
in Proceeding of Visual Languages 1996, Boulder, Colorado: IEEE Computer Society.

Tactile Programming: A Unified Manipulation Paradigm Supporting Program
Comprehension, Composition and Sharing

Alexander Repenning and James Ambach

Department of Computer Science
Center for LifeLong Learning and Design

University of Colorado, Boulder CO 80309-0430
(303) 492-1349, ralex@cs.colorado.edu

(303) 492-1503, ambach@cs.colorado.edu
Fax: (303) 492-2844

http://www.cs.colorado.edu/~ralex/
http://www.cs.colorado.edu/~ambach/

Abstract
Although visual programming techniques have been used to lower the threshold of programming for end users, they are not
sufficient for creating end user programming environments that are both easy to use and powerful. To achieve this, an
environment must support the definition of programs that are not just static representations of behavior, but are instead
dynamic collections of program objects which can be applied in a number of contexts rather than just a program editor. We
describe an approach to end user programming called tactile programming which extends visual techniques with a unified
program manipulation paradigm that makes programs easy to comprehend, compose and, most importantly, share over the
World Wide Web. Tactile programming’s inherent ability to support the social context in which programming takes place
along with its ability to ease program comprehension and composition is what differentiates this approach from others. In the
context of the Agentsheets programming substrate, we have created an instance of a tactile programming environment called
Visual AgenTalk which is used to create interactive simulations.

Keywords
graphical rewrite rules, end user programming languages, scripting, direct manipulation, agents, object-oriented
programming, visual programming, visual object-oriented programming languages

VL Topics
HCI issues for VLs, Visual Programming languages for programming on the Internet

1. Introduction...1
2. Visual AgenTalk: A Tactile Programming Environment2

2.1. The Application World ..2
2.2. The Programming World. ..2
2.3. The Collaboration World ...3
2.4. Moving between Worlds..3

3. Comprehension ...3
4 Composition...5

4.1 Direct Composition...6
4.2 Composition by Example..6

5. Sharing...6
6. Conclusion ...7
Acknowledgments...7
References..8

Tactile Programming: A Unified Manipulation Paradigm Supporting Program
Comprehension, Composition and Sharing

Alexander Repenning and James Ambach

Department of Computer Science
Center for LifeLong Learning and Design

University of Colorado, Boulder CO 80309-0430
(303) 492-1349, ralex@cs.colorado.edu

(303) 492-1503, ambach@cs.colorado.edu
Fax: (303) 492-2844

http://www.cs.colorado.edu/~ralex/
http://www.cs.colorado.edu/~ambach/

Abstract based on graphical rewrite rules, such as Agentsheets [2]
BitPict [3], ChemTrains [4], KidSim [5] and Vampire [6]
are effective end user programming approaches allowing
users to define behavior by editing before and after
pictures. These rule-based, visual programming
environments provide ease-of-use but are limited in their
expressiveness. The question raised is whether it is possible
to create programming environments which are both easy-
to-use and expressive.

Although visual programming techniques have been used to
lower the threshold of programming for end users, they are
not sufficient for creating end user programming
environments that are both easy to use and powerful. To
achieve this, an environment must support the definition of
programs that are not just static representations of behavior,
but are instead dynamic collections of program objects
which can be applied in a number of contexts rather than
just a program editor. We describe an approach to end user
programming called tactile programming which extends
visual techniques with a unified program manipulation
paradigm that makes programs easy to comprehend,
compose and, most importantly, share over the World Wide
Web. Tactile programming’s inherent ability to support the
social context in which programming takes place along
with its ability to ease program comprehension and
composition is what differentiates this approach from
others. In the context of the Agentsheets programming
substrate, we have created an instance of a tactile
programming environment called Visual AgenTalk which
is used to create interactive simulations.

To address this tradeoff, we believe that it is not enough to
focus solely on mechanisms that attempt to make
programming more intuitive. Although this will help,
achieving a qualitative increase in expressiveness, while not
sacrificing ease-of-use, requires support for the social
context in which programming can take place. Currently,
most end user programming environments assume a
solitary programming process in which one person
programs one computer. Nardi [7] and MacLean et al. [8]
indicate that there are many advantages to supporting the
development of programming communities. MacLean
specifically points out that a programming community
encourages its members to help each other by sharing
insights and expertise. While the existence of this social
dimension is recognized, it is not often supported in current
end user programming environments.

1. Introduction
The goal of this work is to enable a wide range of end
users, ranging from children to professionals, to create their
own SimCity®-like interactive simulations. Central to this
goal is the problem of creating a programming environment
that strikes a careful balance between ease-of-use and
expressiveness [1]. General purpose programming
languages such as C and Pascal, on the one hand, are highly
expressive; they enable professional programmers to create
complex computational artifacts, but they are not accessible
to the majority of end users. Visual and end user
programming approaches, on the other hand, are often
meant for the casual programmer with little or no
programming background. Especially in the domain of
interactive simulations, visual programming environments

Programming environments that are easy to use and
expressive must contain mechanisms that enhance the
user’s ability to comprehend programs and program
fragments, to compose complex programs from simpler
primitives, and most importantly, to easily share programs
and program fragments within a community of users.
Although other programming environments have addressed
these concerns individually, we believe that it is essential to
find a unified program manipulation paradigm that
supports the following issues simultaneously:

1

• Comprehension: An end user programming
environment should include mechanisms that increase
program comprehension. Users should be able to easily
determine the effects of programs and program
components within their applications. This becomes
increasingly important in environments that support
collaboration and the sharing of programs. When
programs are shared between users it is essential that
these programs are not only executable but can also be
easily understood by other users who may need to
modify them.

and provides support for program comprehension,
composition and sharing.

Visual AgenTalk is a tactile programming environment that
has been added to the Agentsheets system [11] in order to
enable end users to create complex, interactive, SimCity-
like simulations. Tactile programming in Visual AgenTalk
is centered around the notion of objects that can move
fluently between three different worlds: the application
world, the programming world and the collaboration
world.

• Composition: It should be easy to construct complex
behaviors by composing them from simpler ones.
Programming environments should not only allow this
kind of composition but should actively support the
composition of meaningful programs by helping users to
avoid the composition of incompatible components.

2.1. The Application World

The application world (Figure 4) contains the objects of
direct interest to the end user. In Agentsheets, application
worlds consist of communicating agents organized in a
grid. In Figure 1 agents represent real-world objects such as

cars, , roads, , and traffic signals, . In
comparison, application world objects in HyperCard®

include things like buttons, , and fields,
. Application world objects are manipulated

or viewed by the end user of the application.

• Sharing: Environments should allow end users to share,
with very little effort, programs and program fragments.
The programming environment must enable users to
recognize sharable program fragment boundaries to
ensure that the shared components will work in other
users’ applications.

This paper develops the notion of tactile programming as a
unified program manipulation paradigm that supports these
issues from a user interface perspective. We introduce an
instance of a tactile programming environment called
Visual AgenTalk that was designed based on our
experience with graphical rewrite rules and rule-based
visual programming languages [9].

2. Visual AgenTalk: A Tactile
Programming Environment

Visual programs use non-textual visualization to represent
programs and programming constructs. These
representations, unless they provide some kind of feedback
during program execution, are static representations of the
program. Viewing these programs in a dynamic medium,
like a computer, does little to make them more
comprehensible than viewing the same program in a static
medium like paper. Tactile programming extends the
framework of visual programming by adding perception by
manipulation.

Figure 1: An Agentsheets worksheet allowing users to simulate

interactions between cars and traffic lights.

2.2. The Programming World.

The programming world (Figure 4) contains objects that
describe the behavior of application world objects. In
HyperCard, programming world objects consist of
HyperTalk® functions and handlers describing the behavior
of application world objects such as buttons. In comparison,
Visual AgenTalk features three different types of
programming world objects: commands, rules and triggers.

In tactile programming, visual program representations are
enhanced with a sense of tactility by elevating program
fragments to the status of first class interface objects which
can be dragged and dropped [10] into different contexts
besides just program editors. Applying program objects by
dropping them into different contexts triggers dynamic
audio-visual feedback that creates perception by
manipulation. The ability to apply program objects in
different contexts using the same interface manipulation
paradigm is the primary concern of tactile programming

• Commands are small interactive forms representing
programming primitives that can be manipulated by end
users. Commands have interfaces that consist of familiar
direct manipulation widgets. A command (Figure 2)
consists of a name and an arbitrary number of

2

parameters. Commands have a visual syntax allowing
the combination of textual and pictorial components.
End users set the values of the typed parameters via type
interactors such as number fields, text fields, check
boxes, and textual or iconic pop up menus. Type
interactors can limit user input to valid choices. For
instance, a sound type interactor is a pop up menu
offering only the names of sounds that are available in
the system.

2.3. The Collaboration World

The collaboration world (Figure 4) contains application
world objects and programming world objects that are
shared within the programming community. In Visual
AgenTalk, shared items can include simulations, agents,
rules, commands and triggers .

The ability to easily share program fragments is something
that end user programming environments tend to ignore.
Instead, the focus is on lowering an individual’s threshold
to programming by providing more intuitive interfaces.
However, there is a significant amount of evidence that
shows that individual learning is enhanced when the
individual is a part of a larger community that can share
each other’s work [13-15]. For programming environments,
the Internet seems a likely medium to allow sharing
amongst a distributed community, but current mechanisms
that allow this exchange (FTP and email) are difficult to
use, and are not directly integrated into the programming
environment. To perceive the benefits of being in a
community of practice, the mechanisms that allow sharing
must be easy-to-use, and tightly integrated with the rest of
the end user programming environment.

Name Parameters

Icon Pop-Up

Direction Pop-Up

Static Text

Figure 2: A Visual AgenTalk command to change the look of an agent.

Parameters, such as the crossing gate in Figure 2, can be
references to application world objects. The ability to
have application world objects appear in the
programming world as they do in the application world
significantly helps end users to map between the two
worlds [12].

2.4. Moving between Worlds

Tactile programming relies on the ability of end users to
easily cross the boundaries between the application world,
the programming world and the collaboration world. The
philosophy behind tactile programming is not to think of
the integration of the collaboration world as an
afterthought, but to create a programming environment that
takes all three worlds into account and provides a unified
approach for accessing them.

• Rules contain condition and action commands. For
instance, the rule below (Figure 3) is used to program a
car. The IF part, on the left, and THEN part, on the
right, of each rule are represented by flexibly sized
containers into which commands can be dragged and
dropped. The IF part is an implicit conjunction of all the
conditions and the THEN part is an implicit action
sequence.

3. Comprehension
Tactile programming enhances a user’s ability to
comprehend programs by augmenting visual perception,
used in visual programming, with perception by
manipulation. In tactile programming, objects in the
programming world are elevated to the status of concrete,
tangible objects that can be manipulated by the end user. In
Visual AgenTalk the manipulation of commands via drag
and drop does not only allow end users to move commands
and rules between worlds but also to comprehend (Figure 4

1) their functionality by applying them to agents. Along
the lines of dynamic programming languages such as Lisp
and Smalltalk, any command or rule can be executed at any
point in time resulting in immediate feedback.

Figure 3: “Check for a Gas Station” Rule. If there is a gas station above

the car, and if the energy level of the car is less than 10, then the car will

pull up next to the gas station and set it's energy level to 100.

• Triggers, such as the Tool trigger, , used in
the rule above (Figure 3), allow the end user to define
the type of event that will cause the rule to be tested. In
this case the “check for a gas station” rule will be tested
if a user applies the hand tool to a car agent. Other
trigger types include timers, mouse clicks, keyboard
events and new messages defined by end users.

3

Collaboration
World

Programming World

Application World

3
2a

1

1

2b

1

1

3

Figure 4: Moving fluently between worlds:
1

 Comprehension: test the functionality of commands and rules by moving them from the programming

world or collaboration world into the application world.
2a

 Direct Composition: select commands and compose them into rules.
2b

 Composition by

Example: compose rules by manipulating the application world.
3

 Sharing: share with a community of users entire simulations, agents, rules and

commands through the World Wide Web.

4

context of any agent, simplifying the task of program
comprehension.

Even more significant for comprehension than exploring
the repertoire of commands is the ability to test entire rules.
Problems identified regarding rule comprehension [16] and
debugging [17-19] stand in contrast to claims of modularity
in rule-based approaches [20]. While the modularity of
rule-based approaches can indeed simplify the process of
writing rules it can increase the complexity of debugging
them. We believe that this problem is at least partly due to
the lack of the ability to test individual rules. Even the
ability to trace rule execution, found in many rule-based
systems, is limited as it will only provide insights about
rules that are actually executed. In Visual AgenTalk each
part of the rule, the IF part, the THEN part, individual
condition or action commands, and even entire rules can be
dragged and dropped onto any agent at any point in time to
test them. Applying a rule to an agent via drag and drop
will execute the rule with audiovisual feedback. For
instance, applying the car rule in Figure 3 to an agent will
sequentially highlight the condition commands (testing for
the presence of a gas station, then testing the energy level.)
If all conditions succeed then the actions will be executed
sequentially (the agent moves next to the gas station and
sets its energy to 100). Should any condition fail, the
execution feedback plays a sound while providing visual
feedback indicating which condition failed.

Figure 5: Commands can be dragged and dropped onto agents to

explore their functionality and to modify agents

A command is applied to an agent and executed by
selecting the command from a palette, specifying the
command’s parameters, and dragging and dropping the
command onto the agent in the worksheet. Figure 5 shows a
simple Agentsheets Turing machine. The top window is the
worksheet representing the application world. It contains a
number of agents that act as the tape pieces and the Turing
machine head. Below the worksheet are two command
palettes representing part of the programming world. The
condition command palette, on the left, holds commands
that query the state of the application world. The action
command palette, on the right, holds commands that can
effect the application world. In the figure, the “move”
action command was selected, its direction parameter was
set to (right) via a graphical pop up menu, and the
command was then dragged on top of the Turing machine
head. Dropping the command on the Turing head results in
the command’s execution. The Turing head will move
according to the direction indicated in the command, in this
case one position to the right. This powerful1 application
and execution paradigm allows the end user to explore and
test the repertoire of commands and parameters in the

Although the tactile approach to testing is helpful in
assisting a single user to comprehend his or her own
programs, it becomes crucial to support the comprehension
of programs created by others. The tactile nature of
programming world objects, enabled by the drag and drop
interaction mechanism extends the notion of object-
orientation. Tactility encourages a more exploratory style of
programming in which end users perceive the functionality
of programming world objects by “touching” them in a
direct manipulation sense.

4 Composition
The process of tactile programming includes the creation of
programs by composing them from programming world
objects. Similar to Boxer [21], and LiveWorld [22], Visual
AgenTalk employs a spatial metaphor of nested containers
to represent programs. Composition consist of putting
programming world objects into containers. Programming
objects can be containers themselves. Visual AgenTalk
supports two different approaches for putting objects into
containers: Direct composition and composition by
example.

1It is difficult to convey the power of tactility in a static medium such as

paper.

5

4.1 Direct Composition
number of commands that can be specified by manipulating
application world objects.

End users directly compose programs by selecting
commands from the condition or action palettes, and by
dragging them into rules contained in a Visual AgenTalk

rule editor (Figure 4 2a). For instance the Turing machine
(Figure 5) could be programmed with rules in order to
behave according to this table:

5. Sharing
In a tactile programming environment, the same
manipulation paradigm used to minimize the barriers
between the application world and the programming world
can also be used to access the collaboration world. The
World Wide Web along with its increasing acceptance is
turning into a promising medium enabling collaboration.
However, the current Web programming environments
(Java®, Java Script®) provide little support to end users.
While Java may serve an essential role for networking,
similar to the role that Postscript® plays in printing, it will
be necessary to add higher level program manipulation
paradigms such as tactile programming to make Web
programming accessible to end users. The ideal
environment would take advantage of tactility and allow the
easy sharing of programming world and application world
objects.

If Then
there is a “0” below move right
there is a “1” below change it to “0” and

move right

The resulting Visual AgenTalk program consists of two
rules:

The Visual AgenTalk Behavior Exchange extends our
initial system, called the Remote Explorium [24], by adding
different levels of sharing granularity. Using the same
tactile manipulation paradigm end users can share entire
Agentsheets simulations, individual agents, rules and

commands (Figure 4 3).

• Sharing Simulations: Simulations are the coarsest
objects users can share. Once end users find simulations
of interest on the Visual AgenTalk Behavior Exchange
Web page they can, in the spirit of tactile programming,
simply drag the simulation out of the page into
Agentsheets. The simulation includes all the objects
necessary to use it: including the agents with their rules,
commands and resources such as sounds, icons and
documentation.

Figure 6: Turing machine rules.

Rule sets are interpreted from top to bottom. If the rule
interpreter finds a rule for which all the conditions are true
then it will execute all of its actions, from top to bottom,
and return from the matching cycle.

4.2 Composition by Example

Since tactile programming reduces the barriers between the
application word and the programming word, it is also
possible to use programming by example techniques [23] to
allow the composition of programming word objects
through the manipulation of objects in the application word

(Figure 4 2b). For instance, the first Turing machine rule in
Figure 6 can be composed in Visual AgenTalk by holding
down a special “composition by example” key, and by
manipulating the objects that are to be programmed. By
holding the key down, and clicking on the “0” tape segment
below the machine head in Figure 5, Visual AgenTalk
infers that an important part of the rule’s condition is that a
“0” is located below the tape head. Then, the user simply
drags the head to the right, and Visual AgenTalk adds the
Move command to the rule action. Both the condition and
action parts of the rule can be composed of an arbitrary

Figure 7: Dragging A Simulation from the Web Page

6

Figure 7 shows the City Traffic simulation being dragged
out of the Web page. In doing so, all of the necessary
programs and resources are automatically downloaded to
the user’s computer.

command's function, create a user interface for the
command and install it into the command palette.

• Sharing Agents: Dragging agents out of a Visual
AgenTalk Behavior Exchange page will copy its look
and behavior into Agentsheets. That is, the agent comes
with all of its rules and the commands contained in the
rules.

Figure 10: Dragging a Command from the Web Page

Visual AgenTalk gains power from the collaboration world
by allowing a community of users to create a growing
collection of easily sharable components. Depending on the
experience of the users, they can get involved to different
degrees within the community. They may only wish to
access simulations without doing any programming
themselves, or they can extend existing simulations by
programming in Visual AgenTalk. Users can create a new
simulation from scratch and share it with others or they can
even create their own programming language featuring
specialized commands and share the commands with other
users.

Figure 8: Dragging an Agent from the Web Page

• Sharing Rules: Rules can be dragged either into a

Visual AgenTalk rule editor (Figure 4 3) to get a copy
of them, or directly onto application world objects in

order to comprehend what they do (Figure 4 1).

6. Conclusion
In order to create end user programming environments that
allow program comprehension, composition and sharing to
occur easily, it is not enough to develop better
visualizations of languages. Instead, we argue that such an
environment needs to employ the tactile programming
techniques described in this paper to provide a unified
program manipulation paradigm that allows users to easily
cross the boundaries between the application world, the
programming world and the collaboration world. Allowing
this to happen not only lowers the threshold to
programming, but also provides a flexible framework that
allows the definition of highly expressive languages and
programs. Visual AgenTalk exists as a working prototype,
and we are currently exploring the creation of tactile
programming environments in other languages including
Java.

Figure 9: Dragging a Rule from the Web Page

• Sharing Commands: Like rules, commands can be
dragged into the programming world to get a copy

(Figure 4 3) or they can be dragged into the

application world to comprehend them (Figure 4 1).
Visual AgenTalk is an open programming language
allowing language designers to create their own
specialized commands and share them with the
programming community. In the figure below, a Send
command used to send messages to distant agents is
dragged off the Web page. Dragging a new command
into the programming world will compile the new

Acknowledgments
We wish to thank Gerhard Fischer and the Center for
LifeLong Learning and Design for all of the thoughtful
discussions. We also want to thank Corrina Perrone for her
excellent work, and Kurt Schneider, Kumiyo Nakakoji,
Tamara Sumner and Anders Morch for their feedback. This

7

work has been supported by the Advanced Research
Projects Agency under Cooperative Agreement Number
CDA-940860, and the National Science Foundation under
grant number RED925-3425.

Programming by Demonstration , A. Cypher, Ed., The MIT
Press, Cambridge, MA, 1993, pp. 103-124.

13. Roschelle, J., “Learning by Collaboration: Convergent
Conceptual Change,” The Journal of the Learning Sciences,
Vol. 2, pp. 235-276, 1992.References

1. Bell, B., J. Rieman and C. Lewis, “Usability Testing of a
Graphical Programming System: Things We Missed in a
Programming Walkthrough,” Proceedings of CHI’91, New
Orleans, LA, 1991, pp. 7-12.

14. Brown, J. S., A. Collins and P. Duguid, “Situated Cognition
and the Culture of Learning,” Educational Researcher, Vol.
January-February, pp. 32-42, 1989.

15. Pea, R. D. and L. M. Gomez, “Distributed Multimedia
Learning Environments: Why and How?,” Interactive
Learning Environments, Vol. 2, pp. 73-109, 1992.

2. Repenning, A., “Bending the Rules: Steps toward
Semantically enriched Graphical Rewrite Rules,”
Proceeding of Visual Languages, Darmstadt, Germany,
1995, pp. 226-233. 16. Gilmore, D., K. Pheasey, J. Underwood and G. Underwood,

“Learning graphical programming: An evaluation of
KidSim,” Proceedings of the Fifth IFIP Conference on
Human-Computer Interaction, London, 1995, pp. .

3. Furnas, G. W., “New Graphical Reasoning Models for
Understanding Graphical Interfaces,” Proceedings of
CHI’91, New Orleans, LA, 1991, pp. 71-78.

17. Carver, S. M. and S. C. Risinger, “Improving Children’s
Debugging Skills,” in Empirical Studies of Programmers:
Second Workshop, G. M. Olson, S. Sheppard and E.
Soloway, Ed., Ablex Publishing Corporation, Norwood,
New Jersey, 1987, pp. 147-171.

4. Bell, B. and C. Lewis, “ChemTrains: A Language for
Creating Behaving Pictures,” 1993 IEEE Workshop on
Visual Languages, Bergen, Norway, 1993, pp. 188-195.

5. Smith, D. C., A. Cypher and J. Spohrer, “KidSim:
Programming Agents Without a Programming Language,”
Communications of the ACM, Vol. 37, pp. 54-68, 1994.

18. Nanja, M. and C. R. Cook, “An Analysis of the On-Line
Debugging Process,” in Empirical Studies of Programmers:
Second Workshop, G. M. Olson, S. Sheppard and E.
Soloway, Ed., Ablex Publishing Corporation, Norwood,
New Jersey, 1987, pp. 172-184.

6. McIntyre, D. W. and E. P. Glinert, “Visual Tools for
Generating Iconic Programming Environments,”
Proceedings of the 1992 IEEE Workshop on Visual
Languages, Seattle, 1992, pp. 162-168. 19. Papert, S., Mindstorms: Children, Computers and Powerful

Ideas, Basic Books, New York, 1980.7. Nardi, B., A Small Matter of Programming, MIT Press,
Cambridge, MA, 1993. 20. Cooper, T. and N. Wogrion, Rule-based Programming with

OPS5, Morgan Kaufman Publischers, Inc., San Mateo, CA,
1988.

8. MacLean, A., K. Carter, L. Lövstrand and T. Moran, “User-
Tailorable Systems: Pressing the Issues with Buttons,”
Proceedings of CHI’90, Seattle, WA., 1990, pp. 175-182. 21. diSessa, A. A., “An Overview of Boxer,” Journal of

Mathematical Behavior, pp. 3-15, 1991.9. Gindling, J., A. Ioannidou, J. Loh, O. Lokkebo and A.
Repenning, “LEGOsheets: A Rule-Based Programming,
Simulation and Manipulation Environment for the LEGO
Programmable Brick,” Proceeding of Visual Languages,
Darmstadt, Germany, 1995, pp. .

22. Travers, M., “LiveWorld: A Construction Kit for Animate
Systems,” Proceedings ofCHI ‘94, Boston, MA, 1994, pp.
37-38.

23. Cypher, A., Watch What I Do: Programming by
Demonstration, MIT Press, Cambridge, MA, 1993.10. Wagner, A., P. Curran and R. OBrien, “Drag Me, Drop Me,

Treat Me Like an Object,” Proceedings of CHI ‘95, Denver,
CO, 1995, pp. 525-530. 24. Ambach, J., C. Perrone and A. Repenning, “Remote

Exploratoriums: Combining Networking and Design
Environments,” Computers and Education, Vol. 24, pp.
163-176, 1995.

11. Repenning, A. and T. Sumner, “Agentsheets: A Medium for
Creating Domain-Oriented Visual Languages,” IEEE
Computer, Vol. 28, pp. 17-25, 1995.

12. Halbert, D. C., “SmallStar: Programming by Demonstration
in the Desktop Metaphor,” in Watch What I Do:

8

