Abstract
Today’s Internet clients vary widely with respect to both hardware and software properties: screen size, color depth, effective bandwidth, process-
ing power, and the ability to handle different data formats. The order-of-magnitude span of this variation is too large to hide at the network level,
making application-level techniques necessary. We show that on-the-fly adaptation by transformational proxies is a widely applicable, cost-effec-
tive, and flexible technique for addressing all these types of variations. To support this claim, we describe our experience with datatype-specific
distillation (lossy compression) in a variety of applications. We also argue that placing adaptation machinery in the network infrastructure, rather
than inserting it into end servers, enables incremental deployment and amortization of operating costs. To this end, we describe a programming
model for large-scale interactive Internet services and a scalable cluster-based framework that has been in production use at UC Berkeley since
April 1997. We present a detailed examination of TranSend, a scalable transformational Web proxy deployed on our cluster framework, and give
descriptions of several handheld-device applications that demonstrate the wide applicability of the proxy-adaptation philosophy.

Adapting to Network and
Client Varation Using Infrastructural Proxies:
Lessons and Perspectives

ARMANDO FOX, STEVEN D. GRIBBLE, YATIN CHAWATHE,
AND ERIC A. BREWER
UNIVERSITY OF CALIFORNIA, BERKELEY

L L. he current Internet infra- ly. A compelling solution to the problem of client and net-
structure includes an extensive range and number of clients work heterogeneity should allow interoperability with exist-
and servers. Clients vary along many axes, including screen ing servers, thus enabling incremental deployment while
size, color depth, effective bandwidth, processing power, and evolving content formats and protocols are tuned and stan-
ability to handle specific data encodings (e.g., GIF, PostScript, dardized for different target platforms. A proxy-based
or MPEG). As shown in Tables 1 and 2, each type of varia- approach lends itself naturally to transparent incremental
tion often spans orders of magnitude. High-volume devices deployment, since an application-level proxy appears as a
such as smart phones [1] and smart two-way pagers will soon server to existing clients and as a client to existing servers.

constitute an increasing fraction of Internet clients, making * Rapid prototyping during turbulent standardization cycles.
the variation even more pronounced. Software development on “Internet time” does not allow

These conditions make it difficult for servers to provide a
level of service that is appropriate for every client. Applica- S) —
tion-level adaptation is required to provide a meaningful Inter- ' Bits/pixel
net experience across the range of client capabilities. Despite
continuing improvements in client computing power and con-
nectivity, we expect the high end to advance roughly in paral-
lel with the low end, effectively maintaining a gap between the
two; hence, the need for application-level adaptation.

The Approach: Infrastructural Proxy Services

We argue for a proxy-based approach to adaptation, in which
proxy agents placed between clients and servers perform aggres- - T -
sive computation and storage on behalf of clients. The proxy M Table 1. Physical variation among clients.
approach stands in contrast to the client-based approach, which
attempts to bring all clients up to a least-common-denominator
level of functionality (e.g., text-only, HTML-subset compatibility
for thin-client Web browsers), and the server-based approach,
which attempts to insert adaptation machinery at each end
server. We believe the proxy approach directly confers three
advantages over the client and server approaches:

* Leveraging the installed infrastructure through incremental
deployment. The enormous installed infrastructure, and its
attendant base of existing content, is too valuable to waste; '
yet some clients cannot handle certain data types effective- B Table 2. Typical network variation.

10 1070-9916/98/$10.00 © 1998 IEEE IEEE Personal Communications * August 1998

for long deployment cycles. Proxy-based adaptation pro-

vides a smooth path for rapid prototyping of new services,

formats, and protocols, which can be deployed to servers

(or clients) later if the prototypes succeed.

* Economy of scale. Basic queuing theory shows that a large
central (virtual) server is more efficient in both cost and
utilization (though less predictable in per-request perfor-
mance) than a collection of smaller servers; standalone
desktop systems represent the degenerate case of one
“server” per user. This supports the argument for network
computers [2] and suggests that collocating proxy services
with infrastructural elements such as Internet points of
presence (POPs) is one way to achieve effective economies
of scale. :

Large-scale network services remain difficult to deploy
because of three fundamental challenges: scalability, avail-
ability, and cost effectiveness. By scalability, we mean that
when the load offered to the service increases, an incremen-
tal and linear increase in hardware can maintain the same
per-user level of service. By availability, we mean that the
service as a whole must be available 24/7, despite transient
partial hardware or software failures. By cost effectiveness,
we mean that the service must be economical to administer
and expand, even though it potentially comprises many work-
station nodes operating as a centralized cluster or “server
farm.” In the third section we describe how we have
addressed these challenges in our cluster-based proxy appli-
cation server architecture.

Contributions and a Map of the Article

In the following section we describe our measurements and
experience with datatype-specific distillation and refinement, a
mechanism that has been central to our proxy-based approach
to network and client adaptation. We then introduce a gener-
alized “building block” programming model for designing and
implementing adaptive applications, describe our implement-
ed cluster-based application server that instantiates the model,
and present detailed measurements of a particular production
application: TranSend, a transformational Web proxy service.
We present case studies of other services we have built using
our programming model, some of which are in daily use by
thousands of users, including the Top Gun Wingman graphi-
cal Web browser for the 3Com PalmPilot handheld device.
We discuss related work, and then attempt to draw some
lessons from our experience and guidelines for future research
in the Jast section.

Adaptation via
Datatype-Specific Distillation

We propose three design principles that we believe are funda-
mental for addressing client variation most effectively.

Adapt to Client Variation via Datatype-Specific Lossy Com-
pression — Datatype-specific lossy compression mechanisms
can achieve much better compression than “generic” compres-
sors, because they can make intelligent decisions about what
information to throw away based on the semantic type of the
data. For example, lossy compression of an image requires
discarding color information, high-frequency components, or
pixel resolution. Lossy compression of video can additionally
include frame rate reduction. Less obviously, lossy compres-
sion of formatted text requires discarding some formatting
information but preserving the actual prose. In all cases, the
goal is to preserve the information that has the highest
semantic value. We refer to this process generically as distilla-

en

& Table 3. Three important types and the distillation axes corre-
sponding to each.

tion. A distilled object allows the user to decide whether it is
worth asking for a refinement: for instance, zooming in on a
section of a graphic or video frame, or rendering a particular
page containing PostScript text and figures without having to
render the preceding pages.

Perform Adaptation on the Fly — To reap the maximum ben-
efit from distillation and refinement, a distilled representa-
tion must target specific attributes of the client. The
measurements that we later report show that for typical
images and rich text, distillation time is small in practice, and
end-to-end latency is reduced because of the much smaller
number of bytes transmitted over low-bandwidth links. On-
demand distillation provides an easy path for incorporating
support for new clients, and also allows distillation aggres-
siveness to track, for example, such significant changes in net-
work bandwidth as might occur in vertical handoffs between
different wireless networks [3]. We have successfully imple-
mented useful distillation “workers” that serve clients span-
ning an order of magnitude in each area of variation, and we
have generalized our approach into a common framework,
which we discuss later.

Move Complexity Away from Both Clients and Servers —
Application partitioning arguments have long been used to
keep clients simple [4]. However, adaptation through a shared
infrastructural proxy enables incremental deployment and
legacy client support, as we argued earlier. Therefore, on-
demand distillation and refinement should be done at an
intermediate proxy that has access to substantial computing
resources and is well-connected to the rest of the Internet.

Table 3 lists the “axes” of compression corresponding to
three important datatypes: formatted text, images, and video
streams. We have found that order-of-magnitude size reduc-
tions are often possible without destroying the semantic con-
tent of an object (e.g., without rendering an image
unrecognizable to the user).

The Performance of Distillation and
Refinement On Demand

We now describe and evaluate datatype-specific distillers
for images and rich text.! The goal of this section is to sup-
port our claim that in the majority of cases, end-to-end
latency is reduced by distillation, that is, the time to produce
a useful distilled object on today’s workstation hardware is
small enough to be more than compensated for by the sav-
ings in transmission time for the distilled object relative to
the original.

1 A distiller for real-time network video streams is described separately in [7].

IEEE Personal Communications ¢ August 1998

11

P i e S

original size). Note that two
of the undistilled images are
off the scale; the Soda Hall
image is off by an order of
magnitude. The images were
fetched using a 14.4 kb/s
modem with standard com-
pression (V.42bis and MNP-
5) through the UC Berkeley
PPP gateway, via a process
that runs each image
through gifmunch.2 Each

B Figure 1. Distillation example: left) a distilled image of Soda Hall; right) illustrates refinement.
The left occupies 17 kbytes at 320 x 200 pixels in 16 grays,compared with the 492-kbyte 880 x 600
pixel, 249-color original (not shown). The refinement (right) occupies 12 kbytes. Distillation took

6 s on a SPARCstation 20/71, and refinement took less than 1 s.

M Figure 2. End-to-end latency for images with and without dis-
tillation.

Images — We have implemented an image distiller called gif-

munch, which implements distillation and refinement for GIF

[5] images, and consists largely of source code from the

NetPBM Toolkit [6]. Figure 1 shows the result of running gif-

munch on a large color GIF image of the Berkeley Computer

Science Division’s home building, Soda Hall. The image of

Fig. 1 (left) measures 320 x 200 pixels — about 1/8 the total

area of the original 880 x 610 — and uses 16 grays, making it

suitable for display on a typical handheld device.

Due to the degradation of quality, the writing on the build-
ing is unreadable, but the user can request a refinement of the
subregion containing the writing, which can then be viewed at
full resolution (Fig. 1, right).

Image distillation can be used to address all three areas of
client variation:

* Network variation: The graphs in Fig. 2 depict end-to-end
client latency for retrieving the original and each of four
distilled versions of a selection of GIF images: the top set
of bars is for a cartoon found on a popular Web page, the
middle set corresponds to a large photographic image, and
the bottom to a computer-rendered image. Each group of
bars represents one image with five levels of distillation; the
top bar represents no distillation at all. The y-axis number
is the distilled size in kilobytes (so the top bar gives the

bar is segmented to show

the distillation latency and

transmission latency sepa-

rately. Clearly, even though

distillation adds latency at

the proxy, it can result in
greatly reduced end-to-end latency. This shows that on-the-
fly distillation is not prohibitively expensive.

¢ Hardware variation: A “map to 16 grays” operation would
be appropriate for PDA-class clients with shallow grayscale
displays. We can identify this operation as an effective lossy
compression technique precisely because we know we are
operating on an image, regardless of the particular encod-
ing, and the compression achieved is significantly better
than the 2-4 times compression typically achieved by
“generic” lossless compression.

* Software variation: Handheld devices such as the 3Com
PalmPilot frequently have built-in support for proprietary
image encodings only. The ability to convert to this format
saves code space and decoding latency on the client.

Rich Text — We have also implemented a rich-text distiller
that performs lossy compression of PostScript-encoded text
using a third-party PostScript-to-text converter [8]. The dis-
tiller replaces PostScript formatting information with HTML
markup tags or a custom rich-text format that preserves the
position information of the words. PostScript is an excellent
target for a distiller because of its complexity and verbosity:
both transmission over the network and rendering on the
client are resource-intensive. Table 4 compares the features
available in each format. Figure 3 shows the advantage of rich
text over PostScript for screen viewing. As with image distilla-
tion, PostScript distillation yields advantages in all three cate-
gories of client variation:

* Network variation: Again, distillation reduces the required
bandwidth and thus the end-to-end latency. We achieved an
average size reduction of a factor of 5 when going from
compressed PostScript to gzipped HTML. Second, the
pages of a PostScript document are pipelined through the
distiller, so the second page is distilled while the user views
the first page. In practice, users only experience the latency
of the first page, so the difference in perceived latency is
about a factor of 8 for a 28.8 K modem. Distillation typical-
ly took about 5 s for the first page and about 2 s for subse-
quent pages.

¢ Hardware variation: Distillation reduces decoding time by
delivering data in an easy-to-parse format, and results in bet-
ter-looking documents on clients with lower-quality displays.

2 The network and distillation latencies reflect significant overhead due to
the naive implementation of gifmunch and the latency and slow-start
effects of the PPP gateway, respectively. Later we discuss how to overcome
some of these problems, but it is worth noting that end-to-end latency is
still substantially reduced, even in this naive prototype implementation.

12

IEEE Personal Communications * August 1998

* Software variation: PostScript distillation allows clients that
do not directly support PostScript, such as handhelds, to
view these documents in HTML or our rich-text format.
The rich-text viewer could be an external viewer similar to
ghostscript, an applet for a Java-capable browser, or a
browser plug-in rendering module.

Overall, rich-text distillation reduces end-to-end latency,
results in more readable presentation, and adds new abilities
to low-end clients, such as PostScript viewing. The latency for
the appearance of the first page was reduced on an average by
a factor of 8 using the proxy and PostScript distiller. Both
HTML and our rich-text format are significantly easier to
read on screen than rendered PostScript, although they sacri-
fice some layout and graphics accuracy compared to the origi-
nal PostScript.

Summary

High client variability is an area of increasing concern that

existing servers do not handle well. We have proposed three

design principles we believe are fundamental to addressing
variation:

» Datatype-specific distillation and refinement achieve better
compression than does lossless compression, while retaining
useful semantic content and allowing network resources to
be managed at the application level.

* When the proxy-to-client bandwidth is substantially
smaller than the proxy-to-server bandwidth (as is the
case, ¢.g., in wireless networks or with consumer wire-
line modems), on-demand distillation and refinement
reduce end-to-end latency perceived by the client
(sometimes by almost an order of magnitude), are more
flexible than reliance on precomputed static representa-
tions, and give low-end clients new abilities such as
PostScript viewing.

 Performing distillation and refinement in the network infra-
structure rather than at the endpoints separates technical as
well as economic concerns of clients and servers.

— .
1.2 The Bemote Queue Model

W intreduze Remas Suewas (RE,
vides 3 genezal battmtion for low-level
sisty of theee bawie wierments, Fizst, aoe o
rerelving mode. Serond, an engueus operr

engusws(i, o, argl ... ang, suf
thet causes e through awge followed

| 1.2 The Kempte Quene Model

We lotrodues Remote Dasaes (R,
vicks 3 wenetal abdtbaction for low-level
sists of throe basic wlements. First, one o
meceiving aonde. Second, a0 sitguesuy Opmg

sigursen. ¢ argd. argn sbaf.
that caoses argd thoough argee, folkowred

W Figure 3. Screen snapshots of our rich text (top) versus
ghostview (bottom). The rich text is easier to read because it uses
screen fonts.

Feature

: PostScripi '

™ ablé 4. 'ea‘t)itr o;PoSmp)ist‘illtni
Scalable Internet Application Servers

In order to accommodate compute-intensive adaptation tech-
niques by putting resources in the network infrastructure, we
must address two important challenges:

* Infrastructural resources are typically shared, and the sizes
of user communities sharing resources such as Internet
POPs is increasing exponentially. A shared infrastructural
service must therefore scale gracefully to serve large num-
bers of users.

* Infrastructural resources such as the IP routing infrastructure
are expected to be reliable, with availability approaching 24/7
operation. If we place application-level computing resources
such as distillation engines into this infrastructure, we should
be prepared to meet comparable expectations.

In this section, we focus on the problem of deploying
adaptation-based proxy services to large communities (tens of
thousands of users, representative of the subscription size of
a medium-sized Internet service provider). In particular, we
discuss a cluster-friendly programming model for building
interactive and adaptive Internet services, and measurements
of our implemented prototype of a scalable, cluster-based
server that instantiates the model. Our framework reflects
the implementation of three real services in use today:
TranSend, a scalable transformation proxy for the 25,000 UC
Berkeley dialup users (connecting through a bank of 600
modems); Top Gun Wingman, the only graphical Web brows-
er for the 3Com PalmPilot handheld device (commercialized
by ProxiNet); and the Inktomi search engine (commercialized
as HotBot), which performs over 10 million queries per day
against a database of over 100 million Web pages. Although
HotBot does not demonstrate client adaptation, we use it to
validate particular design decisions in the implementation of
our server platform, since it pioneered many of the cluster-
based scalability techniques generalized in our scalable server
prototype. We focus our detailed discussion and measure-
ments on TranSend, a transformational proxy service that
performs on-the-fly lossy image compression. TranSend
applies the ideas explored in the preceding section to the
World Wide Web.

TACC: A Programming Model for Internet Services
We focus on a particular subset of Internet services, based on
transformation (distillation, filtering, format conversion, etc.),
aggregation (collecting and collating data from various sources,
as search engines do), caching (both original and transformed
content), and customization (maintenance of a per-user pref-
erences database that allows workers to tailor their output to
the user’s needs or device characteristics).

We refer to this model as TACC, from the initials of the
four elements above. In the TACC model, applications are

IEEE Personal Communications ¢ August 1998

13

: T«G'rapljwyi‘cél
. monitor

include frontends (FEs), a pool of TACC workers (Ws), some of

which may be caches (8), a user profile database, a graphical moni-
tor, and a fault-tolerant load manager, whose functionality logically

extends into the manager stubs (MSs) and worker stubs (WSs).

built from building blocks interconnected with simple appli-
cation programming interfaces (APIs). Each building block,
or worker, specializes in a particular task, for example, scal-
ing/dithering of images in a particular format, conversion
between specific data formats, or extracting “landmark”
information from specific Web pages. Complete applications
are built by composing workers; roughly speaking, one work-
er can chain to another (similar to processes in a UNIX
pipeline), or a worker can call another as a subroutine or
coroutine. This model of composition results in a very gener-
al programming model that subsumes transformation proxies
[9], proxy filters [10], customized information aggregators,
and search engines.

A TACC server is a platform that instantiates TACC work-
ers, provides dispatch rules for routing network data traffic to
and from them, and provides support for the inter-worker
calling and chaining APIs. Similar to a UNIX shell, a TACC
server provides the mechanisms that insulate workers from
having to deal directly with low-level concerns such as data
routing and exception handling, and gives workers a clean set
of APIs for communicating with each other, the caches, and
the customization database (described below). We describe
our prototype implementation of a scalable, commodity-PC
cluster-based TACC server later in this section.

Cluster-Based TACC Server Architecture

We observe that clusters of workstations have some funda-
mental properties that can be exploited to meet the require-
ments of large-scale network services (scalability, high
availability, and cost effectiveness). Using commodity PCs as
the unit of scaling allows the service to ride the leading edge
of the cost/performance curve; the inherent redundancy of
clusters can be used to mask transient failures; and “embar-
rassingly paralle]” network service workloads map well onto
networks of commodity workstations.

However, developing cluster software and administering a
running cluster remain complex. A primary contribution of
our work is the design, analysis, and implementation of a lay-
ered framework for building adaptive network services that
addresses this complexity while realizing the sought-after
economies of scale. New services can use this framework as an

off-the-shelf solution to scalability, availability, and sever-
al other problems, and focus instead on the content of
the service being developed.

We now describe our proposed system architecture
and service-programming model for building scalable
TACC servers using clusters of PCs. The architecture
attempts to address the challenges of cluster computing
(unwieldy administration, managing partial failures, and
the lack of shared state across components) while exploit-
ing the strengths of cluster computing (support for incre-
mental scalability, high availability through redundancy,
and the ability to use commodity building blocks). A
more detailed discussion of the architecture can be found
in [11].

[Th]e goal of our architecture is to separate the confent
of network services (i.e., what the services do) from their
implementation by encapsulating the “scalable network
service” (SNS) requirements of high availability, scalabili-
ty, and fault tolerance in a reusable layer with narrow
interfaces. Application writers program to the TACC
APIs alluded to in the previous section, without regard to
the underlying TACC server implementation; the result-
ing TACC applications automatically receive the benefits
of linear scaling, high availability, and failure manage-
ment when run on our cluster-based TACC server.

The software-component block diagram of a scalable
TACC server is shown in Fig. 4. Each physical workstation in a
network of workstations (NOW) [12] supports one or more
software components in the figure, but each component in the
diagram is confined to one node. In general, the components
whose tasks are naturally parallelizable are replicated for scal-
ability, fault tolerance, or both.

Frontends provide the interface to the TACC server as
seen by the outside world (e.g., HTTP server). They “shep-
herd” incoming requests by matching them up with the appro-
priate user profile from the customization database, and
queuing them for service by one or more workers. Frontends
maximize system throughput by maintaining state for many
simultaneous outstanding requests, and can be replicated for
both scalability and availability.

The worker pool cousists of caches (currently Harvest [13])
and service-specific modules that implement the actual service
(data transformation/filtering, content aggregation, etc.). Each
type of module may be instantiated zero or more times,
depending on offered load. The TACC API allows all cache
workers to be managed as a single virtual cache by providing
URL hashing, automatic failover, and dynamic growth of the
cache pool.

The customization database stores user profiles that allow
mass customization of request processing. The manager bal-
ances load across workers and spawns additional workers as
offered load fluctuates or faults occur. When necessary, it may
assign work to machines in the overflow pool, a set of backup
machines (perhaps on desktops) that can be harnessed to han-
dle load bursts and provide a smooth transition during incre-
mental growth.

The load balancing/fault tolerance manager keeps track of
what workers are running where, autostarts new workers as
needed, and balances load across workers. Its detailed opera-
tion is described next, in the context of the TranSend imple-
mentation. Although it is a centralized agent, [11] describes
the various mechanisms, including multicast heartbeat and
process-peer fault tolerance, that keep this and other system
components running and allow the system to survive transient
component failures.

The graphical monitor for system management supports
asynchronous error notification via e-mail or pager, temporary

14

IEEE Personal Communications ¢ August 1998

disabling of system components for hot upgrades,
and visualization of the system’s behavior using
Tcl/Tk [14]. The benefits of visualization are not just
cosmetic: we can immediately detect by looking at
the visualization panel what state the system as a
whole is in, whether any component is currently
causing a bottleneck (such as cache-miss time, distil-
lation queuing delay, interconnect), what resources
the system is using, and similar behaviors of interest.

The interconnect provides a low-latency, high-
bandwidth, scalable interconnect, such as switched
100-Mb/s Ethernet or Myrinet [15]. Its main goal is
to prevent the interconnect from becoming the bot-
tleneck as the system scales.

Components in our TACC server architecture may
be replicated for fault tolerance or high availability,
but we also use replication to achieve scalability.
When the offered load to the system saturates the
capacity of some component class, more instances of
that component can be launched on incrementally
added nodes. The duties of our replicated components are
largely independent of each other (because of the nature of the
Internet services” workload), which means the amount of addi-
tional resources required is a linear function of the increase in
offered load.

Distiller queue iength

L

Analysis of the TranSend Implementation

TranSend [9], a TACC reimplementation of our earlier proto-
type called Pythia [15], performs lossy Web image compression
on the fly. Each TranSend worker handles compression or
markup for a specific MIME type; objects of unsupported types
are passed through to the user unaltered.

We took measurements of TranSend using a cluster of 15
Sun SPARC Ultra-1 workstations connected by 100 Mb/s
switched Ethernet and isolated from external load or network
traffic. For measurements requiring Internet access, the access
was via a 10 Mb/s switched Ethernet network connecting our
workstation to the outside world. Many of the performance
tests are based on HTTP trace data from the 25,000 UC
Berkeley dialup IP users [17], played back using a high-perfor-
mance playback engine of our own design that can either gen-
erate requests at a constant rate or faithfully play back a trace
according to the timestarnps in the trace file. In the following
subsections we report on experiments that stress TranSend’s
fault tolerance, responsiveness, and scalability.

Self-Tuning and Load Balancing — As mentioned previ-
ously, the load balancing and fault tolerance manager is

Requests/s

- N N
(03] (=) w
[ENEN S N SRR AN A | A A B A

—_
o

1%

—— Distiller 1
——- Distiller 2
- — Distiller 3 :
Distiller 4 "
Distiller 5 i

i

Distiller 1

started Distiller 3

started

Distillers 1

Distiller 2 : and 2 died

started

Distiller 5
started

'

150 200 250
Time (s)

300
Distiller 4
started

] Table 5. Results of the scalability experiment. FE: frontend.

B Figure 5. Worker queue lengths observed over time as the load presented
to the system fluctuates, and workers are manually brought down.

charged with spawning and reaping workers and distribut-
ing internal load across them. The mechanisms by which
this is accomplished, which include monitoring worker
queue lengths and applying some simple hysteresis, are
described in [11].

Figure 5 shows the variation in worker queue lengths over
time. The system was bootstrapped with one frontend and the
manager, and a single demand-spawned worker. Continuously
increasing the load caused the manager to spawn a second
and later a third worker. We then manually killed the first two
workers; the sudden load increase on the remaining worker
caused the manager to spawn one and later another new
worker, to stabilize the queue lengths. '

Scalability — To demonstrate the scalability of the system, we

performed the following experiment:

* We began with a minimal instance of the system: one front-
end, one worker, the manager, and a fixed number of cache
partitions. (Since for these experiments we repeatedly
requested the same subset of images, the cache was effec-
tively not tested.)

* We increased the offered load until some system compo-
nent saturated (e.g., worker queues grew too long, front-
ends no longer accepted additional connections).

* We then added more resources to the system to eliminate
this saturation (in many cases the system does this automat-
ically, as when it recruits overflow nodes to run more work-
ers), and we recorded the amount of resources added as a
function of the increase in offered load, measured in
requests per second.

* We continued until the saturated resource could not be
replenished (i.e., we ran out of hardware), or until adding
more of the saturated resource no longer resulted in a lin-
car or close-to-linear improvement in performance.

Table 5 presents the results of this experiment. At 24
requests/s, as the offered load exceeded the capacity of the
single available worker, the manager automatically spawned
one additional worker, and then subsequent workers as neces-
sary. (In addition to using faster hardware, the performance
engineering of the cluster-based server has caused a large
reduction in the amortized cost of distillation for a typical
image, compared to the values suggested by Fig. 2.} At 87
requests/s, the Ethernet segment leading into the frontend

3 The PostScript-to-rich-text worker described earlier has not yet been
added to TranSend.

TEEE Personal Communications ® August 1998

15

saturated, requiring a new frontend to be
spawned. We were unable to test the sys-
tem at rates higher than 159 requests/s,
because all of our cluster’s machines were
hosting workers, frontends, or playback
engines. We did observe nearly perfectly
linear growth of the system over the scaled
range: a worker can handle approximately
23 requests/s, and a 100 Mb/s Ethernet
segment into a frontend can handle
approximately 70 requests/s. We were
unable to saturate the frontend or the
cache partitions, or fully saturate the inte-
rior interconnect during this experiment.

We draw two conclusions from this result:

* Even with a commodity 100 Mb/s inter-

" connect, linear scaling is limited primar-
ily by bandwidth into the system rather
than bandwidth inside the system.

* Although we originally deployed TranSend
on four SPARC 10s, a single Ultra-1-class
machine would suffice to serve the entire
dialup IP population of UC Berkeley
(25,000 users officially, over 8000 of
whom surfed during the trace).

Other TACC Applications

We now discuss several examples of new services in various
stages of deployment, showing how each exploits the TACC
model and discussing some of our experiences with the appli-
cations. Rather than providing detailed measurements as we
did for TranSend in the previous section, the present goal is
to demonstrate the flexibility of the TACC framework in
accommodating an interesting range of applications, while
providing consistent guidelines for approaching application
partitioning decisions.

We restrict our discussion here to services that can be
implemented using the proxy model (i.e., transparent interpo-
sition of computation between clients and servers). (Some of
our services do not communicate via HTTP but are conceptu-
ally similar.) Also, although we have developed a wider range
of applications using the TACC model as part of a graduate
seminar [18], we concentrate on those applications that enable
adaptation to network and client variation. These services
share the following common characteristics, which make them
amenable to implementation on our cluster-based framework:
» Compute-intensive transformation or aggregation
» Computation that is parallelizable with granularity of a few

CPU seconds
* Substantial value added by mass customization

TranSend as a TACC Application

TranSend is one of the simplest TACC applications we have
produced. The dispatch rules simply match the MIME type of
the object returned from the origin server to the list of known
workers, which (as in all TACC applications) can be updated
dynamically. In particular, TranSend does not exploit TACC’s
ability to compose workers by chaining them into a “pipeline”
or having one worker call others as coroutines.

Transformed objects are stored in the cache with “fat
URLs” that encode a subset of the transformation parame-
ters, saving the work of retransforming an original should
another user ask for the same degraded version later. Each
user can select a desired level of aggressiveness for the lossy
compression and choose between HTML and Java-based
interfaces for modifying their preferences.

B Figure 6. Screenshot of the Top
Gun Wingman browser. This screen-
shot is taken from the “xcopilot”
hardware-level Pilot simulator [21].

The main difference between
TranSend and commercial products based
on its ideas (such as Intel’s recently
announced QuickWeb [19]) is extensibili-
ty: adding support for new datatypes to
TranSend is as simple as adding a new
worker, and composing workers is as sim-
ple as modifying the dispatch rules (or
modifying existing workers to hint to the
TACC server that it should fall through to
new workers).

In fact, we have generalized TranSend
into a “lazy fixations” system [20] in which
users could select from among a variety of
available formats for viewing an object; this
was implemented by a “graph search”
worker that treated all the transformation
workers as edges in a directed graph and
performed a shortest-paths search to deter-
mine which sequence of workers should be
run to satisfy a particular request.

One of the goals of TACC is to exploit
modularity and composition to make new
services easy to prototype by reusing exist-
ing building blocks. TranSend’s HTML and
JPEG workers consist almost entirely of off-the-shelf code, and
each took an afternoon to write. A pair of anecdotes illustrates
the flexibility of the TACC APIs in constructing responsive ser-
vices. Our original HTML parser was a fast C language imple-
mentation from the W3C. Debugging the pathological cases for
this parser was spread out over a period of days —since our pro-
totype TACC server masks transient faults by bypassing original
content “around” the faulting worker, we could only deduce the
existence of bugs by noticing (on the graphical monitor display)
that the HTML worker had been restarted several times over a
period of hours, although the service as a whole was continuously
available.

We later wrote a much slower but more robust parser in
Perl to handle proprietary HTML extensions such as inline
JavaScript. All HTML pages are initially passed to the slower
Perl parser, but if it believes (based on page length and tag
density) that processing the page will introduce a delay longer
than one or two seconds, it immediately throws an exception
and indicates that the C parser should take over. Because the
majority of long pages tend to be papers published in HTML
rather than complex pages with weird tags, this scheme
exploits TACC composition and dispatch to handle common
cases well while keeping HTML processing latency barely
noticeable.

Top Gun Wingman

Top Gun Wingman is the only graphical Web browser avail-
able for the 3Com PalmPilot, a typical “thin client” device.
Based on file downloads, we estimate that 8000 to 10,000
users are using the client software and UC Berkeley’s experi-
mental cluster; ProxiNet, Inc. has since commercialized the
program and deployed a production cluster to serve additional
users. Figure 6 shows a screenshot of the browser.

Previous attempts to provide graphical Web browsing on
such small devices have foundered on the severe limitations
imposed by small screens, limited computing capability, and
austere programming environments, and virtually all have fall-
en back to simple text-only browsing. Our adaptation
approach, combined with the composable-workers model pro-
vided by TACC, allows us to approach this problem from a
different perspective. The core of Top Gun Wingman consists
of three TACC workers: HTML layout, image conversion, and

16

IEEE Personal Communications * August 1998

conversion of intermediate-form layout to device-specific data

format. These three workers address the three areas of varia-

tion introduced earlier:

* Hardware and software adaptation — We have built TACC
workers that output simplified binary markup and scaled-
down images ready to be “spoon fed” to a thin-client
device, given knowledge of the client’s screen dimensions,
image format, and font metrics. This greatly simplifies
client-side code since no HTML parsing, layout, or image
processing is necessary, and as a side benefit, the smaller
and more efficient data representation reduces transmis-
sion time to the client. The image worker delivers 2-b/pixel
images, since that is what the PalmPilot hardware supports,
and the HTML parsing and layout worker ensures that no
page description larger than about 32 kbytes is delivered to
the client, since that is the approximate heap space limit
imposed by the PalmPilot’s programming environment. We
have also added three “software upgrades” at the proxy
since Wingman was first deployed: a worker that delivers
data in AportisDoc [22] format (a popular PalmPilot e-
book format), a worker that extracts and displays the con-
tents of software archives for download directly to the
PalmPilot, and an improved image-processing module con-
tributed by a senior graphics hacker. In terms of code foot-
print, Wingman weighs in at 40 kbytes of code (compared
with 74 kbytes and 109 kbytes for HandWeb and Palm-
scape 5.0, respectively, neither of which currently support
image viewing).

* Network protocol adaptation: In addition to delivering data
in a more compact format and exploiting datatype-specific
distillation, we have replaced HTTP with a simpler, data-
gram-oriented protocol based on application-level framing
[23]. The combined effect of these optimizations is that
Wingman is two to four times faster than a desktop browser
loading the same Web pages over the same bandwidth, and
Wingman’s performarce on text-only pages often exceeds
that of HTML/HTTP-compliant browsers on the same plat-
form, especially on slow (< 56 kb/s) links.

Top Gun Mediaboard

Top Gun Mediaboard is an electronic shared whiteboard

application for the PalmPilot. This is a derivative of the desk-

top mediaboard application, which uses Scalable Reliable Mul-

ticast (SRM) as the underlying communication protocol. A

reliable multicast proxy (RMX) TACC worker participates in

the SRM session on behalf of the PDA clients, performing
four main types of client adaptation:

* Transport protocol conversion — The PalmPilot’s network
stack does not support IP multicast. The RMX converts the
SRM data into a unicast TCP stream that the client can
handle.

* Application protocol adaptation — To keep the client imple-
mentation simple, all the complexities of the mediaboard
command protocol are handled by the RMX. The protocol
adapter transforms the entire sequence of mediaboard com-
mands into a “pseudo-canvas” by executing each command
and storing its result in the canvas, transmitting only a
sequence of simple draw-ops to the client. The protocol and
data format for transmitting the draw-ops is a direct exten-
sion of the Top Gun Wingman datagram protocol,

* On-demand distillation — The RMX converts specific data
objects according to the client’s needs. For example, it
transforms the GIF and JPEG images that may be placed
on the mediaboard into simpler image representations that
the PalmPilot can understand, using the same worker that
is part of Wingman. The client application can refine (zoom
in on) specific portions of the canvas.

* Intelligent rate limiting — Since the proxy has complete
knowledge of the client’s state, the RMX can perform intel-
ligent forwarding of data from the mediaboard session to
the client. By eliminating redundant draw-ops (e.g.,, create
followed by delete on the same object) before sending data
to the client, the RMX reduces the number of bytes that
must be sent over the low-bandwidth link. Moreover,
although a whiteboard session can consist of a number of
distinct pages, the RMX forwards only the data associated
with the page currently being viewed on the client.

Top Gun Mediaboard is in pre-alpha use at UC Berkeley,
and performs satisfactorily even over slow links such as the

Metricom Ricochet wireless packet radio modem [24].

Charon: Indirect Authentication for Thin Clients

Although not yet rewritten as a TACC application, Charon
[25] illustrates a similar use of adaptation by proxy, for per-
forming indirect authentication. In particular, Charon medi-
ates between thin clients and a Kerberos [26] infrastructure.
Charon is necessary because, as we describe in [25], the
computing resources required for a direct port of Kerberos
to thin clients are forbidding. With Charon, Kerberos can
be used to authenticate both clients to the proxy service,
and the proxied clients to Kerberized servers. Charon
relieves the client of a significant amount of Kerberos pro-
tocol processing, while limiting the amount of trust that
must be placed in the proxy; in particular, if the proxy is
compromised, existing user sessions may be hijacked but no
new sessions can be initiated, since new sessions require
cooperation between the client and proxy. Our Charon pro-
totype client for the Sony MagicLink [27], a once-popular
PDA, had a client footprint of only 45 kbytes, including
stack and heap usage.

Related Work

At the network level, various approaches have been used to
shield clients from the effects of poor (especially wireless)
networks [28, 29]. At the application level, data transforma-
tion by proxy interposition has become particularly popular
for HTTP, whose proxy mechanism was originally intended
for users behind security firewalls. The mechanism has been
harnessed for anonymization [30], Kanji transcoding [31, 32],
application-specific stream transformation [33], and person-
alized “associates” for Web browsing [34, 35]. Some projects
provide an integrated solution with both network-level and
application-level mechanisms [36, 37, 10], although none
propose a uniform application-development model analo-
gous to TACC.

Rover [38], Coda [39], and Wit [4] differ in their respective
approaches to partitioning applications between a thin or
poorly connected client and a more powerful server. In partic-
ular, Rover and Coda provide explicit support for disconnect-
ed operation, unlike our TACC work. We find that Rover’s
application-specific, toolkit-based approach is a particularly
good complement to our own; although the TACC model pro-
vides a reasonable set of guidelines for thinking about parti-
tioning (leave the client to do what it does well, and move as
much as possible of the remaining functionality to the back
end), we are working on integrating Rover into TACC to pro-
vide a rich abstraction for dealing with disconnection in
TACC applications.

SmartClients [40] and SWEB+ + [41] have exploited the
extensibility of client browsers via Java and JavaScript to
enhance scalability of network-based services by dividing labor
between the client and server. We note that our system does
not preclude and, in fact, benefits from exploiting intelligence

IEEE Personal Communications * August 1998

17

and computational resources at the client; we discuss various
approaches we have tried in [42].

Lessons and Conclusions

We proposed three design principles for adapting to network
and client variation and delivering a meaningful Internet expe-
rience to impoverished clients: datatype-specific distillation
and refinement, adaptation on demand, and moving complexi-
ty into the infrastructure. We also offered a high-level descrip-
tion of the TACC programming model (transformation,
aggregation, caching, customization) that we have evolved for
building adaptive applications, and presented measurements
of our scalable, highly available, cluster-based TACC server
architecture, focusing on the TranSend Web accelerator appli-
cation. Finally, we described other applications we have built
that are in daily use, including some that push the limits of
client adaptation (such as Top Gun Wingman and Top Gun
Mediaboard). In this section we try to draw some lessons from
what we have learned from building these and similar applica~
tions and experimenting with our framework.

Aggressively pushing the adaptation-by-proxy model to its
limits, as we have tried to do with Top Gun Wingman and
Top Gun Mediaboard, has helped us validate the proxy-
interposition approach for serving thin clients. Our variation
on the theme of application partitioning has been to split the
application between the client and the proxy, rather than
between the client and the server. This has allowed our
clients to access existing content with no server modifica-
tions. Our guideline for partitioning applications has been to
allow the client to perform those tasks it does well in native
code, and move as much as possible of the remaining work
to the proxy. For example, since most thin clients support
some form of toolkit for building graphical interfaces, send-
ing HTML markup is too cumbersome for the client, but
sending screen-sized bitmaps is unnecessarily cumbersome
for the proxy.

A frequent objection raised against our partitioning
approach is that it requires that the proxy service be avail-
able at all times, which is more difficult than simply main-
taining the reliability of a bank of modems and routers. This
observation motivated our work on the cluster-based scal-
able and highly available server platform described earlier,
and in fact the TranSend and Wingman proxy services have
been running for several months at UC Berkeley with high
stability, except for a two-week period in February 1998
when the cluster was affected by an OS upgrade. Other than
one part-time undergraduate assistant, the cluster manages
itself, yet thousands of users have come to rely on its stabili-
ty for using Top Gun Wingman, validating the efficacy of
our cluster platform. This observation, combined with the
current trends toward massive cluster-based applications
such as HotBot [43], suggests to us that the adaptive proxy
style of adaptation will be of major importance in serving
convergent “smart-phone”-like devices.

Acknowledgments

This project has benefited from the detailed and perceptive
comments of countless anonymous reviewers, users, and col-
laborators. Ken Lutz and Eric Fraser configured and admin-
istered the test network on which the TranSend scaling
experiments were performed. Cliff Frost of the UC Berke-
ley Data Communications and Networks Services group
allowed us to collect traces on the Berkeley dialup IP net-
work and has worked with us to deploy and promote
TranSend within UC Berkeley. Undergraduate researchers
Anthony Polito, Benjamin Ling, Andrew Huang, David Lee,

and Tim Kimball helped implement various parts of
TranSend and Top Gun Wingman. Ian Goldberg and David
Wagner helped us debug TranSend, especially through their
implementation of the Anonymous Rewebber [44]. Ian
implemented major parts of the client side of Top Gun
Wingman, especially the 2-bit-per-pixel hacks. Paul Haeberli
of Silicon Graphics contributed image processing code for
Top Gun Wingman. Murray Mazer at the Open Group
Research Institute has provided much useful insight on the
structure of Internet applications and future extensions of
this work. We also thank the patient students of UCB Com-
puter Science 294-6, Internet Services, Fall 1997, for being
the first real outside developers on our TACC platform and
greatly improving the quality of the software and documen-
tation. We have received much valuable feedback from our
UC Berkeley colleagues, especially David Culler, Eric
Anderson, Trevor Pering, Hari Balakrishnan, Mark Stemm,
and Randy Katz. This research is supported by DARPA
contracts #DAAB07-95-CD154 and #J-FBI1-93-153, the
California MICRO program, the UC Berkeley Chancellor’s
Opportunity Fellowship, the NSERC PGS-A fellowship,
Hughes Aircraft Corp., and Metricom Inc.

References

[1] Nokia Corp. and Geoworks Inc., Nokia 9000 Communicator, http://www.
geoworks.com/devices/9000.

[2] Tom R. Halfhill, “Inside the web pc,” Byte Mag., Mar. 1996, pp. 44-56.

[3] M. Stemm and R. H. Katz, “Vertical handoffs in wireless overlay net-
work,” ACM Mobile Networking (MONET), Special Issue on Mobile Net-
working in the Internet, Fall 1997.

[4] T. Watson, “Application Design for Wireless Computing,” Mobile Comp.
Sys. and Appl. Wksp., Aug. 1994,

[5] Graphics interchange format version 89a (GIF), CompuServe inc.,
Columbus, OH, July 1990.

{6} J.Poskanzer, Netpbm release 7, ftp://wuarchive.wustl.edu/graphics/graphics/
packages/NetPBM, 1993.

[7]1 E. Amir, S. McCanne, and H. Zhang, “An application level video gate-
way,” Proc. ACM Multimedia 1995, 1995.

[8] P. Mac)ones, DEC SRC pers. commun., PostScript-to-text converter.

[9] A. Fox et al., “TranSend web accelerator proxy,” free service deployed
by UC Berkeley; http://transend.cs.berkeley.edu, 1997.

[10] B. Zenel, "A Proxy Based Filtering Mechanism for the Mobile Environ-
ment,” Thesis proposal, Mar. 1996.

[11] A. Fox et al., "Cluster-Based Scalable Network Services,” Proc. 16th
ACM Symp. Op. Sys. Principles, St.-Malo, France, Oct. 1997.

{12] T. E. Anderson, D. E. Culler, and D. Patterson, “The case for NOW (net-
works of workstations),” IEEE Micro, vol. 12, no. 1, Feb. 1995, pp. 54-64.

[13] A. Chankhunthod et al., “A hierarchical internet object cache,” Proc.
1996 Usenix Annual Tech. Conf., Jan. 1996, pp. 153-63.

[14] J. K. Ousterhout, Tc/ and the Tk Toolkit, Addison-Wesley, 1994,

[15] Myricom, “Myrinet: A Gigabit Per Second Local Area Network,” /EEE
Micro, Feb. 1995.

[16] A. Fox and E. A. Brewer, “Reducing WWW Latency and Bandwidth
Requirements via Real-Time Distillation,” Proc. 5th Int’l World Wide
Web Conf., Paris, France, May 1996.

[17] S. D. Gribble and E. A. Brewer, “System Design Issues for Internet Mid-
dleware Services: Deductions from a Large Client Trace,” Proc. 1997
USENIX Symp. Internet Tech. and Sys., Monterey, CA, Dec. 1997.

[18] A. Fox and E. A. Brewer, “CS 294-6; Internet services, class proceed-
ings,” Fall 1997, http://www.cs.berkeley.edu/~fox/cs294.

[19] Intel Corp. QuickWeb Web Accelerator.

[20] A. Fox and S. D. Gribble, “"DOLF: Digital objects with lazy fixations,”
unpublished manuscript, CS 294-5 Digital Libraries Seminar, Spring 1996.

[21] 1. Curtis, xcopilot Pilot simulator, 1998.

[22] Aportis Inc., “AportisDoc Overview,” 1998, http://www.aportis.com/
products/Aportis Doc/benefits.html.

[23] D. D. Clark and D. L. Tennenhouse, “Architectural Considerations for a
New Generation of Protocols,” Comp. Commun. Rev., vol. 20, no. 4,
Sept. 1990, pp. 200-8.

[24] Metricom Corp., “Ricochet wireless modem,” 1998, http:/Avww.ricochet.net.

{25] A. Fox and S. D. Gribble, “Security On the Move: Indirect Authentica-
tion Using Kerberos,” Proc. 2nd Int’l. Conf. Wireless Networking and
Mobile Comp. (MobiCom ‘96), Rye, NY, Nov. 1996.

[26] J. G. Steiner, C. Neuman, and J. |. Schiller, “Kerberos: An authentica-
tion service for open network systems,” Proc. USENIX Winter Conf.
7988, Dallas, TX, Feb. 1988, pp. 191-202.

[27] Sony Corp., “The Sony MagicLink PDA.”

18

IEEE Personal Communications * August 1998

(28] H. Balakrishnan et al., “A comparison of mechanisms for improving tcp
performance over wireless links,” Proc. ACM SIGCOMM ‘96, Stanford,
CA, Aug. 1996.

[29] H. Balakrishnan et al., "Improving tcp/ip performance over wireless
networks,” Proc. 1st ACM Conf. Mobile Comput. and Networking,
Berkeley, CA, Nov. 1995.

[30] CZnet, Web anonymizer.

[31] Y. Sato, DeleGate Server, Mar. 1994; http:/ wall.etl.go.jp/delegate/.

[32] K. P. Yee, Shoduoka Mediator Service, 1995, http:/www.shoduoka.com.

[33] C. Brooks, M. S. Mazer, S. Meeks, and J. Miller, “Application-Specific
Proxy Servers as HTTP Stream Transducers,” Proc. 4th Int’'l. World Wide
Web Conf., Dec. 1995.

[34] R. Barrett, P. P. Maglio, and D. C. Kellem, “How To Personalize the
Web,” Conf. Human Factors in Comp. Sys. (CHI '95), Denver, CO, May
1995. WBI, developed at IBM Almaden; http://www.raleigh.ibm.com/
whbi/ whisoft.htm.

[35] M. A. Schickler, M. S. Mazer, and C. Brooks, “Pan-browser support for
annotations and other metainformation on the world wide web,” Proc.
5th Int’l. World Wide Web Conf. (WWW-5), May 1996.

[36] M. Lilieberg et al., “Enhanced services for world wide web in mobile WAN
environment,” Tech. rep. C-1996-28, Univ. of Helsinki CS Dept., Apr. 1996.

[37] WAP Forum, Wireless application protocol (WAP) forum, http://www.
wapforum.org.

[38] A. D. Joseph et al., “Rover: A toolkit for mobile information access,
Proc. 15th ACM Symp. Op. Sys. Principles,” Copper Mountain Resort,
CO, Dec. 1995.

[39] J. J. Kistler and M. Satyanarayanan, “Disconnected Operation in the Coda
File System,” ACM Trans. Comp. Sys., vol. 10, Feb. 1992, pp. 3-25.

[40] C. Yoshikawa et al., “Using smart clients to build scalable services,”
Proc. Winter 1997 USENIX Tech. Conf., Jan. 1997.

[41] D. Andresen et al., “Scalability issues for high performance digital libraries
on the world wide web," Proc. IEEE ADL "96, Forum on Research and
Technology Advances in Digital Libraries, Washington, DC, May 1996.

[42] A. Fox et al., "Orthogonal Extensions to the WWW User Interface
Using Client-Side Technologies,” User Interface Software and Technolo-
gy (UIST) '97, Banff, Canada, Oct. 1997.

[43] Inktomi Corp., The HotBot search engine.

[44] I. Goldberg and D. Wagner, “TAZ servers and the rewebber network:
Enabling anonymous publishing on the world wide web,” Unpublished
manuscript available at http:/www.cs.berkeley.edu/~daw/cs268/, May 1997.

Biographies

ARMANDO Fox (fox@cs.berkeley.edu, fox@alum.mit.edu) received a B.S.E.E.
from MIT and an M.S.E.E. from the University of lllinois, has worked as a
CPU architect at Intel Corp., and is currently completing his Ph.D. at the
University of California, Berkeley, as a researcher in the Daedalus/BARWAN
and InfoPad projects. He will be an assistant professor at Stanford Universi-
ty starting in January 1999. His primary interests are application-level sup-
port for adaptive mobile computing, multimedia networks for mobile
computing, and user interface issues related to mobile computing.

STEVEN GRiBBLE (gribble@cs.berkeley.edu) received a combined computer sci-
ence and physics B.S. degree from the University of British Columbia, Van-
couver, Canada, in 1995, and a computer science M.S. degree from the
University of California, Berkeley in 1997. He is currently pursuing his Ph.D.
at Berkeley, and expects to graduate in May 2000. His interests include
application-level support for adaptive mobile computing, and system and
compiler support for scalable, highly available infrastructure services.

YATIN CHAWATHE (yatin@cs.berkeley.edu) is a doctoral student at the Univer-
sity of California, Berkeley. He received a Bachelor of Engineering (comput-
er engineering) degree from the University of Bombay, India, and an M.S.
(computer science) from the University of California, Berkeley. His primary
interests are internet services, application support for reliable multicast in
heterogeneous environments, and multimedia networking.

ERiC A. BREWER (brewer@cs.berkeley.edu) is an assistant professor of com-
puter science at U.C. Berkeley, and received his Ph.D. in computer science
from MIT in 1994, His research interests include mobile and wireless com-
puting (the InfoPad and Daedalus projects), scalable servers (the NOW, Ink-
tomi, and TACC projects), and application- and system-level security (the
ISAAC project). His previous work includes multiprocessor-network software
and topologies, and high-performance multiprocessor simulation.

IEEE Personal Communications * August 1998

19

