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Announcements
• HW #3 is due Friday Feb. 25, a week+ from now

– submitting graphic: .doc OK? - will post an answer
– extra office hours Thursday 1 pm - post this

• TA finished regrading some HWs that were cut 
off by moodle

• Slides on synchronization online
• PA #2 is coming, assigned around Tuesday 

night
• Midterm is tentatively Thursday March 10
• Read chapters 9 and 10



From last time...

• We discussed semaphores
• Deadlock
• Classic synchronization problems

– Bounded Buffer Producer/Consumer Problem
– First Readers/Writers Problem
– Dining Philosophers Problem



Dining Philosophers Problem
• N philosophers seated around a 

circular table
– There is one chopstick between each 

philosopher
– A philosopher must pick up its two 

nearest chopsticks in order to eat
– A philosopher must pick up first one 

chopstick, then the second one, not 
both at once

• Devise an algorithm for allocating 
these limited resources 
(chopsticks) among several 
processes (philosophers) in a 
manner that is
– deadlock-free, and
– starvation-free
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Dining Philosophers Problem
• A simple algorithm for protecting access to 

chopsticks:
– each chopstick is governed by a mutual exclusion 

semaphore that prevents any other philosopher from 
picking up the chopstick when it is already in use by 
another philosopher

semaphore chopstick[5];    // initialized to 1

– Each philosopher grabs a chopstick i by 
P(chopstick[i])

– Each philosopher releases a chopstick i by 
V(chopstick[i])



Dining Philosophers Problem
• Pseudo code for Philosopher i:

while(1) {
// obtain the two chopsticks to my immediate right and left
P(chopstick[i]);
P(chopstick[(i+1)%N];

// eat

// release both chopsticks
V(chopstick[(i+1)%N];
V(chopstick[i]);

}

• Guarantees that no two neighbors eat simultaneously, i.e. a 
chopstick can only be used by one its two neighboring philosophers



Dining Philosophers Problem

• Unfortunately, the previous “solution” can result 
in deadlock
– each philosopher grabs its right chopstick first

• causes each semaphore’s value to decrement to 0

– each philosopher then tries to grab its left chopstick
• each semaphore’s value is already 0, so each process will 

block on the left chopstick’s semaphore

– These processes will never be able to resume by 
themselves - we have deadlock!



Dining Philosophers Problem
• Some deadlock-free solutions:

– allow at most 4 philosophers at the same table when 
there are 5 resources

– odd philosophers pick first left then right, while even 
philosophers pick first right then left

– allow a philosopher to pick up chopsticks only if both 
are free.  This requires protection of critical sections 
to test if both chopsticks are free before grabbing 
them.

• we’ll see this solution next using monitors
• A deadlock-free solution is not necessarily 

starvation-free
– for now, we’ll focus on breaking deadlock



Monitors and Condition Variables

• semaphores can result in deadlock due to 
programming errors
– forgot to add a P() or V(), or misordered them, or 

duplicated them
• to reduce these errors, introduce high-level 

synchronization primitives, e.g. monitors with 
condition variables, that essentially automates 
insertion of P and V for you
– As high-level synchronization constructs, monitors are 

found in high-level programming languages like Java 
and C#

– underneath, the OS may implement monitors using 
semaphores and mutex locks



Monitors and Condition Variables
• Declare a monitor as follows (looks 

somewhat like a C++ class):
monitor monitor_name {

// shared local variables

function f1(...) {
...
}
...
function fN(...) {
...
}
init_code(...) {
...
}

}

• A monitor ensures that only 1 
process/thread at a time can be 
active within a monitor

– simplifies programming, no need to 
explicitly synchronize

• Implicitly, the monitor defines a 
mutex lock

semaphore mutex = 1;
• Implicitly, the monitor also defines 

essentially mutual exclusion around 
each function

– Each function’s critical code is 
surrounded as follows:

function fj(...) {
P(mutex)
// critical code
V(mutex)

}
• The monitor’s local variables can 

only be accessed by local monitor 
functions

• Each function in the monitor can 
only access variables declared 
locally within the monitor and its 
parameters



Monitors and Condition Variables
• Example:

monitor sharedcounter {
int counter;
function add() { counter++;}
function sub() { counter--;}
init() { counter=0; }

}
• If two processes want to access this sharedcounter

monitor, then access is mutually exclusive and only one 
process at a time can modify the value of counter
– if a write process calls sharedcounter.add(), then it has exclusive 

access to modifying counter until it leaves add().  No other 
process, e.g. a read process, can come in and call 
sharedcounter.sub() to decrement counter while the write 
process is still in the monitor



Monitors and Condition Variables

• In the previous sharedcounter example, a writer process 
may be interacting with a reader process via a bounded 
buffer
– like the solution to the bounded buffer producer/consumer 

problem, the writer should signal blocked reader processes 
when there are no longer zero elements in the buffer

– monitors alone don’t provide this signalling synchronization 
capability

• In general, there may be times when one process wishes 
to signal another process based on a condition, much 
like semaphores.
– Thus, monitors alone are insufficient.
– Augment monitors with condition variables.



Monitors and Condition Variables
• A condition variable x in a monitor allows two main operations on 

itself:
– x.wait()  -- suspends the calling process until another process calls 

x.signal()
– x.signal() -- resumes exactly 1 suspended process.  If none, then no 

effect.
• Note that x.signal() is unlike the semaphore’s signalling operation V(), which 

preserves state in terms of the value of the semaphore.
– Example: if a process Y calls x.signal() on a condition variable x before process Z 

calls x.wait(), then Z will wait.  The condition variable doesn’t remember Y’s 
signal.

– Comparison: if a process Y calls V(mutex) on a binary semaphore mutex
(initialized to 0) before process Z calls P(mutex), then Z will not wait, because the 
semaphore remembers Y’s V() because its value = 1, not 0.

– the textbook mentions that a third operation can be performed x.queue()
• Declare a condition variable with pseudo-code:

condition x,y;



Monitors and Condition Variables

• Semantics concerning what happens just after 
x.signal() is called by a process P in order to 
wake up a process Q waiting on this CV x
– Hoare semantics, also called signal-and-wait

• The signalling process P either waits for the woken up 
process Q to leave the monitor before resuming, or waits on 
another CV

– Mesa semantics, also called signal-and-continue
• The signalled process Q waits until the signalling process P 

leaves the monitor or waits on another condition



Monitor-based Solution
to Dining Philosophers

• Key insight: pick up 2 chopsticks only if both are 
free
– this avoids deadlock
– reword insight: a philosopher moves to his/her eating 

state only if both neighbors are not in their eating 
states

• thus, need to define a state for each philosopher
– 2nd insight: if one of my neighbors is eating, and I’m 

hungry, ask them to signal() me when they’re done
• thus, states of each philosopher are: thinking, hungry, eating
• thus, need condition variables to signal() waiting hungry 

philosopher(s)
– Also, need to Pickup() and Putdown() chopsticks



Monitor-based Solution
to Dining Philosophers

• Some basic pseudo-
code for monitor (we’ll 
abbreviate DP for 
Dining Philosophers):

monitor DP {
status state[5];
condition self[5];
Pickup(int i);
Putdown(int i);

}

• Each philosopher i runs 
pseudo-code:

DP.Pickup(i);
...
DP.Putdown(i);



Monitor-based Solution
to Dining Philosophers

• Full code for monitor solution (continued 
on next slide):

monitor DP {
status state[5];
condition self[5];

Pickup(int i) {
state[i] = hungry;
test(i);
if(state[i]!=eating) self[i].wait;

}

Putdown(int i) {
state[i] = thinking;
test((i+1)%5);
test((i-1)%5);

}
... monitor code continued next slide ...

• Pickup chopsticks
– indicate that I’m hungry
– set state to eating in test() only if my 

left and right neighbors are not 
eating

– if unable to eat, wait to be signalled

• Put down chopsticks
– if right neighbor R=(i+1)%5 is 

hungry and both of R’s neighbors 
are not eating, set R’s state to 
eating and wake it up by signalling
R’s CV



Monitor-based Solution
to Dining Philosophers

... monitor code continued from previous 
slide...

...
test(int i) {

if (state[(i+1)%5] != eating &&
state[(i-1)%5] != eating &&
state[i] == hungry) {

state[i] = eating;
self[i].signal();

}
}

init() {
for i = 0 to 4

state[i] = thinking;
}

}  // end of monitor

• signal() has no effect during 
Pickup(), but is important to wake 
up waiting hungry philosophers 
during Putdown()

• Execution of Pickup(), Putdown() 
and test() are all mutually exclusive, 
i.e. only one at a time can be 
executing

• Verify that this monitor-based 
solution is

– deadlock-free
– mutually exclusive in that no 2 

neighbors can eat simultaneously
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