sections of RAM: the space for
global variables that is allocated at compile time, and the rest of
RAM that is managed as a heap. When a thread is created, stack
space is allocated by the kernel out of the heap. The space is
recovered when the thread exits. In the current implementation,
the user is not able to dynamically allocate heap space, although
that was an API decision and is not an inherent limitation of
MOS.
The kernel's main global data structure is a thread table, with one
entry per thread. Since the thread table is allocated statically,
there is a fixed maximum number of threads and a fixed level of
memory overhead. The maximum thread count is adjustable at
compile time (the default is 12). Each thread table entry is ten
bytes and contains a current stack pointer, stack boundary
information (base pointer and size), a pointer to the thread's
starting function, the thread's priority level, and a next thread
pointer for use in linked lists. Note that pointers on the AVR
microcontroller are only two bytes. A thread's current context,
including saved register values, is stored on its stack when the
thread is suspended. This is significant, because the context is
much larger than a thread table entry, and it only needs to be
stored when the thread is allocated. Thus the static overhead of
the thread table is only 120 bytes.
The kernel also maintains ready-list head and tail pointers for
each priority level (5 by default, for 20 bytes total). Keeping both
pointers allows for fast addition and deletion, which improves
performance when manipulating thread lists. This is important
because those manipulations are frequent and always occur with

interrupts disabled. There is also a current thread pointer (2
bytes), an interrupt status byte, and one byte of flags. The total
static overhead for the kernel is thus 144 bytes.
Semaphores in MOS are 5-byte structures that are declared as
needed by applications; they contain a lock or count byte along
with head and tail list pointers. At any given time, each allocated
thread is a member of exactly one list; either one of the ready lists
or a semaphore list. Semaphore operations move thread pointers
between lists, and the scheduler cycles through the ready lists to
locate the next thread to execute.
The scheduler receives a timer interrupt from the hardware to
trigger context switches; switches may also be triggered by
system calls or semaphore operations. The timer interrupt is the
only one handled by the kernel--other hardware interrupts are sent
directly to the associated device drivers. Upon an interrupt, a
device driver typically posts a semaphore in order to activate a
waiting thread, and this thread handles whatever event caused the
interrupt. There are currently no 'soft' interrupts supported by the
MOS kernel, although the design does not preclude adding them
in the future.
In addition to driver threads and user threads, there is also an idle
thread created by the kernel at startup. The idle thread has low
priority and runs when all other threads are blocked. The idle
thread is in a position to implement power-aware scheduling, as it
may detect patterns in CPU utilization and adjust kernel
parameters to conserve energy.

2.4 Network Stack
Wireless networking is critical for the correct operation of a
network of sensors. Such communication is typically realized as
a layered network stack, not to be confused with the thread stack.
The design of the MANTIS network stack is focused on efficient
use of limited memory, flexibility, and convenience. The stack is
implemented as one or more user-level threads. Different layers
can be flexibly implemented in different threads, or all layers in
the stack can be implemented in one thread. The tradeoff is
between performance and flexibility. The stack is designed to
minimize memory buffer allocation through layers. The data
body for a packet is common through all layers within a thread.
The headers for a packet are variably-sized and are pre-pended to
the single data body. The stack is conveniently designed in a
modular manner, with standard APIs between each layer, thereby
allowing developers to easily modify or replace layer modules.
The routing protocol is assigned on a per packet basis, so that
different routing mechanisms can coexist, including flooding,
multicast, and unicast. The stack flexibly supports multi-
frequency radio communication over 30 channels, enabling
research into MAC protocol design, security and reliability. A
flexible range of packet sizes is supported, from 12 bytes to 64
bytes, avoiding waste of scarce sensor network bandwidth.
The network stack consists of four layers, i.e. application layer,
network layer, MAC layer and physical layer. At the bottom is
the physical layer implementation that controls the hardware or
virtual hardware (for XMOS). A set of standard APIs is provided
on top of the physical implementation in order to mask the
underlying hardware details from the MAC Layer. The MAC
layer is responsible for controlling such aspects as network duty
cycle, wherein the radio is adaptively slept to save on energy
consumption.

Appeared in 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA) 2003

Together, the MAC and physical layers are realized as one user-
level thread, as shown in Figure 1, and is known as the base
thread of the network stack. MANTIS extends the concept of
user-level implementation of network stacks from such projects as
ALPINE [9] to the sensor networking domain, and outlines the
advantages of this approach below. The base network stack
thread blocks on a well-known semaphore. When a packet arrives
at the radio interface, the interrupt is handled by a device driver,
which places the data in a queue and then posts the semaphore
where the base network stack thread is sleeping. This wakes the
base network stack thread and activates the MAC layer within the
base thread to fetch incoming bytes from the queue. The MAC
fetches bytes from the queue and assembles them into a packet. If
the destination address is a broadcast address or matches the local
node's address, the MAC layer uses the destination port in the
packet to find the local thread that is blocking waiting for this
packet.
The network layer can either be implemented as part of the base
network thread or can be implemented separately in another
thread. In the latter case, the base thread will post the semaphore
on which network layer thread is blocking, and then the packet
will be copied from thread to thread. In general, if the upper layer
is implemented outside of the lower layer's thread, then a packet
will be copied between two user-level threads.
The advantage of a multi-threaded user-level network stack is that
it promotes flexibility, at a cost in performance. In comparison,
systems with a monolithic network stack implemented as part of
the kernel are relatively inflexible. Suppose an application
designer did not know in advance which features out of multicast,
broadcast, or unicast are needed in a sensor network deployment.
In systems with a monolithic network stack, the designer in the
worst case is forced to load all three network layer modules at run
time, leading to inefficient usage of highly limited RAM (less
than 4 KB on ATMEL microprocessors [7]).
The MANTIS decision to implement the network stack as one or
more user-level threads allows a designer to activate or deactivate
a particular routing protocol or reliable protocol on demand as a
user-level thread. For example, if a routing protocol has been
stored in flash, then that protocol can be activated by simply
starting it in RAM. If needed, multiple routing protocol threads
can coexist at the same time. Each packet is directed to the
appropriate protocol thread on a per-packet basis. This flexible
structure is especially useful for dynamic reprogramming in
sensor networks, enabling application developers to dynamically
reprogram network functionality such as routing in deployed
sensor nodes by starting, stopping, and deleting user-level threads.
The decision to implement a network stack as a set of user-level
threads is also useful for cross-platform prototyping of network
stack functionality on X86 PCs prior to deployment in WSNs, as
described in the next section.
The MANTIS system enables zero copies within a thread and
single copies across threads. If a network stack is wholly
implemented within the base network stack thread, then our
approach begins to resemble the zero copy approach of TinyOS,
SMAC [10] and zero copy sockets [11]. At present, we are
investigating zero copies across multiple threads.
In MANTIS, the header and the data buffer for a packet are
allocated separately. The MANTIS network stack allows each
layer to define its own header structure. Each header consists of

two parts, i.e. a common header and a protocol header. The
structure of the common header is static while the structure and
length of the protocol header could be varied.
The MANTIS network stack occupies about 200 bytes of RAM,
when only the MAC and physical layers of the base network
thread are considered. Two system data queues are required of 64
bytes each. The rest of the space is largely consumed by low-
level configuration parameters for the CC1000 radio. Modules
for a broadcast flooding routing protocol and a simple stop and
wait protocol are provided in MOS as default examples for
developing protocols at the network and application layers.
Network layer broadcast flooding adds an additional thirty bytes
of RAM.
The following APIs are provided for connectionless packet I/O:

mos_send(char* header, char headerLen, char* data, char
dataLen);

mos_send_to(uint16_t addr, uint8_t port, char* data, char
dataLen, uint8_t proto);

mos_recv(Packet* pkt, uint8_t port, uint8_t proto);

The network stack also allows the application to specify the
length of time that the thread is willing to be blocked on the
mos_recv() function in order to avoid waiting indefinitely.
Together, the code size of the kernel, scheduler, and network
stack occupies less than 500 bytes of RAM and about 14 KB of
flash. This permits sufficient space for multiple application
threads to execute in the ATMEL's 4 KB of RAM, as well as
sufficient storage in the ATMEL's 128 KB of flash storage.

2.5 Device Drivers
MANTIS adopts the traditional logical/physical partitioning with
respect to device driver design for the hardware. For example, to
turn the green LED on, the LED system API provides a
led_green_on call (logical level), which is transformed to a
PORTA |= 0x80 (physical level) action. The application
developer need not interact with the hardware to accomplish a
given task. However, full access is available to the hardware for
the adventurous.

3. ADVANCED SENSOR-SPECIFIC
FEATURES OF MANTIS OS
Sensor networks impose additional unique demands on the design
of operating systems beyond lightweight resource constraints.
Sensor networking application developers need to be able to
prototype and test applications prior to distribution and physical
deployment in the field. Also, during deployment, in-situ sensor
nodes need to be capable of being both dynamically
reprogrammed and remotely debugged. In the next sections,
MANTIS identifies and implements each of these three key
advanced features for expert users of general-purpose sensor
systems.

3.1 Multimodal Prototyping Environment
The MANTIS prototyping environment provides a framework for
prototyping diverse applications across heterogeneous platforms.
A key requirement of sensor systems is the need to provide a

Appeared in 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA) 2003

XMOS

Se rial IP

AMOS

Figure 3. Multimodal prototyping integrates both virtual
and physical sensor nodes across heterogeneous X86 and
ATMEL sensor platforms.

prototyping environment to test sensor networking applications
prior to deployment. Postponing testing of an application until
after its deployment across a distributed sensor network can incur
severe consequences. As a result, a prototyping environment is
an especially helpful tool for sensor network application
developers.
The MANTIS prototyping environment extends beyond
simulation to provide a larger framework for development of
network management and visualization applications as virtual
nodes within a MANTIS sensor network. First, MANTIS has the
desirable property of enabling an application developer to test
execution of the same C code on both virtual sensor nodes and
later on in-situ physical sensor nodes. Second, MANTIS
seamlessly integrates the virtual environment with the real
deployment network, such that both virtual and physical nodes
can coexist and communicate with each other in the prototyping
environment, as shown in Figure 3. Seamless integration enables
phased deployment and testing of an application, i.e. application
code could first be evaluated on an all-virtual network, then be
deployed without modification to a hybrid network of both virtual
and a few physical nodes, followed by full deployment on an all-
physical network. The combination of all-virtual, hybrid, and
all-physical modes of testing form a multimodal prototyping
environment. Third, MANTIS permits a virtual node to leverage
other APIs outside of the MANTIS API, e.g. a virtual node with
the MANTIS API could be realized as a UNIX X windows
application that communicates with other renderering or database
APIs to build visualization and network management applications,
respectively. This virtual node, a.k.a. UNIX application, would
incorporate the MANTIS system API as a simple means of
becoming just another node within the MANTIS network of
virtual and physical nodes.
MANTIS achieves a multimodal prototyping environment by
preserving a common C API across all platforms. This approach
resembles WINE [12], but eliminates the problems of hidden
system calls, since all such calls are publicly known in MANTIS.
Due to the wide availability and support for the AVR
microcontroller under Linux and Windows, it is possible to build
MOS, with minor modifications, as an application that runs on the
X86 platform over both Linux and Windows. We call this user
space application running on an X86 platform XMOS. For
example, Figure.4 illustrates XMOS utilizing a POSIX shim layer
to translate between MANTIS' uniform API and the underlying

U
r
li
M
n
T
A
A
tw
T
d
s
o
m
tr

T
e
F
h
e
w
d
r
P
c
p
v
c
li
b
n
M
A
s
n
n
T
p
im
Hardware

M ANTIS System API

T3 T4 T5 User-level
threads

UNIX

POSIX Shim Layer

N
et

w
or

k
St

ac
k

C
om

m
an

d
Se

rv
er

Hardware

M ANTIS System API

T3 T4 T5 User-level
threads

UNIX

POSIX Shim Layer

Hardware

M ANTIS System API

T3 T4 T5 User-level
threads

UNIX

POSIX Shim Layer

N
et

w
or

k
St

ac
k

N
et

w
or

k
St

ac
k

C
om

m
an

d
Se

rv
er

C
om

m
an

d
Se

rv
er

Figure 4. X86 MANTIS OS (XMOS) architecture uses
POSIX shim layer to translate to/from underlying OS.
NIX operating system. In this way, MOS applications can be
ealized as both virtual sensor nodes on X86 platforms as well as
ve applications on ATMEL sensor nodes (AMOS). This enables
ANTIS to support multimodal networks, consisting of XMOS

odes and AMOS nodes seamlessly interacting with each other.
he same C source code runs transparently over both XMOS and
MOS platforms, enabling phased deployment from XMOS to
MOS. Figure 3 shows the structure of the network, with the
o networks connected to each other via a serial RS232 link.

hus, a mos_send(…) system call on the AMOS nodes causes the
ata to be transmitted over the radio. The bridge nodes on either
ide of the bridging serial link would additionally send the data
ver the serial link using the mos_uart_send(..) call. A
os_send(…) call on the XMOS nodes causes the data to be
ansmitted over the IP network instead.

he structural implications of the above multimodal prototyping
nvironment afford great flexibility to application developers.
irst, XMOS nodes need not be identical and indeed
eterogeneous applications can be supported simultaneously. For
xample, some XMOS nodes can be written as base stations,
hile others may perform aggregation duties for directed
iffusion [13], and still others may coexist to perform multicast
outing [14]. Second, XMOS nodes are not confined to a single
C, and can be distributed across any number of PCs, maintaining
ommunication via IP packets. This eases the ability of the
rototyping environment to scale to large numbers of XMOS
irtual nodes. Third, an arbitrary number of bridging links can
onnect XMOS and AMOS environments, and need not be
mited to serial links either. Fourth, virtual nodes must support
ut are not limited to the MANTIS API. As a result, a virtual
ode realized as a UNIX application could be integrated into the
ANTIS sensor network on one side and speak with a rendering
PI, database API, X windows API, or socket API on another

ide. Thus, the sensor network can be accessed from any virtual
ode, easing development of applications for visualization,
etwork management, and gateway translation to other networks.
he gateway function is especially critical to translate sensor
acket data to/from IP networks. Fifth, since the network stack is

plemented as user-level thread(s) above the common API, then

Appeared in 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA) 2003

an added bonus is that the XMOS environment can be used to
prototype OS functionality in the form of networking routing and
reliability functions. XMOS is not confined to prototyping user
programs only. Finally, provided that hardware translation is
correct, the XMOS architecture offers the potential to feed real
sensor data into virtual nodes to drive prototype evaluation.

A variety of other sensor networking simulators possess some but
not all of the features of the MANTIS multimodal prototyping
environment. TOSSIM is a simulator for TinyOS [15], and
enables the same code to run in PC simulation as on real sensor
nodes, enabling debugging and verification on PCs prior to
deployment. However, the simulator has to run on one machine
and with the same application instance inside. TOSSF extends
TOSSIM to enable heterogeneous applications, but they're still
confined to one PC [16]. Sensorsim is an extension to ns2 and
provides a simulation framework which models the sensor nodes
and also provides a “hybrid” simulation combining the real and
virtual network [17]. However, the sensor network applications
are required to be re-implemented for the target platform,
resulting in two completely different code bases that must be
maintained. emStar is a framework for developing applications
on wireless sensor networks and combines pure simulation,
hybrid mode and real distributed deployments [3]. However, the
implementation is based on the combination of HP iPAQ platform
and the motes. In MANTIS, no extra hardware such as the iPAQ
is required.

The MANTIS multimodal framework does have some limitations.
By choosing to preserve a high-level API across platforms rather
than low-level instructions as in a virtual machine, each XMOS
node does not perfectly model the performance of a sensor node.
Our tradeoff has been for improved flexibility rather than precise
emulation. Also, not all OS functionality can be tested in the
above architecture. While the network stack and remote shell via
the command server can be tested, as well as user programs, other
functionality such as the kernel's scheduler are at present beyond
the cross-platform testing capabilities of XMOS.

3.2 Dynamic Reprogramming
Dynamic reprogramming or retasking is an especially useful
feature for sensor networks. Research has found that sensor
nodes should be remotely reconfigurable over a wireless multi-
hop network after being deployed in the field [18]. Since sensor
networks may be deployed in inaccessible areas and may scale to
thousands of nodes [19], this simplifies management of the sensor
network, i.e. so that biologists need not go into the field again to
reprogram sensors and change parameters such as. the sensor's
sampling rate and trigger threshold or algorithms such as sensor
calibration or time synchronization.
MOS achieves dynamic reprogramming on several granularities:
reflashing of the entire OS; reprogramming of a single thread; and
changing of variables within a thread. Another feature that is
especially useful for sensor systems is the ability to remotely
debug a running thread. MOS provides a remote shell that
enables a user to login and inspect the sensor node's memory, e.g.
the thread table of an executing thread.
To overcome the difficulty of reprogramming the network, MOS
includes two reprogramming modes. The simpler programming
mode is similar to that used in many other systems and involves
direct communication with a specific MANTIS node. On a

Nymph, this would be accomplished via the serial port: The user
simply connects the node to a PC and opens the MANTIS shell.
Upon reset, MOS enters a boot loader that checks for
communication from the shell. At this point, the node will accept
a new code image, which is downloaded from the PC over the
direct communication line. From the shell, the user also has the
ability to inspect and modify the node's memory directly (peek
and poke), as well as spawn threads and retrieve debugging
information—including thread status, stack fill, and other such
statistics—from the operating system. The boot loader transfers
control to the MOS kernel on command from the shell, or at
startup if the shell is not present.

The more advanced programming mode is used when a node is
already deployed, and does not require direct access to the node.
The spectrum of dynamic reprogramming of in-situ sensor
networks ranges from fine grained reprogramming (modifying
constants like sampling rate) to complete reprogramming of the
sensor nodes. MOS has a provision for reprogramming any
portion of the node—up to and including the operating system
itself—while the node is deployed in the field. This is
accomplished through the MOS dynamic reprogramming
interface. The capability to use the dynamic reprogramming
interface will be built into the MANTIS programming tool.

Current solutions for dynamic reprogramming [20] are virtual
machine (VM) -based where the VM resides over the underlying
sensor operating system and processes the incoming code
capsules. A special stack-based instruction set is used to
reprogram the sensor nodes, reducing the amount of data that is
transmitted over the network. In contrast to the VM based
approach, MOS allows binary updates to reprogram a node. The
developer does not need to learn a new stack-based instruction
set; instead, the existing deployed application only needs to be
modified and recompiled, then a binary patch may be transmitted
to the MANTIS node.

The dynamic reprogramming capability is actually implemented
as a system call library, which is built into the MOS kernel. Any
application may write a new code image through calls to this
library; the code image is stored into EEPROM as it is written.
The application then calls a commit function that writes out a
control block for the MOS boot loader, which causes it to install
the new code on reset. A software reset completes the
reprogramming process. Using the reprogramming library, an
application--such as the MANTIS command server--may
download a patch using any communications method it desires
(typically the regular network stack), apply the patch to the
existing code image, and run the updated code. Thus, the entire
code image, with the exception of the locked boot loader section,
may be reprogrammed over an arbitrary network while the node is
deployed.

3.3 Remote Shell and Command Server
Traditional solutions for network management such as SNMP
[21] are not applicable to highly dynamic sensor networks.
Existing solutions for monitoring sensor networks look at
topology extraction [22] and computing summaries of network
properties for energy efficient monitoring of sensor networks
[23]. In addition to these mechanisms, the user may wish to
manage the nodes in the network in other ways. To provide this
flexibility, MOS includes the MANTIS Command Server (MCS).

Appeared in 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA) 2003

Figure 6. MANTIS Nymph.

From any device in the network equipped with a terminal (a
laptop PC, for example), the user may invoke the command server
client (also referred to as the shell) and “log in” to a node. This
node may be either a physical node (e.g. on a Nymph or Mica
board) or it may be a virtual node running as a process on a PC.
Figure 5 illustrates an example of the remote shell interface.
The MCS itself is implemented as an application thread. It listens
on a network port for commands and replies with the results, in a
manner similar to RPC. In effect, the shell gains the ability to
control a node remotely through MCS. The user may alter the
node's configuration settings, run or kill programs, display the
thread table and other operating system data, inspect and modify
the node's data memory, and call arbitrary user-defined functions.
The shell is a powerful debugging tool, since it allows the user to

examine and modify the state of any node, without requiring
physical access to the node.
4. MANTIS HARDWARE
The MANTIS hardware nymph's design was inspired by the
Berkeley MICA and MICA2 Mote architecture [1]. To help
lower our development costs, shorten our development cycle, and
enhance our research goals, we designed the MANTIS hardware
nymph sensor node, adhering to the same themes of ease of use,
flexibility, and adaptation to sensor networks that characterized
our software design. The learning curve for novice users is
lowered by employing a single-board design, as shown in Figure
6, altogether incorporating a low power Atmel Atmega128(L)
microcontroller (MCU) [7], analog sensor and digital ports, a low
power Chipcon CC1000 multi-channel RF radio [24], EEPROM,
power ADC sensor, and serial ports on a quad-layer 3.67 x 3.3 cm
Printed Circuit Board (PCB). For the common user, the single-
board design eliminates the need for a separate sensor board or
separate programming board, which reduces volume and cost.
The pins for the serial interface are directly accessible on the
nymph in a standard DIP package, enabling direct connection of
each nymph to a laptop via a serial cable, as shown in Figure 6.

Direct serial accessibility combined with dynamic reprogramming
over wireless largely eliminate the need for a programming board
for the common user. Nymphs are versatile in that any node can
serve as a base station or as a leaf. In addition, three sensor
interfaces are built into each nymph and are directly accessible to
the user via wire-wrappable DIP pins, eliminating the need for the
sensor board in the common case. A standard three-wire interface
similar to the popular Lego Mindstorms was selected, enabling a
novice to quickly prototype from a large selection of inexpensive
resistive sensors. Also, GPS capability has been added to each
nymph in the form of a connector that fits the Trimble Lassen SQ
GPS chip shown to the right of the nymph in Figure 6. Again, the
goal is to simplify deployment of GPS-enabled applications for
beginning users. If the GPS chip is not needed, then the
connector is simply vacant. Finally, the nymph includes an
AC/DC option. This is useful for prototyping in the lab and
avoids excessive consumption of batteries. An AC/DC adapter
from Radioshack is satisfactory. A simple 3-way switch toggles
between the AC/DC option, OFF and the battery option. We
envision that the power option will be useful in future
deployments of indoor sensor networks, where power outlets are
readily available for exploitation.

Figure 5. Remote shell.

To support advanced research, the nymph includes several
interfaces that allow expert users to extend its capability. First,
the nymph exports a standard sized JTAG DIP interface for expert
users that need to burn the bootloader into the Atmel's flash. For
example, researchers experimenting with dynamic reprogramming
may need to reset the fuses on the flash. For the novice user, we
envision that the bootloader will be preinstalled by the
manufacturer or an expert user with access to a JTAG
programming device. In difficult debugging situations, the JTAG
interface can also be used for line by line, in-system debugging
using GDB. Second, the nymph includes a 20-pin connector with
standard DIP interface for wire-wrapping or development of an
advanced add-on boards with mating connector. This connector
has direct access to the MCU’s external interrupt pins, I2C bus,
data lines, timers, and pulse width modulation (PWM) pins. Some
potential add-on boards would be I2C expanders that use the
interrupt and I2C pins to add touch pads for example. The data
lines may be used to add liquid crystal displays, while the PWM
pins may be used for controlling motors, timers for time sensitive
applications, or simply as more pins for general digital I/O.

Appeared in 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA) 2003

Figure 7. Rapid prototyping of user interfaces
(conductor's baton) using MANTIS sensor nymphs.

Third, the MANTIS nymph supports multiple antenna options,
including the addition of an antenna amplifier, via another
connector. This connector acts more like a jumper enabling and
disabling the built in low-range low power capabilities and
replacing them by add-on circuitry. The add-on circuitry
implements a 30dB low-noise power amplifier that is a 24-pin
chip plus its additional support circuitry and properly matched
915 MHz antenna. The addition of the amplifier increases the
communication range of the MANTIS Nymph to up to 2km at the
cost of up to half a Watt additional power consumption. For those
reasons we provide the connector as an option and not a
requirement. One final important advanced feature is the addition
of a single channel I2C 16-bit ADC. This ADC enables
monitoring of the battery voltage level.

5.2 GPS-Enabled Time Synchronization
To demonstrate the capabilities of MOS and the MANTIS nymph,
we implemented and evaluated a variety of time synchronization
algorithms in a GPS-enabled framework. GPS-enabled nymphs
provide a framework for evaluating the in-situ accuracy of
deployed time synchronization algorithm. Prior to the advent of
GPS-enabled nymphs, the accuracy of time synchronization was
evaluated in more cumbersome ways in sensor networks, either
via equipment probes, or outside of the sensor network realm
altogether. GPS has also been used in sensor networks for
location awareness [26] and location tracking of wildlife, e.g.
Zebranet [27].

Time synchronization is important for sensor networks in order to
correctly timestamp an event and coordinate wake/sleep duty
cycles of low power sensor networks [28,29,30,31]. Figure 8
illustrates a general network topology in which nodes that either
lack GPS or lack line of sight to be able to observe GPS satellites

P
T
ca
C
M

5

5
T
sy
an
is
ac
ny
se
st
in
tr
th
ge
Test Input Voltage Load Current
Performed (V) (mA)

Just Operating System Running 3.0 13
Scheduled Single Thread While(1) 3.0 14
Scheduler with blinking LED ON 3.
Scheduler with blinking LED OFF 3.0 14
Reading Sensor Data on while(1) 3.0 14
Sensing and Sending over Serial at 19.2kBaud 3.0 14
Sensing and Sending over radio, Transmitting at max power 3.0 73
Sensing and Sending over radio, Transmitting at min power 3.0 40
Sensing and Sending over radio, Receiving at max power 3.0 40
Sensing and Sending over radio, Receiving at min power 3.0 27
Absolute Max power with all LEDs on and radio transmit at max power 3.0 93
Absolute Max power with all LEDs on and radio receive at max power 3.0 60
Single LED power consuption 3.0 9
Everything in sleep mode 3.0 under 1
Ellite Nymph - Operating System and GPS 3.0 98
Ellite Nymph - Everything Running at maximum power including LEDs 3.0 172

0 22

Table 1. Power consumption of MANTIS Nymph in
various modes of operation.
request clock synchronization with GPS-enabled nodes. We
constructed an experiment consisting of a network topology with
five sensor nymphs in a row. This linked routing chain is similar
to the linear route in Figure 8 taken by node N2's Simple Network
Time Protocol (SNTP) request [32], which propagates to the GPS-
enabled node four hops away. On a given sensor node, the
estimated clock obtained from a time synchronization algorithm is
compared to the authoritative GPS clock right after reception of
query response. Sync-requests are initiated by the client every 10
seconds. This experiment was repeated a hundred times to obtain

ower consumption numbers for the 4-layer nymph are given in
able 1. GPS consumes significant power and will require
reful power management to limit its impact on battery lifetime.
omparable recent hardware technology includes the MICA2
otes [25] and the GPS-enabled GNOMES [26].

. MANTIS APPLICATIONS

.1 Rapid Prototyping of User Interfaces
he MANTIS platform has successfully served as the basis for a
stem for constructing rapid prototypes of wireless input devices
d user interfaces [6]. The conductor's baton, shown in Figure 7,

 an example of a gestural interface device that utilizes a two-axis
celerometer to detect the motion of the user's hand. Using one
mph to read the sensor values from the accelerometer and a
cond nymph (connected to a PC via the serial port) as a base
ation to wirelessly collect the data, a musical tempo is
terpreted from the beats marked by the user. This tempo is then
ansmitted to an algorithmic music application, which changes
e speed at which the music is played based on the user's
stures.
Figure 8. Active GPS sensor nodes (G) provide clock
synchronization to N1 (indoors) and N2 (outdoors, lacks
GPS) via a protocol like SNTP.

Appeared in 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA) 2003

an average estimate of the inaccuracy. SNTP provides a simple
and well-known mechanism for a client to synchronize with a
server who has an accurate clock by using the roundtrip delay
over multiple hops. An adaptation of SNTP [31] that employs
hierarchy was also implemented, i.e. each child uses SNTP on its
parent. We call this approach hierarchical SNTP (HSNTP). Both
algorithms are also evaluated over multi-frequency radios,
creating MSNTP and MHSNTP. As MANTIS supports
communicating in multi-channels, by employing a separate
control channel for time synchronization queries and responses,
variations in latency due to collisions are reduced, resulting in
more accurate clock estimation. Table 2 verifies that multi-
channel radios dramatically improve time synchronization
accuracy and lower deviation. Our anecdotal experience with
GPS was that on power up GPS takes from 3 to 10 minutes to
compute its position, and less than 30 seconds from a warm start.
GPS was accurate to 10 meters 90% of the time.

Algorithm Mean Error StdDev

SNTP 39.81979 43. 2736

HSNTP 23.6972 26.438

MSNTP 20.9021 22.9463

MHSNTP 10.44147 11.5746

Table 2. Time synchronization accuracy in microseconds.

6. FUTURE WORK
The MANTIS system is still very much a work in progress.
While we have managed to achieve a lightweight OS, there are
additional demands on sensor OS designs that have not yet been
fully integrated into our design. We have identified low power
operation as a key future direction for development of the
MANTIS OS. The challenge will be to integrate within a multi-
threaded model the idea of sleeping threads until useful work is
required. First, the idle loop must be replaced with a power-
efficient scheduler. One approach is to add another parameter to
the thread_new call so that the application can provide static
hints at the time it is spawned. A follow-on approach would
incorporate dynamic hints from within the application with a
power_hint call to modify the application’s requirements
dynamically. Prior work on power-efficient scheduling and
systems should be leveraged [33,34]. Additional complications
will result from integrating components such as the Atmel and
CC1000 with multiple low power modes. At present, MOS
exports setting these modes through the API, but applications
have not yet been developed to exploit these low power features.
We are further interested in pushing the power-efficient scheduler
into user space to further streamline the kernel, similar to the
micro-kernel architecture [35].
There is still some work to be done in demonstrating reliability
for code updates over the network, optimizing the size of updates,
and ensuring the security and authenticity of updates. Even after
those issues are addressed, we have only solved the problem of
reprogramming a single node remotely. While one could
certainly iterate through all nodes in a network in order to
reprogram them all, that would be inefficient and perhaps
infeasible if the network were large. The broader problem of
remotely reprogramming a network, as opposed to a node, will be
addressed in future work.

We also intend to integrate security into dynamic reprogramming,
so that downloaded code can be authenticated, decrypted, and
checked for tampering. At present, we have implemented an
RC5-based CBC mode block cipher encryption/decryption
library. This library also provides functions for sending encrypted
packets and generating message authentication codes to protect
integrity of packets. The API is:

mos_sec_send_to(uint16_t addr, uint8_t port, char* data, char
dataLen, uint8_t proto, rc5key_info *rc5key);

mos_sec_recv(Packet* pkt, uint8_t port, uint8_t proto,
rc5key_info *rc5key);

The overhead of this security library is very small, about 110
bytes of RAM. The encrypted packet transmission function adds
about 6% delay compared to non-encrypted packet transmission.
An area that has not yet been addressed is simulating the wireless
channel within the multimodal prototyping environment. One
challenge is the difficulty of simulating wireless communication
channels, especially indoor communication. Another challenge
is building a structure that enable media contention among
multiple virtual nodes.

The MANTIS project was recently awarded an NSF SENSORS
grant to study the role of sensor networks in fighting forest fires
Stay tuned to the MANTIS Web site http://mantis.cs.colorado.edu

7. CONCLUSION
The MANTIS sensor system achieves a lightweight classically
structured multithreaded operating system in a memory footprint
of less than five hundred bytes, including kernel and network
stack. The MANTIS OS supports a simple C API that enables a
shallow learning curve, cross-platform support, and reuse of a
large installed code base. MOS also supports advanced sensor-
specific features such as multimodal prototyping, dynamic
reprogramming, and remote shells. The MANTIS nymph offers a
single-board GPS-enabled solution that is also extensible.

8. REFERENCES
[1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister,

"System Architecture Directions For Network Sensors",
ASPLOS 2000, pp. 93-104.

[2] R. Min, M. Bhardwaj, S. Cho et al, “An Architecture for a
Power-Aware Distributed Microsensor Node,” in IEEE
Workshop on Signal Proc. Systems, pp. 581–590, Oct 2000.

[3] J. Elson, S. Bien, N. Busek, V. Bychkovskiy, A. Cerpa, D.
Ganesan, L. Girod, B. Greenstein, T. Schoellhammer, T.
Stathopoulos, and D. Estrin: “EmStar: An Environment for
Developing Wireless Embedded Systems Software” CENS
Technical Report 0009, March 24, 2003.

[4] F. Martin, B. Mikhak, and B. Silverman, "MetaCricket: A
designer's kit for making computational devices," IBM
Systems Journal, vol. 39, nos. 3 & 4, 2000.

[5] R. L. Rivest. “The RC5 Encryption Algorithm”,
Proceedings of the 1994 Leuven Workshop on Fast Software
Encryption, pages 86-96

[6] J. Carlson, R. Han, S. Lao, C. Narayan, S. Sanghani, "Rapid
Prototyping Of Mobile Input Devices Using Wireless Sensor

Appeared in 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA) 2003

Nodes", 5th IEEE Workshop On Mobile Computing Systems
and Applications (WMCSA) 2003 (to appear).

[7] Atmel AVR 8-bit RISC processor,
http://www.atmel.com/products/AVR

[8] Portable Operating System Interface(POSIX) - Part 1:
System Application Programming Interface (API)[C
Language] ISO/IEC 9945-1:1996, IEEE

[9] D. Ely, S. Savage, and D. Wetherall: “Alpine: A user-level
infrastructure for network protocol development”. In Proc.
3rd USENIX Symposium on Internet Technologies and
Systems, pages 171-183, March 2001.

[10] Wei Ye, John Heidemann and Deborah Estrin, "An Energy-
Efficient MAC Protocol for Wireless Sensor Networks", In
Proceedings INFOCOM, New York, NY, USA, June, 2002.

[11] H. K. Jerry Chu, "Zero-Copy TCP in Solaris", Proceedings
of the USENIX 1996 Annual Technical Conference, San
Diego, California, January 1996.

[12] WINE, http://www.winehq.com/.

[13] C. Intanagonwiwat , R. Govindan , D. Estrin, "Directed
Diffusion," MobiCom 2000, pp. 56-67

[14] A. Sheth, B. Shucker, R. Han, "VLM2: A Very Lightweight
Mobile Multicast System for Wireless Sensor Networks",
IEEE Wireless Communications and Networking Conference
(WCNC) 2003, New Orleans, Louisiana.

[15] P. Levis and N. Lee. Simulating tinyos networks.
http://www.cs.berkeley.edu/ pal/research/tossim.html.

[16] L. F. Perrone and D. M. Nicol: A Scalable Simulator for
TinyOS Applications, Winter Simulation Conference, 2002.

[17] S. Park, A. Savvides, M. B. Srivastava, "SensorSim: A
Simulation Framework for Sensor Networks", In the
Proceedings of MSWiM 2000, Boston, MA, August 11,
2000.

[18] A. Mainwaring, J. Polastre, R. Szewczyk D. Culler, J.
Anderson,"Wireless Sensor Networks for Habitat
Monitoring", First ACM Workshop on Wireless Sensor
Networks and Applications (WSNA) 2002, pp. 88-97.

[19] S. Tilak, N.B. Abu-Ghazaleh, W. Heinzelman, “A taxonomy
of wireless micro-sensor network models”, ACM
SIGMOBILE Mobile Computing and Communications
Review, Vol. 6 Ch. 2 pages 28-36. 2002.

[20] P. Levis, D. Culler “Mate: a Virtual Machine for Tiny
Networked Sensors” ASPLOS, Oct. 2002.

[21] J. D. Case, M. Fedor, M. L. Schostall, and C. Davin. RFC
1157: Simple network management protocol (SNMP). RFC,
IETF, May 1990

[22] B. Deb, S. Bhatnagar, B. Nath “A Topology Discovery
Algorithm for Sensor Networks with Applications to

Network Management”, DCS Technical Report DCS-TR-
441, Rutgers University May 2001

[23] J. Zhao, R. Govindan, D. Estrin “Computing Aggregates for
Monitoring Wireless Sensor Networks”, First IEEE
International Workshop on Sensor Network Protocols and
Applications, Anchorage, AK. May 2003

[24] Single chip ultra low power RF transceiver
http://www.chipcon.com/files/CC1000_Data_Sheet_2_1.pdf,
2001

[25] Crossbow, http://www.xbow.com/.

[26] E. Welsh, W. Fish, P. Frantz, "GNOMES: A Testbed for
Low-Power Heterogeneous Wireless Sensor Networks,"
IEEE International Symposium on Circuits and Systems
(ISCAS), Bangkok, Thailand, 2003.

[27] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D.
Rubenstein. "Energy-efficient computing for wildlife
tracking: Design tradeoffs and early experiences with
zebranet", In ASPLOS, San Jose, CA, October 2002.

[28] J. Elson, D. Estrin “Time Synchronization for Wireless
Sensor Networks” International Parallel and Distributed
Processing Symposium (IPDPS), Workshop on… Wireless
and Mobile Computing, April 2001

[29] J. Elson, L. Girod, D. Estrin “Fine-Grained Network Time
Synchronization using Reference Broadcasts”, In OSDI
2002, Boston, MA. December 2002.

[30] J. Elson, K. Römer, “Wireless Sensor Networks: A New
Regime for Time Synchronization”, in proceedings of the
First Workshop on Hot Topics In Networks (HotNets-I),
Princeton, New Jersey. October 28-29 2002

[31] S. Ganeriwal, R. Kumar, S. Adlakha, M. Srivastava,
"Network-wide Time Synchronization in Sensor Networks,"
Technical report, UCLA, Dept of Electrical Engineering,
2002.

[32] Simple Network Time Protocol, (SNTP) version 4. IETF
RFC 2030

[33] D. Grunwald, C. B. Morrey III, P. Levis, M. Neufeld, K.
Farkas, “Policies for Dynamic Clock Scheduling””,
Operating Systems Design and Implementation – 2000.

[34] W. Hamburgen, D. Wallach, M. Viredaz, L. Brakmo, C.
Waldspurger, J. Bartlett, T. Mann, K. Farkas, "Itsy:
Stretching the Bounds of Mobile Computing," IEEE
Computer, vol. 34, no. 4, April 2001, pp. 28-36.

[35] D.R. Engler, M. Frans Kaashoek, and J. O'Toole Jr.,
"Exokernel: An Operating System Architecture for
Application-level Resource Management", Symposium on
Operating Systems Principles (SOSP), December 1995, pp.
251-266.

	INTRODUCTION
	LIGHTWEIGHT MANTIS OPERATING SYSTEM DESIGN
	Applications
	System APIs
	Kernel and Scheduler
	Network Stack
	Device Drivers

	ADVANCED SENSOR-SPECIFIC FEATURES OF MANTIS OS
	Multimodal Prototyping Environment
	Dynamic Reprogramming
	Remote Shell and Command Server

	MANTIS HARDWARE
	MANTIS APPLICATIONS
	Rapid Prototyping of User Interfaces
	GPS-Enabled Time Synchronization

	FUTURE WORK
	CONCLUSION
	REFERENCES

