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ABSTRACT 
Object-oriented programming has worked quite well – so far. 
What are the objects, how do they relate to each other? Once we 
clarified these questions we typically feel confident to design and 
implement even the most complex systems. However, objects can 
deceive us. They can lure us into a false sense of understanding. 
The metaphor of objects can go too far by making us try to create 
objects that are too much inspired by the real world. This is a 
serious problem, as a resulting system may be significantly more 
complex than it would have to be, or worse, will not work at all. 
We postulate the notion of an antiobject as a kind of object that 
appears to essentially do the opposite of what we generally think 
the object should be doing. As a Gedankenexperiment antiobjects 
allow us to literally think outside the proverbial box or, in this 
case outside the object. This article discusses two examples, a 
Pacman game and a soccer simulation where antiobjects are 
employed as part of a game AI called Collaborative Diffusion. In 
Collaborative-Diffusion based soccer the player and grass tile 
agents are antiobjects. Counter to the intuition of most 
programmers the grass tile agents, on top of which all the players 
are moving, are doing the vast majority of the computation, while 
the soccer player agents are doing almost no computation. This 
article illustrates that this role reversal is not only a different way 
to look at objects but, for instance, in the case with Collaborative 
Diffusion, is simple to implement, incremental in nature and more 
robust than traditional approaches. 
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1. INTRODUCTION 
Overall, object oriented programming has worked very well. After 
early concerns about performance the intuitive appeal of object-
oriented programming concepts has literally changed the way we 
think about programming. Over time object orientation has 
migrated from an art mastered only by early hacker type 
programmers using object extensions to Lisp or using Smalltalk to 
a more mature engineering discipline. Intangible design intuition 
has been gradually replaced with more principled approaches 
culminating in the unified modeling language (UML). All this has 
led to a strong sense of what objects are and what they should be 
doing. Once we know what the objects are and how they related to 
each other we typically feel confident to design and implement 
even the most complex systems. However, objects can deceive us. 
They can lure us into a false sense of understanding. The 
metaphor of objects can go too far by making us try to create 
objects that are too much inspired by the real world. This is a 
serious problem as a resulting system may be significantly more 
complex that it would have to be, or worse, will not work at all.  

In teaching we can observe the kind of thinking going on in 
novice programmers learning about object-oriented programming. 
I have been creating objected-oriented programming languages 
[22], using and teaching object-oriented design long enough to get 
a sense on how people conceptualize object-oriented 
programming. In my game design and development courses 
students are learning about game design and development by 
building weekly games using AgentSheets [23]. We start with 
classic applications including Frogger, Sokoban and Space 
Invaders. Students have access to reference material including 
detailed game descriptions found in the Wikipedia.  

Sokoban is a simple game in which a person needs to push boxes 
onto targets. What makes Sokoban interesting is that the person 
cannot pull boxes. If a box is pushed into a corner the game is 
lost. At advanced levels Sokoban can be surprisingly intricate 
requiring players to carefully plan their moves. Figure 1 shows a 
graduate student level 1 implementation of the game. 

 
Figure 1. Sokoban Student Implementation. The Smiley 

person can only push boxes. Boxes need to be moved onto 
targets. 



 

Part of the homework is to draw UML diagrams illustrating the 
basic game action. The sequence diagram below shows one 
situation in which the player is trying to push a box to the right 
onto an empty tile. When asked about the homework – after 
grading – some students indicate that drawing the UML diagrams 
helped them thinking about the game but the large majority of the 
students confesses that they made the UML diagrams after 
finishing the game. A large percentage of the students in these 
courses (computer science graduate and undergraduate students) 
has taken Object-Oriented Design course. Interestingly, if they 
have taken an OOD course played no significant role in their 
decision to use UML diagrams either as thinking tools – before 
programming – or as means of documentation, after 
programming. 

 
Figure 2. UML sequence diagram of person pushing box right 

onto empty tile. The person makes the box check if it can 
move. The box can move. It will move itself and the person. 

Up to this point in the progression of increasingly complex games 
object-oriented design techniques have worked well. Students had 
a good intuition helping them to identify what the objects should 
be and how these objects should interact with each other.  

Next students need to implement a game in which agents are 
pursuing each other through a complex world such as a maze. A 
sophisticated version of a tracking-based game would be a game 
like the Sims [32] where people agents are tracking other agents 
such as food or other people agents. A much simpler version of 
such a game would be Pacman where ghosts are trying to catch 
the user-controlled Pacman. To test students design intuitions we 
would show them a specific scenario in a Pacman game in which 
a ghost agent would try to tackle the Pacman.  

 
Figure 3. Ghost tries to pursue Pacman. Which way should it 

go and how should we program this? 

The ghost finds itself on the other side of the wall (Figure 3). In a 
Euclidian sense the ghost is very close to the Pacman. In a 
topological sense the ghost is far away. The question at this point 
to the students is: how would you program this game? How can 
the ghost track the Pacman. Here are the categorized answers 
suggested by students: 
1)  Brownian Motion: the ghosts should move around randomly. 

At each step in the game the ghost re-evaluates all the places 
it could go that are one step away. It will then pick one place 
randomly. Sooner or later they will find the Pacman. This is 
a very simple strategy to implement. Many games actually 
use this strategy. Problems: players will interpret the random 
walk as such. The ghosts do not appear to be intelligent at all.  

2)  Point and Shoot: the ghost selects a random direction and 
keeps moving in that direction until it hits an obstacle. At this 
point it determines a new random direction. Problems: While 
the ghost appears to be less random than in approach #1 it 
still does not come across as intelligent because there is a 
good chance it will move in obvious ways away from the 
Pacman. 

3)  Incremental Approach: the ghost should try to move closer. 
This also is done incrementally. At each step in the game the 
ghost will explore all the places it could go and select the one 
that is closest (in the Euclidian sense). Problems: This idea 
does not take obstacles into account and as such can be 
ineffective. In the situation in Figure 3 the ghost would be 
stuck at its current location because moving left of right 
would increase its distance to the Pacman. 

A brief discussion of trade offs of each approach typically leads to 
a discussion how these ideas could be combined: 
2a)  Smart Point and Shoot: The ghost selects a direction aiming 

at the Pacman. If the ghost hits an obstacle it will re-evaluate 
the direction to the Pacman again. Problems: If the direction 
is the same as the current direction the ghost gets stuck. 

3a)  Incremental Approach with Trap Detector: If the ghost gets 
stuck by minimizing Euclidian distance it should change its 
strategy and pick a random direction. Problems: Without 
remembering where the ghost has been it will be difficult to 
make the decision when to switch back and forth between 
incremental approach and random move.  

Object-oriented design just trapped us. The kind of discussion 
mentioned above can last for quite some time. As the discussion 
progresses it becomes clear to the students that while some 
approaches work better than others none of these ideas work well. 
After all, if there is a way from the ghost to the Pacman then the 
ghost should be able to find it. Instead, ghosts will wander around 
and get occasionally stuck. However, the direction of exploration 
appears to be clear. Better solutions require more sophisticated 
programming of the ghost. The ghost just needs to do a better 
search by having a more complex state, more methods, and more 
sophisticated ways to parse the scene. Perhaps all we need to do it 
to add a few transitions to our current UML diagram – or perhaps 
not. 

The psychology of programming attempts to explain 
programmer’s intuition. Syntonicity [31] is an introspective 
behavior that makes us want to be the ghost in order to think 
about what the ghost should do and how it should do it. More 
generally, body syntonicity makes programmers explore ideas that 
are compatible with their own feeling of being in a body. What 
would I do if I were this ghost?  



 

From the viewpoint of a problem solving design space we have 
been lead to a local maximum. We found a solution that kind of 
works just not very well. The Pacman example of course only 
serves as illustration of the effect. After all, our goal is probably 
not to make the world best Pacman game. However, even in game 
design this more general pathway search problem is real and 
important. Of course there are well known solutions to solve the 
problem. A* algorithms [6] for instance do a good job at least to 
find non-moving targets.  

This breakdown prompts us to think about reconceptualizing the 
problem. Perhaps it is not really the ghost agent that should be 
doing the heavy lifting at all. Perhaps the background tiles, which 
up to this point, we only considered to be passive background 
objects, i.e., decoration, with no behavior whatsoever should help 
somehow with the search. This is a case for antiobjects. As we 
shall see later, by removing computation from the agents that 
appear to do the search (the ghost) and redistributing it in a 
parallel fashion to the agents that define the space to be searched 
(the background tiles) we get a solution that is remarkably 
effective yet simple to implement. The challenge to find this 
solution is a psychological, not a technical one. An approach 
called Collaborative Diffusion will be described in detail in the 
following sections.  

The ghost and floor tiles are examples of antiobjects. If there is 
such as notion of background and foreground we tend to think of 
the agents such as the floor tiles as background while the ghost 
agents are part of the foreground. Yet, as antiobjects their roles 
are reversed. The background does most of the work, the 
foreground just needs to react in simple ways to the computation 
of the background. This runs counter to our body syntonic 
experience. When we think of the Pacman game and think about 
objects such as floor tiles we do not envision any computation. 
We know, floor tiles do not compute in the real world, why should 
they in our game world? This is a hard question and perhaps the 
simplest answer is because they can. If we would build a physical 
embodiment of a Pacman game we would have a robot 
representing the ghost. Even if we wanted to, in the physical 
world we could not easily add computation to objects such as 
floor tiles. All we can do is to make our ghost robot really smart 
and equip it with good sensors.  

In addition to reversing roles antiobject also distribute 
computation differently. The apparent computational intelligence 
of a single agent, for instance the ghost’s ability to track down a 
moving target, is distributed to a potentially large set of agents. 
Instead of having one ghost doing the work, all floor tiles need to 
engage in highly parallel computation. As we shall see in the 
Collaborative Diffusion based Pacman implementation the floor 
tiles effectively diffuse the smell of the Pacman. All the floor tiles 
participate in a highly parallel diffusion computation. Meanwhile, 
the ghost agents can engage in simple hill climbing. 
Computationally speaking the floor tile antiobjects are doing 
practically all the work while the ghost antiobject is doing almost 
none. 

We will claim in this paper that antiobjects work very well for 
Collaborative Diffusion, which is a general framework that can be 
applied to many game applications. Beyond the many simulations 
that we have built using Collaborative Diffusion ranging from AI 
pathfinding, bridge construction design and soccer simulations to 
the simulation of electric systems we have also successfully 
taught the use of antiobject to students. We started with teaching 

game design and development to graduate and undergraduate 
computer science students. Each time we faced that difficult 
moment to make the transition from what students intuition was to 
how we need to reconceptuallize the problem completely in order 
to solve it. Using UML diagrams did not help with this transition. 
However, once student made this step they have created 
wonderfully complex games with amazingly little effort. As we 
keep teaching we gradually introduced new visualization 
techniques to better illustrate the nature of antiobjects. Instead of 
using traditional debugging techniques such as method tracing we 
had to built tools that would be able to visualize in real time 3D 
plots superimposed over the game world. Using these techniques 
we tried to push the idea of antiobjects even further by trying to 
have kids in middle school to build AI-based games involving 
antiobjects. To our amazement that worked out well. Not only 
were we able to teach 11 year old middle school kids to create 
Collaborative Diffusion based games but the few kids that were 
introduced to the technique showed their friends how to do the 
same. 

The following sections describe Collaborative Diffusion as an 
example of programming antiobjects. Antiobjects are a means to 
reconceptualizing computation. However, in addition to being 
different we will show that in the context of Game AI antiobjects 
exhibit a number of positive characteristics including 
effectiveness, incrementalism and robustness. To be able to make 
these points we will move from the more philosophical treatment 
of objects in this introduction to a more technical discussion 
comparing Collaborative Diffusion to related work in Artificial 
Intelligence. 

2. ANTIOBJECTS & GAME AI 
For some time now games have served as an ideal test bed to 
explore computational intelligence [24] and as motivational 
context for object-oriented design classes. As many have pointed 
out, the game industry is approaching the size of a multi-billion 
dollar movie industry. Games such as Halo 2 and Doom III have 
reached levels of colossal complexity. Hardware is advancing 
quickly as well. One of the next generation game consoles, the 
Sony PlayStation 3, is expected to deliver close to two Terra Flops 
of computational power. However, most of the computational 
power seems to be spent in either rendering complex scenes with 
extremely large polygon counts or computing physics. Before 
long, the rendering quality of games will produce photorealistic 
images that will be hard to differentiate from reality. But, what 
about Artificial Intelligence in games? The AI exhibited by many 
modern games is considered weak AI [25] in the sense that it is 
mostly concerned with practical engineering approaches to make 
machines appear to be intelligent without necessarily employing 
sophisticated computational schemes. Particularly weak are 
current implementation schemes involving multiple agents 
collaborating and competing with each other. This paper explores 
why it is hard to build collaborative agents and introduces the 
Collaborative Diffusion framework addressing these issues. 
A quick survey of game developer resources indicates a rich 
presence of AI related topics. Numerous books, e.g., AI for Game 
Developers [3], and websites, e.g., gameai.com, are dedicated to 
what is colloquially called Game AI. Discussions found there are 
typically covering a spectrum ranging from simple state machine-
based AI, over path finding to learning. There is surprisingly little 
coverage on general techniques that could be used to implement 
collaborative and competitive multi agent games. One possible 
explanation is that the apparent complexity of collaboration AI 
schemes found in academic research is simply exceeding the 



 

general scope of game AI. In other words, it may simply be too 
hard to transfer academic research approaches dealing with 
collaborative agents to the more pragmatic world of game AI 
because of practicality issues. Additionally, it may also be 
possible that game contexts may impose additional constraints and 
cause scaling challenges difficult for existing AI approaches to 
deal with. These concerns are the motivation behind our approach. 
Instead of conceptualizing Game AI as the pragmatic cousin of AI 
new frameworks directly relevant to games must be explored. 
Despite this focus on games many of the findings will be relevant 
to general AI. Games are more than just test beds for AI 
approaches; they also become a conceptual development space 
yielding new notions of computational intelligence that can be 
transferred, for a change, from Game AI to regular AI.  
Compared to rendering and physics simulation, Game AI has 
much room for improvement. Players are beginning to demand 
more refined game play based on sophisticated AI. Some of the 
most frequently played games today are based on the idea that the 
player is manipulating a game character, through first or third 
person view, exploring some intricate space populated with 
“enemy” agents. As part of a mission the player needs to reach a 
variety of goals also located in that space. The enemy agents will 
try to prevent the player from reaching said goals by trying to 
block ways, wound or even kill the player. The player, in turn, has 
a repertoire of weapons that can be used to eliminate enemies. 
What is missing in this type of game is collaborative and 
competitive behavior. The AI found in most is by no means 
trivial. They can locate the player and put up the right level of 
resistance making ultimately a game fun to play. However, their 
behavior, with few exceptions, is overly autonomous. They are 
typically not collaborating with other enemy agents in noticeable 
ways. Collaborating enemy agents would make the game play 
more interesting. The player will get the opportunity to deal with 
more complex levels of behaviors not only at the level of 
individual enemy agents but also at the level of group behaviors. 
Especially in game contexts this collaboration-based enemy agent 
advantage will have to be managed carefully. After all, a game 
featuring agents that are so smart that they immediately beat the 
player would be an aggravating game playing experience. To 
balance game play again in favor of the player additional agents 
could be introduced to a game collaborating with the player and 
competing with enemy agents.  
Collaborate Diffusion is a framework based on antiobjects that 
can be used to build games with large numbers of agents 
collaborating and competing with each other. One particularly 
attractive characteristic of Collaborative Diffusion is how its 
simple implementation results in sophisticated emergent behavior. 
Figures 11-13 show collaborative behaviors in the context of a 
soccer game. Players from the same team are truly collaborating 
with each other and competing with all the members of the 
opposite team. For instance, if there is a player in a better position 
than a player covered by an opponent player, the covered player 
will pass the ball to that other player of his team. An intriguing 
aspect of this behavior is that it had not to be “programmed” into 
the agents but, instead, was an emerging property of the soccer 
Collaborative Diffusion process. The soccer game only serves as 
an example exhibiting collaboration and competition. The 
applicability of Collaborative Diffusion is not limited to soccer-
like games or even games in general. Collaborative Diffusion has 
been applied to various complex optimization problems including 
applications such as bridge design [23], mudslide, electrical 
circuits, avalanche and traffic flow simulations. Common to all of 
these applications is the process of diffusion. 
Architecturally speaking, antiobjects and Collaborative Diffusion 
grew out of some of our multi-agent scientific simulations running 
on a Connection Machine CM-2. Powered by sixty four thousand 

CPUs connected through a twelve dimensional hypercube the 
Connection Machine achieved unprecedented performance of 
about 2 Giga Flops. Much more important, from today’s point of 
view, than computational performance were the conceptual 
insights gained from using the Connection Machines. The idea of 
massively parallel problem solving provides radically difference 
perspectives that can lead to new conceptual frameworks. 
Antiobjects, an example of such a framework, clash with 
traditional notions of object-oriented design in the sense that 
object-orient design does not help with the understanding or use 
of these new computational frameworks.  
Today, thanks to the rapid advance of hardware, these frameworks 
can be implemented on more traditional sequential architectures. 
Ultimately, CPU cycles will always become cheaper than 
cognitive cycles. Just a couple of years ago Collaborative 
Diffusion would not have been computationally feasible to build 
consumer oriented games capable of running on desktop 
computers. Now that a $400 PlayStation 3 roughly has the 
floating-point power of 1000 Connection Machines we can allow 
ourselves to reconceptualize computation. 

3. BASIC DIFFUSION  
Collaborative Diffusion is a versatile collaboration and 
competition framework for building multi-agent games based on 
antiobjects. Agents such as the ones used in AgentSheets [23] live 
in a space (2D or 3D). Typically, the space is organized as a grid 
similar to a spreadsheet. The grid contains agents representing 
game characters, e.g., soccer players, but also the environment 
containing these characters, e.g., the soccer playfield. Agents may 
be stationary or mobile. To collaborate and compete with each 
other, character agents, as well as environment agents, jointly 
engage in one or more diffusion processes.  
Game design patterns [2] help to conceptualize agent behaviors 
for typical game applications. Common to many games is the 
notion of pursuit and evasion. In Pacman ghost are pursuing 
Pacman, in the Sims, Sims characters are pursuing other sims, 
sources of food, entertainment, and so on. Agents participating in 
pursuit can be categorized into the following roles: 
1) Goal Agents: Goal agents are pursued by other agents. Goal 

agents may be static or mobile. For instance, a refrigerator is 
a static goal, typically located in a kitchen, pursued by an 
agent representing a hungry person in a “The Sims”-like 
game [32]. A soccer ball, in contrast, is a mobile goal 
attracting soccer players. 

2)  Pursuer Agents: One or more pursuer agents may be 
interested in certain goal agents. Multiple pursuer agents 
sharing interest in the same goal may collaborate or compete 
with each other. If there are multiple types of goals, such as 
food, and entertainment, then the pursuer agent includes a 
goal selection mechanism determining the priorities of goals 
being pursued. 

3)  Path Environment Agents: A path environment agent 
enables a pursuer agent to move towards a goal agent. In a 
household simulation a path environment agent may 
represent a kitchen tile, or a piece of carpet. A path 
environment is an active agent participating computationally 
in the diffusion process that is helping pursuer agents to 
locate goal agents. 

4)  Obstacle Environment Agents: Like path environment 
agents, obstacle environment agents are part of an 
environment but they deter pursuer agents from reaching 
their goals. Walls, closed doors, fires, fences, and rivers can 
all interfere with the pursuer’s attempt to reach a goal. 
Interference can be at different levels. A wall may 



 

permanently prevent a pursuer from reaching its goal while a 
piece of furniture in the middle of a room may just pose a 
simple delay caused by the need to navigate around the 
furniture.  

This categorization scheme can be applied to nearly all arcade 
style games ranging from early classics such as Space Invaders, 
and Pacman to modern titles such as Halo 2 and Doom III. 
Although the agent categorization scheme is mostly relevant to 
games the Collaborative Diffusion framework can be applied to a 
much wider domain of applications.  

3.1 Single Diffusion 
A game is built by defining the four kinds of agents described 
above and arranging instances of them in a grid-structured 
worksheet. The worksheet shown in Figure 4 contains a matrix 
consisting of 9 rows x 9 columns of floor tiles serving as 
environment path agents. All examples, including the diffusion 
visualizations shown here are built in AgentSheets [23].  
A single Pacman will be the single goal agent located in the center 
of the worksheet. The Pacman is a user-controlled agent pursued 
by all the autonomous ghost agents. 

 
Figure 4. Worksheet with 9 x 9 floor tile agents and one 

Pacman agent in the center. The Pacman “scent” is diffused 
by the tile agents. The diffused value is shown as logarithmic 

plot over the worksheet area. 
Diffusion is a gradual process in which physical and conceptual 
matter, such as molecules, heat, light, gas, sound, and ideas are 
spread over an N-dimensional physical or conceptual space over 
time. Alan Turing was one of the first researchers to note the 
broad impact of diffusion processes onto chemical and biological 
phenomena and became the first serious user of an electronic 
computer in order to model these diffusion processes [30]. He was 
interested in mathematically capturing reaction-diffusion systems 
and defined diffusion to occur when “each [chemical agent] 
moves from regions of greater to regions of less concentration.” 
Agent-based diffusion has been used in a number of applications 
including image feature extraction [14] and more recently 
distributed optimization [29]. Collaborative Diffusion does not 
diffuse discrete objects, i.e., agents, but uses agents to diffuse, 
track and modulate continuous diffusion values.  
Diffusion values are used to spread the “scent” of the Pacman 
goal agent in the worksheet. The Pacman agent is given an 
attribute called p short for Pacman scent with an arbitrary but 

constant value. This value represents the desirability of a goal. 
High desirability is captured with a large value (e.g., 1000). 
Desirability may also assume negative values. Pursuer agents will 
actively avoid goals with negative desirability. This attribute will 
be diffused through the floor tile agents using a discrete version of 
the well-known general diffusion equation [8]:  

Equation 1: Diffusion Equation 
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where:  
n  = number of neighboring agents used as input for 

the diffusion equation 
u0,t  = diffusion value of center agent 
ui,t  = diffusion value of neighbor agent (i > 0) 
D  = diffusion coefficient [0..0.5] 

The diffusion coefficient controls the speed of diffusion. A larger 
value will result in quick diffusion. In material science each 
material has a specific heat diffusion coefficient. Silver, for 
instance, has a much larger heat diffusion coefficient than a 
thermal insulator such as wood. Consequently Silver will spread 
heat much more rapidly than wood. 
In a two-dimensional application the input is limited to the four 
immediate neighbors defined by the von Neumann neighborhood 
[28]. The Environment Path agents consisting of all the floor tiles 
will now each compute the diffused values of Pacman scent p. 
Figure 1 shows a logarithmic 3D plot of the p values over the area 
of the entire worksheet. The peek in the middle correlates with the 
position of the Pacman and has a value of 1000. 
In the two-dimensional case, and with von Neumann 
neighborhood, a diffusion coefficient value of 0.25 represents a 
special case that further simplifies the diffusion equation. For 
D=0.25 a new diffusion value u will simply become the average 
value of its neighbors without even the need to refer to its own 
previous value. This is useful for quick spreadsheet-based 
experimentation. 
Using a simple hill-climbing [7] approach, the pursuer agents 
track down the Pacman. Each pursuer agent compares the 
diffusion values of its four von Neumann neighbors and moves to 
the neighbor cell with the largest value.  
So far this approach would not provide a significant advantage to 
more traditional tracking approaches. For instance, a pursuer 
agent could have determined the location of the most promising 
neighbor by computing the Euclidian distance from each of the 
neighbors to the goal and then selecting the neighbor with the 
smallest distance. However, in the presence of walls and other 
kinds of environment obstacle agents these simplistic Game AI 
approaches fail quickly. Figure 5, shows a complete playable 
version of a Pacman game. 
Through the diffusion of the Pacman scent the ghost will find the 
correct solution. The important part is to understand how 
environment obstacles agents interact with the diffusion values. 
The walls, which are also represented by agents, will not diffuse 
the Pacman scent. Consequently, they will clamp down diffusion 
values. This clamping results in complex diffusion landscapes 
that, again, can be plotted in 3D (Figure 5). Conceptually these 
landscapes overlap with Axelrod’s Landscape theory [1] but are 
better suited for dynamic schemes that include mobile agents. As 
the Pacman and the ghosts are moving around in this world, the 
landscape is continuously changing. But no matter where they are, 
the ghost will be able to track down the Pacman, as long as there 
is a path for a ghost to reach the Pacman. 



 

The same approach works for tracking multiple goals. If multiple 
goal agents have the same value then the pursuers agent will track 
the closest goal agent. Goal agents may have different values 
representing desirability of the goal. For instance, if really good 
deli food is represented with a high “food” value, whereas some 
old sandwich is represented with a significantly lower “food” 
value then a pursuer agent is likely to pursue the more attractive 
source of food even if it is located further away. The desirability 
can also be a dynamic function. If, for instance, a pursuer agent 
reaches food, it may eat some or all of the food resulting in a 
decrease of the food’s desirability. 
Collaborative Diffusion shifts a great deal of the computational 
intelligence into the environment. Although, to the observer, the 
ghosts appear to be the intelligent entities because they can track 
the Pacman incredibly efficiently, in reality, most of the 
intelligence is in the environment. The environment becomes a 
computational reflection of the game topology, including the 
player location and their states.  
Today low-end desktop computers are sufficiently powerful to 
compute diffusion of moderately sized worksheets. The Pacman 
implementation had to be dramatically slowed down to make it 
playable by a human. Without slowing it down, the ghosts will 
instantly track the Pacman leaving a human player no chance. All 
the examples shown in this paper run in real time. This includes 
the sub-symbolic, symbolic processing, agent animation, and the 
visualization of the 3D diffusion surface plots. All the Figures in 
this paper are unedited screen dumps showing running games with 
real-time 3D visualization enabled. 

 
Figure 5. Collaborative Pacman Game. The user controlled 
Pacman is in the upper left corner. The Pacman “scent” is 

diffused over the entire worksheet. Diffusion values are 
plotted logarithmically. The plot is intersected by the 

worksheet. Walls are obstacle agents with a zero diffusion 
value.  

3.2 Collaboration by Goal Obfuscation 
Even the simple version of diffusion introduced so far, not 
including any explicit notion of collaboration, can lead to 
emergence [10]. The Pacman game serves as an example of an 
emerging collaboration called Collaboration by Goal 
Obfuscation.  
Ghosts tracking down a Pacman can collaborate with each other 
by interacting with their environment. Consider the case where 
two ghosts are tracking a single Pacman that tries to hide in a 
corner of a maze (Figure 6 left). The two – or more – ghosts will 
always split up making it impossible for the Pacman to escape. 
The first ghost will select the shortest path, which is usually a 

good approximation of a human walking path [4]. No matter 
which path the first ghost takes the second one will select the 
other path (Figure 6 right). Through the environment the first 
ghost collaborates with the second one essentially 
communicating: “I will take care of this path, you take care of the 
other one.” 
Just how do the two ghost collaborate with each other? In contrast 
to spreadsheets where each cell only contains one value, an 
AgentSheets cell contains a stack of agents, e.g., a ghost agent on 
top of a pill agent on top of a floor tile agent. An agent evaluating 
a diffusion equation referring to a diffusion value of one of its 
neighboring cells will “see” the value of the agent on top of that 
stack. If that agent does not have a matching attribute it will return 
0. Consequently, if a ghost agent does not compute its own 
Pacman diffusion value it will contribute a zero value to Pacman 
diffusions surrounding it. In narrow, single cell, corridors such as 
the ones found in Figure 3 the Pacman scent is blocked as it 
cannot flow around the ghost. This results in optimal collaboration 
cornering the Pacman as efficiently as possible. 

     
Figure 6. Two ghosts collaborate. They enter the maze (left), 

and split up to slay the Pacman (right). 
This collaboration scheme is an emergent one in the sense that 
there is no code explicitly responsible to orchestrate a group of 
pursuing agents. There is no notion of collaboration neither at the 
sub-symbolic diffusion level nor at the symbolic goal selection 
level. Somewhat astoundingly, the same scheme generalizes to 
more complex cases such as the one described below (Figure 4). 
Five pursuers attack a single goal. Again without the use of 
centralized scheme the ghosts manage to spread out perfectly 
sending each pursuer into a unique path leaving the Pacman no 
chance (Figure 7 right). This behavior is optimal because it tracks 
the Pacman as efficiently as possible. If even just two ghost agents 
would follow each other in the same path they would leave the 
Pacman a path to escape.  

     
Figure 7. Five ghosts collaborate. They start grouped up (left), 
and distribute into all five paths (right) leaving the Pacman no 

route to escape. 
Depending on the starting conditions, it is possible that initially 
two pursuing agents will end up in the same path because the only 
path left over may be far away, making a nearby but already 
handled path relatively attractive. But even in this case the 
redundant pursuer agent will recognize its mistake quickly, turn 
around and move to a path not yet featuring a pursuer agent. 
Traditional AI search approaches such as A*, including 
incremental extensions such as LPA* [12], would have been 
efficient in a sequential scenario where only one pursuer gets sent 
at a time. In the parallel scenario each pursuer agent would have 
to restart its path finding search after each step. This parallelism is 
likely to impair the plan of each pursuer agent. Additionally the 



 

goal agent may be moving as well. The net effect is that 
incremental heuristic searches such as LPA* are likely to loose 
most of their incrementalism when attempting to deal with 
collaboration. To make things worse, the computational cost 
becomes proportional to the number of pursuer agents. 
Collaborative Diffusion, in contrast, remains incremental and has 
constant computational cost.  

4. COLLABORATIVE DIFFUSION 
Up to this point I have shown how multiple pursuers can track 
down one or more goals by using sophisticated path finding and 
simple collaboration. How can one add more explicit 
collaboration and competition control mechanisms to diffusion 
and deal with more complex goal structures? Soccer is a game 
that includes additional challenges pushing the idea of 
Collaborative Diffusion to the next level. 

In its simplest incarnation one can define a soccer game as a 
simulation of two teams with a certain number of players in each 
team. This particular implementation of this game was developed 
for the 2002 World Cup Soccer championship and demonstrated 
in Tokyo. Our soccer players have a two level goal structure. 
Initially, if they are away from the ball then they will try to track 
down the ball. Players from both teams track the same ball. Once 
they reach that goal they will have opposing objectives regarding 
where to kick the ball. 

Figure 5 below shows a complete soccer game simulation with 
eleven players in each team. The red team is playing from left to 
right, and the blue team is playing from right to left. The ball, the 
left, and the right goals, are the Goal Agents. The red and blue 
team agents are the Pursuer Agents tracking the ball and the goals.  

 
Figure 8. Soccer simulation of Germany versus Brazil. 

The playground is covered with about 500 playground agents 
serving as Environment Path Agents. Playground agents diffuse 
three different diffusion values (ball, left goal, and right goal) 
using equation 1. In order to express collaboration and 
competition the player agents will also diffuse these values but 
will modulate the surfaces using the Collaborative Diffusion 
equation 2.  

Equation 2: Collaborative Diffusion  
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λ > 1: collaboration 
λ < 1: competition  
n  = number of neighboring agents used as input 

for the diffusion equation 
u0,t = diffusion value of center agent 
ui,t  = diffusion value of neighbor agent (i > 0) 
D  = diffusion coefficient [0..0.5] 

When diffusing the Left Goal value, the blue agents use a λ > 1 to 
express collaboration, and the red agents use λ < 1 to express 
competition. Collaboration and competition manifest themselves 
as positive and negative dents on the Left Goal diffusion surface 
(Figure 6). 

 
Figure 9. Left Goal diffusion. The peak of the diffusion 

correlates to the position of the left goal. The dents in the 
diffusion surface correspond to collaborating and competing 

players modulating the surface. 

Symmetrically, when diffusing the Right Goal value the blue 
agents use a λ < 1 to express competition, and the red agents use λ 
> 1 to express collaboration. For an agent A to collaborate with an 
agent B with respect to a goal G means that B will have a positive 
effect on the diffusion surface representing G at the location of B. 
If A and B are soccer players from the same team, and A is in the 
possession of the ball, but B is in a better position to kick the ball 
towards the goal then A is collaborating with B by deciding to 
pass B the ball instead of trying to kick it toward the goal itself.  
The degree of collaboration and competition is controlled via λ. λ 
values (table 1) close to 1 denote small collaboration and 
competition versus λ values that are significantly larger or smaller 
than 1 represent a more pronounced collaboration and 
competition.  
A λ value of 1 denotes the lack of collaboration or, in other 
words, total autonomy. Large λ values yield exaggerated 
collaboration manifesting itself, for instance, in players sending 
each other passes when they should have attempted to just kick 
directly toward the goal. Analogously, very small λ values result 
in extreme competition.  



 

The ability to control agent interaction through λ anywhere 
between extreme competition, competition, autonomy, 
collaboration, and extreme collaboration (Table 1) makes λ an 
important parameter of the sub-symbolic computational 
intelligence. At the symbolic level rules can be used to modify λ 
in real time. This is useful to implement dynamic collaboration 
schemes where the degree and quality of collaborations may 
change over time. 

Table 1. Agent Interaction 
λ Agent Interaction 

>> 1  Extreme Collaboration 
> 1 Collaboration 

= 1 Autonomy 

< 1 Competition 
<< 1 Extreme Competition 

The values used for λ in the soccer simulation shown here are 
1.08 for collaboration and 0.8 for competition. These values often 
need to be determined empirically. Through the end-user 
programming interface, developers can control λ values at the 
level of an entire simulation, agent classes, or individual agents in 
order to simulate different kinds of players. 

 
Figure 10. Ball diffusion. Peak indicates the location of the 

ball. 
Player agents do not diffuse the ball value. This results in effects 
similar to the Collaboration by Goal Obfuscation presented 
previously in the Pacman example. The consequential ball 
diffusion surface becomes very complex (Figure 10). If the player 
agents would also diffuse the ball value then the ball would 
immediately attract all the players resulting in one large cluster 
including all the players. 

Goal Selection 
To adapt to different situations, sub-symbolic diffusion processes 
need to be controlled via a goal selection mechanism. This is an 
opportunity for end-user programming allowing users to create 
rules determining when and how agents select goals. A soccer 
player agent that is not next to the ball will initially pursue the ball 
as goal. Because of the Collaboration by Goal Obfuscation effect, 
the urge to track the ball will decrease if the ball is already 
surrounded by a large number of players. As a result of that, after 
a while some of the players will spread out on the play field. 
Some will stay behind in defending positions while others move 
beyond the ball in an attacking posture ready to receive passes 
from their fellow players (Figure 8). 
Once a player reaches the ball, a new goal is selected. The new 
goal is to kick the ball, in accordance to the corresponding goal 
diffusion function, towards the opponent’s goal. The 
Collaborative Diffusion again shifts the intelligence into the 
environmental computation consisting of the Left Goal, Ball, and 

Right Goal diffusions. Goal selection becomes simple. All the 
player has to do is to make the ball hill climb, one step, towards 
the opponent’s goal. 
More generally a goal selection can be implemented using 
different approaches ranging from simple computational models 
such as state machines, goal stacks and goal queues to more 
complex neurologically inspired approaches such as Subsumption 
architectures [15] or psychological approaches such as Maslow’s 
hierarchy of needs [16]. Furthermore, goal selection can be done 
fully autonomously, user controlled or in a mixed user + system 
mode. An example of a mixed mode goal selection mechanism 
can be found in The Sims [32] where users select from actions 
(e.g., go and eat something) that are put into a goal queue but at 
the same time the system may add important actions based on the 
current state of a Sim. 

Scenarios 
The ensuing game simulation is highly complex because every 
player from each team influences the decision of every other 
player. In other worlds, through the Collaborative Diffusion all 
the players communicate with each other through the 
environment. The consequences of this collaboration/competition 
scheme are best illustrated through simplified scenarios. Scenarios 
are created by manually moving players and the ball into specific 
situations in “AI debugging” mode. In debugging mode players 
will not move around nor actually kick the ball. Instead, the scene 
will be visually annotated with information indicating the 
intentions of players. For instance, the visualization will show a 
little arrow pointing in the direction in which a player would have 
kicked a ball. Without this tool it can become extremely difficult 
to track agent interactions especially when running the game in 
real-time.  
Passing: The red player possessing the ball (Figure 11) is getting 
close to the blue goal with only one defending blue player. The 
little red arrow indicates the intended ball kick direction. The 
player is not kicking the ball straight to the goal but instead is 
sending it as a pass to a second player closer to the goal from the 
red team.  

 
Figure 11. Collaborate by passing ball. 

Sending such a pass is emerging behavior that was not 
programmed in any way. The system has no rules for sending a 
ball from one player to another. The passing behavior emerges 
from the collaboration/competition modulation. Sending the ball 
to a second player that is not covered by a player from the 



 

opposite team is a good idea despite the fact that the total distance 
the ball has to travel is longer than a straight shot. 
Path of less opponent coverage: Three red players attack blue 
goal (Figure 12), which is defended by three blue players. The 
kicking red player sends a pass to the lower red player, which is 
only covered by one blue player. 

 
Figure 12. Player passes ball to less covered player. 

Straight shot: With one more blue player making the situation 
symmetrical (Figure 13), both other red players are covered by 
two blue players each. The kicking red player decides to attempt a 
straight shoot towards to goal instead of sending a pass to either of 
his colleagues because both of them are covered well. 

 
Figure 13. Players from same team are well covered. Player 

kicks ball straight towards goal. 

5. DISCUSSION 
This section describes the main characteristics of Collaborative 
Diffusion and discusses extensions and experiences. 
Robust. One of the main goals of this research is to create a 
robust AI framework for developing real-time multi-agent game 
applications. The collaboration aspect of the framework should be 
robust in the sense that it should be independent of the context in 
which it is used and should work with a highly variable number of 
agents. Higher-level intelligence, including collaboration, should 
emerge from the interaction of simple agents. This degree of 
robustness is unlikely to result from symbolic-only AI 
approaches. This robustness can be achieved through a hybrid 

architecture fusing sub-symbolic with symbolic AI approaches. At 
the sub-symbolic level, diffusion processes are employed to 
compute complex collaboration goal functions. At the symbolic 
level, a rule-based language, called Visual AgenTalk [23], is used 
to control these diffusion processes. Game developers will be able 
to benefit from end-user programming [5, 11, 13, 17, 19, 23] and 
end-user development [20] to control the behavior of rule-based 
agents. End-user programming allows developers to easily define 
agent goal selection and to adjust sub-symbolic collaboration and 
competition parameters. Finally, a robust framework aimed at 
end-user developers requires the integration of specialized 
debugging tools capable of illustrating the complex interaction 
emerging from collaborative multi-agent applications. An initial 
step in this direction is the integration of real-time 3D 
visualizations in the diffusion process. 
It has been somewhat surprising to see the robustness resulting 
from the combination of symbolic AI and sub-symbolic AI in 
Collaborative Diffusion. The soccer game got exposed to a 
number of elementary and middle school kids in the USA and 
Japan. Many of these kids created outrageous configurations of 
soccer games. Some tried extreme team size ratios (e.g., two 
against fifty); others explored the behavior of players when given 
multiple balls. In some cases there were more balls than players. 
Others eliminated goals temporarily, moved the goals to 
unconventional positions or even added multiple goals. In all of 
these situations the players kept “happily” playing by engaging in 
what at least appeared reasonable strategies to deal with 
unanticipated game modifications. 
Environmental. Traditionally, Artificial Intelligence projects 
computational “intelligence” into the components of a simulation 
that most people would perceive to be intelligent. In the case of 
the soccer game the AI would be presumed to reside inside the 
agents representing soccer players. Collaborative Diffusion, in 
sharp contrast, projects most of the computational intelligence 
onto the environment. In the case of the soccer game that would 
be the soccer field. In the spirit of antiobjects, Collaborative 
Diffusion swaps the computational roles of active foregrounds and 
passive backgrounds. For instance to simulate flocking birds [9, 
26, 27], traditional AI puts the birds into the foreground by 
projecting computational intelligence into agents modeling the 
behavior of birds. Collaborative Diffusion puts what is 
traditionally considered the background, e.g. the environment 
containing the birds, into the computational foreground. Simon’s 
notion of embedding artifice in nature [26] is highly related. He 
employs the parable of an ant to explain the psychology of 
thinking: “An ant, viewed as a behavior system, is quite simple. 
The apparent complexity of its behavior over time is largely a 
reflection of the complexity of the environment in which it finds 
itself.” Antiobjects in Collaborative Diffusion go one step further 
by not only shifting the perception of intelligence from the agent 
to its environment but also by shifting the computational 
intelligence itself from the agent to its environment. The artifice, 
to use Simon’s term, now becomes a fully computational entity 
itself. An intrinsic limitation of this framework is that it applies 
only to the world of the artificial where computation is at the 
discretion of the developer and can be put anywhere. There is no 
equivalent in the real world. Soccer fields and the air surrounding 
birds do not participate in any kind of computation accessible to 
us. For instance, Collaborative Diffusion is not directly relevant to 
robotics because in robotics there is no other way than putting all 
the computational intelligence inside the robots.  
Parallel. In contrast to the typical kinds of problem solving 
approaches discussed in symbolic Artificial Intelligence for games 
such as checkers and chess, Collaborative Diffusion is concerned 
with the parallel execution of autonomous agents. Approaches 
such as game trees and minimax procedures make a number of 



 

fundamental assumptions including: two-person game, turn 
taking, and perfect information [7]. There is no turn taking in a 
game like soccer. Also, all the players are acting – to a degree – 
autonomously and in parallel. The information is not perfect 
because, for instance, balls kicked may not end up where they 
were supposed to go. 
Increasingly, as CPUs can only live up to Moore’s Law buy using 
multi-core chips [21], we need better ways to map computation 
onto parallel architectures. Traditional, for instance thread-based, 
parallelism has only a limited capability to optimally benefit from 
parallel architectures because distributed computation is often 
offset by the need to deal with additional communication and 
synchronization challenges. Collaborative Diffusion is not only 
suitable for parallel AI problems but its computational nature also 
lends itself to simple parallel implementations. There is no need 
for a 64 thousand CPU Connection Machine with a 12 
dimensional hypercube bus. Most Collaborative Diffusion game 
applications will only need two or three dimensional diffusion 
arrays. Segmenting the diffusion space and distributing it onto 
multiple CPUs achieves efficient data parallelism. This will result 
in near linear acceleration on multi-CPU or multi-core desktop 
computers.  
Acceleration through parallelism is most pronounced on next 
generation game consoles combining multi CPU and multi core 
options. For even larger hardware acceleration the diffusion 
process can be executed on programmable Graphical Processing 
Units (GPU), which are common on modern desktop computers. 
Harris et al. [8] report a speedup of nearly 25 (CPU Pentium 4, 
GPU GeForce 4) for running very large diffusion processes with 
one million data points on graphics hardware. These are strong 
indicators that Collaborative Diffusion is computationally 
scalable. Even on a single CPU and without hardware acceleration 
it can be used to implement sophisticated collaborations based on 
a few hundreds or thousands of agents. The kind of acceleration 
possible on next generation game consoles allows Collaborative 
Diffusion with millions of agents were each agent could 
participate, simultaneously, in a large number of diffusion layers.  
Incremental. The computation used in searching strategies is not 
well suited for frame-based, real-time games [18]. Most search-
based strategies will, at each turn in the game, re-process the 
entire state of the game, that is, the positions of all the chess 
pieces, and compute a set of separate data structures such as 
and/or graphs consisting of extrapolated variants of the current 
game state. These graphs are searched and pruned using 
evaluation functions and pruning heuristics to cope with the 
complexity of analysis. However, and this is what makes these 
approaches non-incremental, all the computation states get 
completely discharged after each turn. At each turn the game 
board is treated like a completely new game board despite the fact 
that in most games – including chess – game boards only evolve 
incrementally from one move to another. In the Collaborative 
Diffusion framework the agents representing the game players and 
the environment will retain the game information and will 
compute game evaluation functions incrementally. In a frame-
based game environment this means that the current computation 
will benefit from all the computation preceding it. The net effect 
is that less computation will be necessary for each frame allowing 
complete collaboration and competition AI to be computed in real 
time. Incremental AI approaches are beginning to gain interest. 
Koenig et al. [12] advocate the use of incremental heuristic search 
approaches for route planning in traffic and game applications. In 
contrast to Collaborative Diffusion incremental heuristic searches 
such as Lifelong Planning A* do not scale well to multi agent 
scenarios and do not include notions of collaboration and 
competition.  

Lessons learned from Teaching 
Collaborative Diffusion has been created at AgentSheets Inc. and 
been used in teaching at the University of Colorado, Computer 
Science Department, in several courses including Artificial 
Intelligence, Object-Oriented Design, and Gamelet Design for 
Education.  
When learning to make AI-based games students generally did not 
have problems at a conceptual level after overcoming the initial 
transition from objects to antiobjects. That is, most students 
quickly grasped the idea of diffusion and its application to AI. 
Showing the real-time 3D diffusion visualization in class turned 
out to be rather important. It was especially important to convey 
the ideas of value distribution resulting from different topologies 
including complex mazes. Additionally, seeing the dynamic 
aspect of diffusion also helped. For instance, the use of different 
diffusion coefficients becomes highly apparent when visualized in 
real-time while observing moving targets. With small coefficients 
the resulting shape change are reminiscent of high viscosity oil 
whereas with large coefficients the shape change will be nearly 
instant. Coefficients approaching the critical value of 0.5 will also 
become apparent as numerical instabilities will manifest 
themselves as highly dynamic noise. Not all versions of 
AgentSheets included 3D real-time plotting capability. It became 
clear that students using a software version of AgentSheets not 
including 3D real-time plotting were much more likely to either 
get stuck due to even small errors in their diffusion equations or 
more likely to produce simple games that were only trivial 
extensions of the examples given to them. All this can be 
interpreted as early evidence that the real-time visualization is an 
important aspect of the AI development process. Originally, we 
assumed that the use of real-time 3D visualization would only be 
important for us, the framework developers, but our experiences 
with students indicate that game developers gain perhaps even 
larger benefits from using real-time 3D visualization to “debug” 
their AI applications. 
One of the largest teaching challenges for Collaborative Diffusion 
was the transition from objects to antiobjects itself. Few computer 
science students had a concrete sense of what diffusion is. Even 
fewer students had any kind of previous exposure to 
computational interpretations of diffusion. Nonetheless, by using 
relevant examples diffusion is quickly explained. Using an end-
user programmable application such as a spreadsheet or 
AgentSheets helps to illustrate the computational aspects of 
diffusion. Equations 1 and 2 presented in this paper are non-
intimidating to computer science students especially when viewed 
as spreadsheet formula expression. More challenging, by far, was 
the notion of environmental computation. The idea that the 
computational intelligence is put into the environment, e.g., the 
soccer field between the soccer players or the air between the 
flocking birds, is non-intuitive. Student’s previous exposure to AI 
concepts neither helped nor hindered their initial comprehension 
of antiobjects or Collaborative Diffusion. However, students with 
AI background could quicker relate to the affordances of 
Collaborative Diffusion because they appreciated the unwieldy 
complexity that would have likely resulted from using more 
traditional AI approaches such as rule-based AI to implement 
collaborative behaviors.  
We were surprised by the variety and depth of some of the student 
developed games. Although many students created relatively 
minimal games that, by in large, were permutations of Pacman-
like games, others created sophisticated games. A number of 
students built functionally complete, but artistically simple, Sims 
games including complex house layouts and diffusion layers such 
as hunger, entertainment, hygiene and relaxation. 



 

Early user experiments were conducted at a middle school to 
establish the boundary conditions of usability. Would it be 
possible to convey the notion of diffusion to 12 year old middle 
school students allowing them to make their own games based on 
diffusion? To teach diffusion it was necessary to have one-on-one 
tutoring sessions that took about 20 minutes each. Compared to 
the computer science undergraduate and graduate students the 
middle school students’ comprehension of diffusion was much 
more shallow. In cookbook style fashion they had quickly learned 
how to setup agents with diffusion equations so that they could 
build AI-based games. Nonetheless, the students not only picked 
up diffusion but also built some of the most creative games. 

6. CONCLUSIONS 
Object-oriented design can be deceiving by luring us into 
computational ideas that are too much inspired by our own 
experiences in the physical world. Based on these experiences we 
make decisions regarding in which objects computation should 
reside. In applications such as Artificial Intelligence this can be 
particularly detrimental as it may result in solutions that are 
inefficient or, worse, may not work at all. Antiobjects seemingly 
defy current expectations of what objects are supposed to do. 
They challenge our intuition regarding where computation should 
be. When implemented as antiobjects, object that we assumed to 
be complex turn out to be simple and have little computation. 
Objects we assumed to be passive, such as non-functional 
background objects, turn out to host most of the computation.  
In this paper we have shown an example application of antiobjects 
called Collaborative Diffusion. Collaborative Diffusion is a 
versatile collaboration and competition framework for building 
multi-agent games. Antiobjects are not only a way to think 
differently about computation but, as illustrated in the case of 
Collaborative Diffusion, they can make applications more 
effective, incremental and robust.  
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