
Dining Philosophers, Monitors,
and Condition Variables

CSCI 3753 Operating Systems
Spring 2005

Prof. Rick Han

Announcements
• HW #3 is due Friday Feb. 25, a week+ from now

– submitting graphic: .doc OK? - will post an answer
– extra office hours Thursday 1 pm - post this

• TA finished regrading some HWs that were cut
off by moodle

• Slides on synchronization online
• PA #2 is coming, assigned around Tuesday

night
• Midterm is tentatively Thursday March 10
• Read chapters 9 and 10

From last time...

• We discussed semaphores
• Deadlock
• Classic synchronization problems

– Bounded Buffer Producer/Consumer Problem
– First Readers/Writers Problem
– Dining Philosophers Problem

Dining Philosophers Problem
• N philosophers seated around a

circular table
– There is one chopstick between each

philosopher
– A philosopher must pick up its two

nearest chopsticks in order to eat
– A philosopher must pick up first one

chopstick, then the second one, not
both at once

• Devise an algorithm for allocating
these limited resources
(chopsticks) among several
processes (philosophers) in a
manner that is
– deadlock-free, and
– starvation-free

P5

P4

P3

P2

P1

Dining Philosophers Problem
• A simple algorithm for protecting access to

chopsticks:
– each chopstick is governed by a mutual exclusion

semaphore that prevents any other philosopher from
picking up the chopstick when it is already in use by
another philosopher

semaphore chopstick[5]; // initialized to 1

– Each philosopher grabs a chopstick i by
P(chopstick[i])

– Each philosopher releases a chopstick i by
V(chopstick[i])

Dining Philosophers Problem
• Pseudo code for Philosopher i:

while(1) {
// obtain the two chopsticks to my immediate right and left
P(chopstick[i]);
P(chopstick[(i+1)%N];

// eat

// release both chopsticks
V(chopstick[(i+1)%N];
V(chopstick[i]);

}

• Guarantees that no two neighbors eat simultaneously, i.e. a
chopstick can only be used by one its two neighboring philosophers

Dining Philosophers Problem

• Unfortunately, the previous “solution” can result
in deadlock
– each philosopher grabs its right chopstick first

• causes each semaphore’s value to decrement to 0

– each philosopher then tries to grab its left chopstick
• each semaphore’s value is already 0, so each process will

block on the left chopstick’s semaphore

– These processes will never be able to resume by
themselves - we have deadlock!

Dining Philosophers Problem
• Some deadlock-free solutions:

– allow at most 4 philosophers at the same table when
there are 5 resources

– odd philosophers pick first left then right, while even
philosophers pick first right then left

– allow a philosopher to pick up chopsticks only if both
are free. This requires protection of critical sections
to test if both chopsticks are free before grabbing
them.

• we’ll see this solution next using monitors
• A deadlock-free solution is not necessarily

starvation-free
– for now, we’ll focus on breaking deadlock

Monitors and Condition Variables

• semaphores can result in deadlock due to
programming errors
– forgot to add a P() or V(), or misordered them, or

duplicated them
• to reduce these errors, introduce high-level

synchronization primitives, e.g. monitors with
condition variables, that essentially automates
insertion of P and V for you
– As high-level synchronization constructs, monitors are

found in high-level programming languages like Java
and C#

– underneath, the OS may implement monitors using
semaphores and mutex locks

Monitors and Condition Variables
• Declare a monitor as follows (looks

somewhat like a C++ class):
monitor monitor_name {

// shared local variables

function f1(...) {
...
}
...
function fN(...) {
...
}
init_code(...) {
...
}

}

• A monitor ensures that only 1
process/thread at a time can be
active within a monitor

– simplifies programming, no need to
explicitly synchronize

• Implicitly, the monitor defines a
mutex lock

semaphore mutex = 1;
• Implicitly, the monitor also defines

essentially mutual exclusion around
each function

– Each function’s critical code is
surrounded as follows:

function fj(...) {
P(mutex)
// critical code
V(mutex)

}
• The monitor’s local variables can

only be accessed by local monitor
functions

• Each function in the monitor can
only access variables declared
locally within the monitor and its
parameters

Monitors and Condition Variables
• Example:

monitor sharedcounter {
int counter;
function add() { counter++;}
function sub() { counter--;}
init() { counter=0; }

}
• If two processes want to access this sharedcounter

monitor, then access is mutually exclusive and only one
process at a time can modify the value of counter
– if a write process calls sharedcounter.add(), then it has exclusive

access to modifying counter until it leaves add(). No other
process, e.g. a read process, can come in and call
sharedcounter.sub() to decrement counter while the write
process is still in the monitor

Monitors and Condition Variables

• In the previous sharedcounter example, a writer process
may be interacting with a reader process via a bounded
buffer
– like the solution to the bounded buffer producer/consumer

problem, the writer should signal blocked reader processes
when there are no longer zero elements in the buffer

– monitors alone don’t provide this signalling synchronization
capability

• In general, there may be times when one process wishes
to signal another process based on a condition, much
like semaphores.
– Thus, monitors alone are insufficient.
– Augment monitors with condition variables.

Monitors and Condition Variables
• A condition variable x in a monitor allows two main operations on

itself:
– x.wait() -- suspends the calling process until another process calls

x.signal()
– x.signal() -- resumes exactly 1 suspended process. If none, then no

effect.
• Note that x.signal() is unlike the semaphore’s signalling operation V(), which

preserves state in terms of the value of the semaphore.
– Example: if a process Y calls x.signal() on a condition variable x before process Z

calls x.wait(), then Z will wait. The condition variable doesn’t remember Y’s
signal.

– Comparison: if a process Y calls V(mutex) on a binary semaphore mutex
(initialized to 0) before process Z calls P(mutex), then Z will not wait, because the
semaphore remembers Y’s V() because its value = 1, not 0.

– the textbook mentions that a third operation can be performed x.queue()
• Declare a condition variable with pseudo-code:

condition x,y;

Monitors and Condition Variables

• Semantics concerning what happens just after
x.signal() is called by a process P in order to
wake up a process Q waiting on this CV x
– Hoare semantics, also called signal-and-wait

• The signalling process P either waits for the woken up
process Q to leave the monitor before resuming, or waits on
another CV

– Mesa semantics, also called signal-and-continue
• The signalled process Q waits until the signalling process P

leaves the monitor or waits on another condition

Monitor-based Solution
to Dining Philosophers

• Key insight: pick up 2 chopsticks only if both are
free
– this avoids deadlock
– reword insight: a philosopher moves to his/her eating

state only if both neighbors are not in their eating
states

• thus, need to define a state for each philosopher
– 2nd insight: if one of my neighbors is eating, and I’m

hungry, ask them to signal() me when they’re done
• thus, states of each philosopher are: thinking, hungry, eating
• thus, need condition variables to signal() waiting hungry

philosopher(s)
– Also, need to Pickup() and Putdown() chopsticks

Monitor-based Solution
to Dining Philosophers

• Some basic pseudo-
code for monitor (we’ll
abbreviate DP for
Dining Philosophers):

monitor DP {
status state[5];
condition self[5];
Pickup(int i);
Putdown(int i);

}

• Each philosopher i runs
pseudo-code:

DP.Pickup(i);
...
DP.Putdown(i);

Monitor-based Solution
to Dining Philosophers

• Full code for monitor solution (continued
on next slide):

monitor DP {
status state[5];
condition self[5];

Pickup(int i) {
state[i] = hungry;
test(i);
if(state[i]!=eating) self[i].wait;

}

Putdown(int i) {
state[i] = thinking;
test((i+1)%5);
test((i-1)%5);

}
... monitor code continued next slide ...

• Pickup chopsticks
– indicate that I’m hungry
– set state to eating in test() only if my

left and right neighbors are not
eating

– if unable to eat, wait to be signalled

• Put down chopsticks
– if right neighbor R=(i+1)%5 is

hungry and both of R’s neighbors
are not eating, set R’s state to
eating and wake it up by signalling
R’s CV

Monitor-based Solution
to Dining Philosophers

... monitor code continued from previous
slide...

...
test(int i) {

if (state[(i+1)%5] != eating &&
state[(i-1)%5] != eating &&
state[i] == hungry) {

state[i] = eating;
self[i].signal();

}
}

init() {
for i = 0 to 4

state[i] = thinking;
}

} // end of monitor

• signal() has no effect during
Pickup(), but is important to wake
up waiting hungry philosophers
during Putdown()

• Execution of Pickup(), Putdown()
and test() are all mutually exclusive,
i.e. only one at a time can be
executing

• Verify that this monitor-based
solution is

– deadlock-free
– mutually exclusive in that no 2

neighbors can eat simultaneously

	Dining Philosophers, Monitors, and Condition Variables
	Announcements
	From last time...
	Dining Philosophers Problem
	Dining Philosophers Problem
	Dining Philosophers Problem
	Dining Philosophers Problem
	Dining Philosophers Problem
	Monitors and Condition Variables
	Monitors and Condition Variables
	Monitors and Condition Variables
	Monitors and Condition Variables
	Monitors and Condition Variables
	Monitors and Condition Variables
	Monitor-based Solutionto Dining Philosophers
	Monitor-based Solutionto Dining Philosophers
	Monitor-based Solutionto Dining Philosophers
	Monitor-based Solutionto Dining Philosophers

