
Collaborative Use & Design of Interactive Simulations

Alexander Repenning, Andri Ioannidou, Jonathan Phillips

University of Colorado, Center for LifeLong Learning & Design

Abstract: Interactive simulations hold great potential as a communication vehicle capable of improving the
usefulness of technology in education. While some benefit can be gained by simply using pre-built
simulations, learners benefit most from designing all or at least some aspects of their own simulations. The
challenge is to enable this design-as-learning activity without turning students into programmers. A
component-based approach cannot only simplify the design of interactive simulations but at the same time
serves as collaboration-enabling technology connecting students, teachers, publishers, and researchers. A
general framework called the Use & Design Spectrum is introduced to conceptualize collaboration issues of
simulation use and design. The AgentSheets simulation-authoring tool is used to provide specific examples
of collaborations.

Keywords: agents & intelligent systems, end-user programming, interactive simulations, use vs. design,
collaboration, multimedia

Introduction

The notion of interactive simulations is quickly gaining importance as a means to explore, comprehend and communicate
complex ideas [Turkle 1995]. What makes a bridge collapse, how does a virus spread, why is the sky blue, what is the
foundation of a stable Ecosystems? These are just some examples out of an infinite universe of questions that can be explored
with simulations. Similar to video technology, learners can observe complex dynamic processes unfold over time but in
contrast to video technology, learners can more actively interact with simulations and play hands-on "what if" games. The
crucial combination of affordable computer hardware, high-resolution graphics, and Internet connectivity creates a rich
environment, in which people can run, share and build interactive simulations. Simulations can also be featured as Java
applets that can be accessed remotely through Web browsers or can be featured as JavaBean components that can be freely
combined with other educational components into rich learning activities.

Interactive simulations are gaining momentum in education. A recent and highly publicized ETS study [Wenglinsky 1998]
concluded that drill-and-practice technology has turned out to be largely ineffective, and that simulation technology based on
constructivist learning principles [Yager 1995] provides measurable learning advantages. In a report [Shaw 1997] on
educational technology to the President of the USA, a committee of science advisors presented the most promising
constructivist applications of technology, with simulations on top of the list. The time is ripe to not only intensify research but
also to create effective simulation-authoring tools and most importantly to design usable simulation content.

Who designs educational simulations and how are they used? Should students, teachers, publishers or researchers build
simulations? From an educational perspective there is a high potential for learning if students design their own simulations.
This actively engages learner in the process of model building and active inquiry. Unfortunately, designing simulations and
implementing them with traditional programming languages is a hard task [Rader, Brand, & Lewis 1997]. In the past we have
explored the use of new end-user programming paradigms such as Graphical Rewrite Rules [Repenning 1994; Repenning
1995; Smith 1996; Smith, Cypher, & Spohrer 1994], analogies [Craig 1997; Perrone & Repenning 1998] and Tactile
Programming [Repenning & Ambach 1996] to significantly lower the threshold of programming. While end-user
programming is a highly effective means to build tailored simulations, there is a need for a more general framework to use
and design simulations.

This paper briefly presents the AgentSheets simulation-authoring tool, introduces the Use <=> Design Spectrum framework
and provides elaborate discussions of technology-enhanced collaboration in education in the context of concrete cases.

AgentSheets: A Simulation Component Authoring Tool

Combining Java authoring, end-user programmable agents and spreadsheet technology, AgentSheets [Repenning & Sumner
1995; Repenning, 1998] (http://www.agentsheets.com) is an authoring tool that empowers casual computer users with no
formal programming training to build and publish Web-based interactive simulation components. It enables users to create
such simulation components, using its end-user programming language Visual AgenTalk (VAT). Users design agents' looks
by drawing icons and create agents' behaviors by composing VAT conditions and actions from command palettes into rules.
The palettes for conditions and actions include a wide variety of elements. For example, VAT provides conditions that check
the appearance of agents and test the values of an agent's variables, and actions that set these variables to formulae, make
sounds, change the appearance of neighboring agents, destroy agents, and create new agents. It employs a new approach to
end-user programming called Tactile Programming. Tactile Programming primitives and programs not only have enhanced

Tactile Programming is well suited for collaborative use since it eases composition, comprehension and sharing of behaviors
[Repenning & Ambach 1996].

A wide spectrum of users, ranging from elementary school students with no programming background to scientists have used
AgentSheets and VAT to create interactive simulations and games in a variety of disciplines, including computer science,
environmental design, fine art, robotics, music, history, and biology. In an elementary school science class, students created
ecosystem simulations to explore food webs and sustainability issues. In a high school history class, students created social
and historical simulations. Scientists working with NASA created simulations of E.coli bacteria fermenting in zero gravity.

Agent Name Descr ipt ion

Serotonin Molecule Moves in Presynaptic Nerve Terminal and is
released into Synaptic Space.

Reuptake Inhibitor Forcibly pumps Serotonin back to Presynaptic
Nerve Terminal.

Prozac Binds to Reuptake Inhibitors and blocks their
ability to reuptake Serotonin.

Serotonin Receptor Activates Intracellular Machinery when
Serotonin binds to it.

Intracellular
Machinery

Stimulates excitement and happiness.

Medicine Bottle Releases Prozac tablets into Synaptic Space.

Figure 1: Simulation running in a Web page explaining how Serotonin works in the Synapse and how Antidepressants
affect the system (left) and agent descriptions for the Serotonin Synapse Simulation (right).

Figure 1 shows an interactive simulation explaining the effects of Prozac by modeling a serotonin synapse in the brain. The
simulation was built by a psychiatrist for his patients. For this particular simulation, a suite of agents was created by
specifying their look and behavior using the Visual AgenTalk language. Figure 2 illustrates two VAT rules from the behavior
of the serotonin molecule defining animation and interaction with membranes.

Figure 2: Part of the serotonin behavior which specifies that if the serotonin looks like , it will change to , or with
15% chance if the serotonin sees a membrane to its right, it will move that way.

The Web serves as an ideal platform to harness the communicative power of interactive simulations. Entire AgentSheets
simulations can be exported as Java applets and JavaBeans, using the Ristretto™ Agent-to-Java-Byte-Code generator
[Repenning & Ioannidou 1997]. This allows simulations to be published on the Web making them accessible to a larger
community of users. Using Ristretto™, the serotonin simulation was turned into a Java applet (Figure 1) and was
included in Web pages and can be found at http://www.csn.net/~wphillip/Synapse_applet/synapse.html.

No matter how much the programming process has been simplified through the use of new end-user programming paradigms
there is a need for collaboration support. Collaboration allows people to use other people’s simulations and learn how to
design their own by using similar existing simulations. Also, collaboration enhances a dialog between designers and users,

enabling the design of domain oriented end-user programming languages [Cherry, Ioannidou, Rader, Brand, & Repenning
1999; Rader, Cherry, Brand, Repenning, & Lewis 1998] and resulting in more effective use of educational technology. To
make simulations a feasible part of education and foster some kind of simulation literacy, there is a need to employ a more
general research framework moving beyond issues of programming and computer applications. In the next section we
introduce such a framework called the Use <=> Design Spectrum.

The Use <=> Design Spectrum

The Use <=> Design Spectrum describes a conceptual space of stepping stones between designing simulations from scratch
and using existing simulations. One can think of ways to break simulations up into components allowing users to trade off
between the use and the design of simulations. These simulation components become collaboration-enabling artifacts that are
used, combined, shared, and extended by the members of an educational community including students, teachers, publishers
and researchers. Figure 2 below shows a number of points along the Use <=> Design Spectrum corresponding to research
projects and commercial applications.

Figure 2. A graphical representation of our Use <=> Design Spectrum. The upper part of the figure shows ready-to-use
simulations such as SimCity™; such simulations cannot be modified by the user—they are all "use" and no

"design." At the bottom we have sophisticated design tools such as AgentSheets; someone must use the tools to
design a simulation before it can be used. Other projects fall somewhere in between.

Level 1: Shrink-Wrapped Simulations (SimCity)

Shrink-wrapped packages such as SimCity™ are highly interactive simulations aimed primarily at entertainment, rather
than education. In spite of this, these products certainly have significant educational aspects. For example, one possible
objective of a SimCity player is to build the largest possible city by balancing taxes, crime rate, pollution and many other
factors. However, the general lack of programmability is a major limitation of SimCity and similar packages. That is, there is
no end-user design. These simulations have a single format and structure; they cannot be adapted to the needs of individual
teachers and students.

Use D e s i g n
Play the simulation game Change simulation parameters, e.g, change the tax

rate in SimCity

Level 2: Community Repositories (EOE)

Community repositories are collections of simulations and other interactive educational objects. The Educational Object
Economy (EOE) is a collection of educational Java applets. One author of this paper is a founding member of the EOE
organization (http://www.eoe.org) and was a member of the NSF-funded East-West Consortium that explored educational
authoring tools and models of collaboration between industry, academia and publishers. Educational objects in the EOE are
annotated with so-called meta information that categorizes objects in terms of subject domains, and includes information on
how to use the object.

Use at this level consists of the locating and selection of relevant educational objects. Design is very limited. EOE objects
include Java source code allowing professional programmers to re-design objects by modifying their program. However, the
adaptation of educational objects in the EOE requires the mastery of general Java programming environments; these skills are
not common among most students and teachers.

Use <=> Design levels are interconnected. Design tools associated with one level can be used to create artifacts used at some
other level. Some EOE Java applets (level 2) have been created by students using the AgentSheets simulation-authoring tool
(level 5). For instance, students at the Jiva Institute in India used AgentSheets to create simulations that they then uploaded to
the EOE to make them accessible to other people.

Level 3: Educational Components (ESCOT)

The Educational Software Components of Tomorrow (ESCOT) project can be considered a conceptual extension of the EOE
work. ESCOT explores technical mechanisms and collaboration models that let people efficiently combine components based
on Sun’s JavaBeans technology into interactive middle school math curriculum activities. In contrast, the educational objects
in the EOE were created in isolation; there was no way to combine objects into more meaningful units. ESCOT users combine
simulations built in AgentSheets or other JavaBean component generators, such as Java Geometer SketchPad, with other
components such as SimCalc graphs into rich activities (e.g., Figure 3). In the case of an AgentSheets ecosystem simulation,
students could track the number of individuals of each species in SimCalc to explore issues of ecosystem sustainability and
other concepts.

Use D e s i g n
Select relevant components based on their functionality

and interfaces
Connect the components to build complete application

in ways analogous to connecting electronic
components into a working circuit.

Existing design tools at the component level, such as Sun’s BeanBox, are crude, but more accessible than EOE programming
tools. The ESCOT project focuses on finding new ways to simplify the design process by letting students and teachers
assemble components.

Level 4: Agents (Behavior Exchange)

The Behavior Exchange allows users to exchange individual simulation agents. For instance, in a city pollution simulation,
people can exchange agents such as cars, roads, trains, and factories. Agents downloaded from the Behavior Exchange are
"glass boxes" that can be readily opened up to inspect their rules and modify their behavior. Modified agents can be uploaded
again to the Behavior Exchange. This mechanism allows a community of users to build and incrementally improve simulation
content.

Use D e s i g n
Selecting relevant agents based on their descriptions

and project context
Modify the behavior of agent, e.g., make a car stop at a

red traffic light

Modify look of agent; e.g., change color of agent

Combine set of agents into new simulation

This ability to build simulations by combining and modifying agents makes the agent level ideal for supporting scaffolding
[Guzdial 1994].

Level 5: Simulation Authoring Tools (AgentSheets)

AgentSheets is a simulation-authoring tool that allows non-specialists to build complex interactive simulations and deliver
them as Java applets and JavaBeans over the Web.

Use D e s i g n
Run simulations Build agent behavior from scratch by composing

conditions and actions into rules

Design agent looks by drawing icons

The AgentSheets development environment has been at the core of numerous projects at major research institutions around the
world. The research that led to the development of AgentSheets was mostly focused on end-user programming and exploring
new programming paradigms for non computer-specialists.

The rest of this paper exemplifies the Use <=> Design Spectrum with specific cases of using technology in education at the
levels of Educational Components, Behavior Exchange and Authoring Tools. The focus will be on component granularity,
use, design, and their role in collaboration between students, teachers, publishers and researchers.

Educational Components: Assembling Activities

Educational components explored in the Educational Software Components of Tomorrow (ESCOT) project are at level 3 in
the Use <=> Design spectrum. ESCOT builds on lessons learned from the EOE project. The EOE endeavored to create a
Web-based library of educational software objects. The EOE Web site contains over 1000 Java applets designed for
educational use. However, it is becoming clear that a library of objects is not enough to facilitate large-scale software reuse
[Udell 1994]. Components must be designed for reuse within an integration framework that maintains consistency and makes
use of standards. Without this kind of forethought, objects may be left on the mantel to gather cobwebs. The EOE project
provided many insights into developing large-scale storage and retrieval systems of educational objects. ESCOT hopes to
improve the quality of the objects stored through a shared conceptual framework employing educational standards.

The ESCOT project has been launched with the goal of facilitating the creation of technologically-enhanced educational
content. Software components offer the promise of interconnecting currently existing islands of educational technology
research. The vision of ESCOT is to design a technical framework as well as develop educational standards for ‘plug
together’ educational components. With the framework and standards in place, third-party developers may contribute
components designed for general assembly by educators and publishers. ESCOT is partnered with a subset of developers to
initially seed this library of components and co-design the framework and standards under which they can be integrated.

By providing a framework where islands of research can be integrated, ESCOT hopes to provide a testbed where educational
activities can be assembled from a suite of components ranging from geometry exploration tools, to graphing systems, to
interactive simulations. The testbed introduces a collaboration model called Integration Teams consisting of teachers and
developers jointly building interactive activities.

If independent pedagogical software entities are properly encapsulated into embeddable objects (embeddable into media such
as html), then educators can incorporate them into stand-alone activities. The Internet provides a medium in which educators,
publishers, and software developers may collaborate to assemble activities and provide feedback for developers.
Furthermore, components and finished activities may be distributed easily online. However, incorporating educational
software components into an instructionist activity does not always produce optimal learning content. Often, interaction
between components is desirable. For example, a simulation might benefit from a graph representation of its internal values.
Therefore, a collaborative environment where components can not only be embedded into instructionist wrapping, but also
wired together is needed to create the best possible educational content. Furthermore, wiring components should be accessible
to educators as well as developers.

Example: SimVirus

An example best illustrates the ESCOT collaborative framework employing educational components. The AgentSheets
simulation-authoring tool can generate ESCOT-friendly JavaBean components. This allows an AgentSheets simulation (such
as SimVirus, shown in the upper left corner of Figure 3) to connect to a SimCalc graphing utility (shown in the bottom left
corner of Figure 3) which has also been extended to integrate into the ESCOT architecture.

Figure 3: ESCOT activity featuring an AgentSheets simulation (upper left), SimCalc grapher (lower left), and an activity
description (right)

The SimVirus simulation contains people that randomly move around on the grass background. If a healthy person is next to
an infected person, with a 5% chance he will also get infected. Doctors also move around randomly in the community and
heal sick people. The rate at which the virus spreads is difficult to see from the AgentSheets simulation alone. To better
illustrate this concept, the number of infected people over time is graphed in the SimCalc component. By connecting the
AgentSheets component to the SimCalc component an educational concept, the exponential spread of a virus, is better
illustrated.

Collaboration

The rapidly growing collection of ESCOT components includes spreadsheets, databases, simulations, and geometry exhibits.
The success of ESCOT depends on its ability to foster collaboration between teachers and developers. Developers and
teachers work together to explore different integration frameworks and agree on a proposed framework, which will help
facilitate large-scale integration. ESCOT partners will originally contribute seed components to the library. However, the
growth of the component library will depend on third-party contributors. The elements of the framework which withstand the
test of large-scale use will be adopted. Since ESCOT cannot survive without maintained interest from developers, it will
accept modifications to the framework that expedite development efforts. So far, ESCOT has succeeded in generating initial
development interest.

A key element in the ESCOT vision is a new division of labor in constructing technology-enhanced educational content. In the
traditional sense, technical developers, with instructions from educators, create educational software. This places an
extraordinary burden on developers while limiting the amount educators and publishers may contribute. ESCOT hopes to fuse
educators and publishers into the development process by placing them in the driver’s seat as the final assemblers of content.
This allows technical developers to focus more specifically on technical content. Overall a more efficient, deeper level of
collaboration can be achieved where output from contributors can more easily be combined and interchanged. The result
should be more useful educational content.

By assembling ESCOT content, educators and publishers become users of educational components and designers of
educational activities. Students are users of the finished content. Supporting the Use <=> Design spectrum allows teachers to
interact with technology at their desired level of comfort. Where teacher comfort tapers off, developers may support them.

Limitations

Making software reuse work is a hard problem [Fichman & Kemere 1997]. We believe that if 90% of a component is useful
and the remaining 10% need to be changed but cannot be changed by its user, then the component is 100% unusable. In the
case of the EOE, users typically need to edit Java source to modify components. Within ESCOT, some modification is
possible though JavaBean customization interfaces. If additional changes must be made, this can be supported though
end-user programming, as is the case with AgentSheets-generated JavaBean components.

Behavior Exchange: Sharing Agents

At the educational component level, users can share entire simulations or connect simulations with relevant components.
However, large components such as simulations need to be broken up into finer sub-components to increase reuse and
adaptation. AgentSheets simulation components can be broken up into agents that can be shared and reused through the
Behavior Exchange to promote collaboration. The Behavior Exchange is at level 4 of the Use <=> Design spectrum.

The Behavior Exchange [Repenning & Ambach 1997; Repenning, Ioannidou, Rausch, & Phillips 1998] is an
AgentSheets-specific sub-component repository (http://www.agentsheets.com/behavior-exchange.html) that allows users to
collaborate by exchanging agents that have been created in AgentSheets. It is an evolving Web-based information space
(Figure 4) where users locate interesting agents and acquire the ones that seem relevant by copying them into the design
environment. Users can then proceed to use a downloaded agent to comprehend what it does, evaluate usefulness, and decide
whether to reuse it as is or modify it.

Agents acquired from the Behavior Exchange are not "black boxes" that can only be executed. Instead, they are "glass boxes"
that can be readily opened to inspect their rules and modify their behavior, as the full specification of the agents' behavior
comes along with them when they are downloaded. Modified agents can be uploaded again to the Behavior Exchange. This
mechanism allows a community of users to build and incrementally improve simulation content. The ability to build
simulations by combining and modifying agents makes the agent level ideal for supporting collaboration among users,
whether they reside in the same physical location or not, and the scaffolding of the simulation creation process.

Figure 4: The Arctic EcoWorld Agents in the Behavior Exchange.

Building Social Simulations using the Behavior Exchange

The Behavior Exchange has been used in a variety of educational settings, both for enabling collaboration among the students
in a group and for scaffolding the simulation construction process. In elementary schools, the Behavior Exchange enabled the
collaborative creation of EcoWorlds simulations [Cherry, et al. 1999]. Students worked on individual animals and through
the Behavior Exchange (Figure 4) combined them in ecosystems to explore issues such as food webs and sustainability. In
high schools, the Behavior exchange was used to collaboratively create social simulations. The latter is described in this
section.

At the New Vista High School, students used AgentSheets to create simulations as part of a Protest and Reform history class.
In this class, students have an opportunity to study protest movements throughout United States history (e.g., the Civil
Rights movement and the anti-Vietnam war movement), and to learn about theories of protest and social change. Although it
is more common to use simulation technology in math and science classes, the teacher wanted to incorporate AgentSheets in
his class to enable his students to go beyond the traditional posterboards and instead engage in an in-depth exploration of
selected topics [Ioannidou, Repenning, & Zola 1998].

Figure 5: The Montgomery Bus Boycott simulation, which combines simulation with video.

During the second iteration of using AgentSheets in this class, all the students were required to create simulations as their final
project. They had the choice, however, to create a physical simulation (a board game) or a computer simulation using
AgentSheets. The projects using computer simulation spanned a variety of topics: the Montgomery Bus Boycott (a project
about the bus boycotts resulting from Rosa Parks' refusal to give up her seat to a white person in 1955) (Figure 5), The Fling
Strike (a project about the United Autoworkers sit-down strike of Flint, Michigan in 1936), and the Ludlow Massacre (a
project about the massacre of miners in Ludlow, Colorado at the beginning of the century). Providing students access to the
Behavior Exchange gave them an in-group collaboration tool and opened up a resource pool that they could utilize to get ideas
and reuse either looks or behaviors of existing agents in their own simulations. Moreover, it scaffolded the simulation
building process and avoided some of the struggles the students of the previous year had to go through, having nothing to
base their work on.

Collaboration

Student-Student Collaboration: The Protest and Reform students used the Behavior Exchange as a means to collaborate
within their groups. When different students of the same group were working on different machines and at different times,
they used the Behavior Exchange as a means to merge the agents each of them was working on into a single group
simulation. For example, the students working on the Ludlow simulation distributed the workload to the various members of
the group. One was working on the strikers, the other on the militia and the third on the coal officials. They then merged their
work into a single simulation using the Behavior Exchange.

The Behavior Exchange enables distance education. The fact that it is Web-based affords not only collaboration within a class
of students in the same physical space, but also collaboration among students from different schools or even different
countries.

For all projects, the Behavior Exchange proved to be a useful resource for finding and reusing simulation sub-components.
Students located and selected agents, such as grass, houses, roads, cars and trains. In some cases, students used the agents
as they were and combined them with their own to create new simulations, or they customized the agents by modifying either
their look or behavior. For example, the students working on the Montgomery Bus Boycott simulation reused both the look
and behavior of car and traffic-light agents, reused the moving behavior of cars for their buses, and reused the looks of
buildings and roads. Having a base to start with, such as the example agents found in the Behavior Exchange, is a great
instrument for scaffolding the simulation building process, since building simulations from scratch is difficult. Scaffolding
[Guzdial 1994] in this context is a process enabling students to go through a smooth transition from using existing simulation
sub-components to designing their own. This is also a form of what Laurel [Laurel 1992] calls, time-displaced collaboration
between AgentSheets designers and users. AgentSheets designers upload their creations on the Behavior exchange and users
locate them and use them at different times and places.

Student-Teacher-Researcher Collaboration: Teachers know a lot about educational content, but often know very little
about technology. Technology researchers, on the other hand, know a lot about technology, but very little about the content.
In isolation, each party has a difficult time envisioning what an educationally valuable simulation activity might look like.
Complex design problems, such as creating these social simulations, require more knowledge than any single person can
possess, as the knowledge relevant to the problem is distributed [Fischer 1999]. Bur rather than viewing this "symmetry of
ignorance" [Rittel 1984] (or "asymmetry of knowledge") as an obstacle during design, it can be viewed as an opportunity for
creativity. To account for "the symmetry of ignorance", the teacher and the researchers held "design sessions" with each of
the groups to work with them in mapping the chosen topic to the capabilities of the technology. These sessions proved to be a
very important preparatory activity for the students, as they engaged in brainstorming activities to find a good mapping of
their existing knowledge of the topic to a computer simulation. The process of mapping one kind of representation (e.g.,
historical information) onto another (e.g., agent behaviors and interactions) may support student construction of knowledge
about the topic [Ioannidou, et al. 1998]. This collaborative approach to the design of components is also reflected in the
notion of Integration Teams within the context of ESCOT (please refer to section "Educational Components").

Simulation Authoring Tools: Building Simulations from Scratch

Repositories such as the Behavior Exchange can be a useful resource of reusable components. Users, however, cannot
always rely on other people for creating simulations components or sub-components (namely, agents) that are relevant or
interesting to them. Being a consumer of such components may work in certain cases and to a certain extend, but users need
to have the ability to create such artifacts from scratch by themselves. Authoring tools employing end-user programming
techniques and languages are needed for supporting the design of simulation components and sub-components.

AgentSheets is one such system that provides users with the ability to create simulation components from scratch. Moreover,
an entire AgentSheets simulation can be exported as a Java applet and/or JavaBean, using the Ristretto™
Agent-to-Java-Byte-Code generator, and be published on the Web making it accessible to a larger community of users.
AgentSheets-generated Java applets have been featured in the EOE, whereas AgentSheets-generated JavaBeans constitute one
of the interoperable components in the ESCOT project.

Building Social Simulations from Scratch

As mentioned before, AgentSheets has been used in a Protest and Reform history class to build social and historical
simulations. During the first iteration of the project [Cherry, et al. 1999; Ioannidou, et al. 1998], the two groups of students
that chose to create AgentSheets simulations as their final projects, created their simulations from scratch. Having no
predecessors in this experiment and with no social or historical AgentSheets simulations in existence, the students were left at
the extreme end of the spectrum: design. Not only did they not have any existing simulations to use as a starting point, to
draw ideas from, the Behavior Exchange was not yet in place at the time to enable the students to reuse agents behaviors or
looks.

Nevertheless, the students proceeded to create what would be the first social and historical simulations in AgentSheets. One
of the groups, which consisted of three girls initially intimidated by technology, selected the topic of the California Grape
Boycott. The students created a Web page with a boycott simulation applet built in AgentSheets, as well as historical
information on the boycott and links to related Web sites (Figure 6). The second group decided to create a simulation to
explore what happens in peaceful protest marches that turn violent and involve police confrontations.

Figure 6: The Grape Boycott project Web page includes (1) descriptions of the agents, (2) historical background and
related links, and (3) the simulation applet.

As the New Vista students developed their simulations, they also used the Java capabilities of AgentSheets to create applets
and embed them in Web pages containing historical information about the subject and links to related Web sites. These Web
pages provide a critical connection between the course content and the simulation technology — a simulation consisting of
brightly colored icons moving on a screen does not convey much meaning to its intended audience unless the creators of the
simulation situate it in an informative context. Both projects can be accessed at
http://www.cs.colorado.edu/~l3d/systems/agentsheets/New-Vista/.

Collaboration

At this level, collaboration was not technology-supported, but people-supported. Students worked in groups to develop their
simulations, while teachers and researchers served as mentors helping students break up the workload, providing them
pointers to content information, and guiding them in creating the simulation.

Student-Student Collaboration: Students created their simulations in groups. This afforded the students various types
and levels of collaboration. For example, we observed that the initially intimidated by the computer students found the task of
creating a simulation less daunting when they all worked together, sharing ideas and helping each other out with the
programming. Moreover, the dual tasks of creating the Web site and building the simulation allowed members of the group to
distribute the workload among themselves according to their individual interests. At the same time, communication among the
group members working on the different tasks needed to be maintained, for the group to produce a coherent final artifact.
Finally, collaboration allowed the group to create a more complete project than any individual could have produced alone.

Conclusions

Interactive simulations hold great potential as a communication vehicle capable of improving the usefulness of technology in
education. The challenges faced to effectively create simulation literacy in education are tremendous when just using pre-built
simulations and even more so when designing new simulations to fit school curriculum. Research needs to move from the
exploration of issues resulting from individual people using individual computer systems towards the exploration of
collaborative issues. How should students, teachers, publishers, and researchers work together to create effective teaching
material and engaging learning environments? In addition to social issues, how can technology support collaboration? This
paper has introduced a conceptual framework called the Use <=> Design Spectrum populated with a number of ongoing
research projects. Together, these projects provide a set of necessary stepping-stones between the use and the design of
interactive simulations. Users including students, teachers, publishers, and researchers can move gradually from using
pre-built simulations towards designing their own simulations by reusing increasingly fine grained components that are
collected and organized by a community of users.

Acknowledgements

The authors would like to thank John Zola, teacher at New Vista High School, and his students. The Protest and Reform
project was conducted under NSF AAT REC-9631396; ESCOT is supported by NSF grant REC 9804930; and the Behavior
Exchange is supported by NSF SBIR DMI 9761360.

References

Cherry, G., Ioannidou, A., Rader, C., Brand, C., & Repenning, A. (1999). Simulations for Lifelong Learning. In
Proceedings of National Educational Computing Conference (NECC) 1999. Atlantic City, NJ.

Craig, B. (1997). Behavior Combination Through Analogy. In Proceedings of the 1997 IEEE International Symposium on
Visual Languages, (pp. 270-273). Capri, Italy: IEEEE Computer Society.

Fichman, R. G., & Kemere, C. F. (1997). Object Technology and Reuse: Lessons from Early Adopters. IEEE Computer,
30(10, October).

Fischer, G. (1999). Symmetry of Ignorance, Social Creativity, and Meta-Design. To appear in Proceedings of Creativity and
Cognition 3 - Intersections and Collaborations: Art, Music, Technology and Science. Loughborough, UK.

Guzdial, M. (1994). Software-Realized Scaffolding to Facilitate Programming for Science Learning. Interactive Learning
Environments.

Ioannidou, A., Repenning, A., & Zola, J. (1998). Posterboards or Java Applets? In A. Bruckman, M. Guzdial, J. Kolodner,
& A. Ram (Ed.), International Conference of the Learning Sciences 1998, (pp. 152-159). Atlanta, GA: Association of the
Advancement of Computing in Education.

Laurel, B. (1992). Notes on Characters, Agents, and Narrative Play. In AAII'92: Workshop on Artificial Intelligence and
Interactive Entertainment.

Perrone, C., & Repenning, A. (1998). Graphical Rewrite Rule Analogies: Avoiding the Inherit or Copy & Paste Reuse
Dilemma. In Proceedings of the 1998 IEEE Symposium of Visual Languages, (pp. 40-46). Nova Scotia, Canada: Computer
Society.

Rader, C., Brand, C., & Lewis, C. (1997). Degrees of Comprehension: Children's Understanding of a Visual Programming
Environment. In Proceedings of the 1997 Conference of Human Factors in Computing Systems, (pp. 351-358). Atlanta, GA:
ACM Press.

Rader, C., Cherry, G., Brand, C., Repenning, A., & Lewis, C. (1998). Principles to Scaffold Mixed Textual and Iconic
End-User Programming Languages. In Proceedings of the 1998 IEEE Symposium of Visual Languages, (pp. 187-194).
Nova Scotia, Canada: Computer Society.

Repenning, A. (1994). Programming Substrates to Create Interactive Learning Environments. Journal of Interactive Learning
Environments, Special Issue on End-User Environments, 4(1), 45-74.

Repenning, A. (1995). Bending the Rules: Steps toward Semantically Enriched Graphical Rewrite Rules. In Proceedings of
the 1995 Symposium of Visual Languages, (pp. 226-233). Darmstadt, Germany: IEEE Computer Society.

Repenning, A., & Ambach, J. (1996). Tactile Programming: A Unified Manipulation Paradigm Supporting Program
Comprehension, Composition and Sharing. In Proceedings of the 1996 IEEE Symposium of Visual Languages, (pp.

102-109). Boulder, CO: Computer Society.

Repenning, A., & Ambach, J. (1997). The Agentsheets Behavior Exchange: Supporting Social Behavior Processing. In CHI
97, Conference on Human Factors in Computing Systems, Extended Abstracts, (pp. 26-27). Atlanta, Georgia: ACM Press.

Repenning, A., & Ioannidou, A. (1997). Behavior Processors: Layers between End-Users and Java Virtual Machines. In
Proceedings of the 1997 IEEE Symposium of Visual Languages, (pp. 402-409). Capri, Italy: Computer Society.

Repenning, A., Ioannidou, A., Rausch, M., & Phillips, J. (1998). Using Agents as a Currency of Exchange between
End-Users. In Proceedings of the WebNET 98 World Conference of the WW, Internet, and Intranet, (pp. 762-767).
Orlando, FL: Association for the Advancement of Computing in Education.

Repenning, A., & Sumner, T. (1995). Agentsheets: A Medium for Creating Domain-Oriented Visual Languages. IEEE
Computer, 28(3), 17-25.

Rittel, H. (1984). Second-Generation Design Methods. In Cross (Eds.), Developments in Design Methodology (pp.
317-327). New York: John Wiley & Sons.

Shaw (1997). President's Committee of Advisors on Science and Technology, Report to the President on the Use of
Technology to Strengthen K-12 Education in the United States. In Panel on Educational Technology.

Smith, D. (1996). Making Programming Easier for Children. Interactions, III(5), 59-67.

Smith, D. C., Cypher, A., & Spohrer, J. (1994). KidSim: Programming Agents Without a Programming Language.
Communications of the ACM, 37(7), 54-68.

Turkle, S. (1995). Life on Screen, Identity in the Age of the Internet. New York: Simon & Schuster.

Udell, J. (1994), Componentware. Byte, 1996

Wenglinsky, H. (1998). Does it Compute? The Relationship Between Educational Technology and Student Achievement in
Mathematics. Princeton, NJ: Educational Testing Service.

Yager, R. (Ed.). (1995). Constructivism and Learning Science. Mahway, New Jersey: Lawrence Earlbaum Assoc.

Authors' Addresses

Alexander Repenning (ralex@cs.colorado.edu)
Center for LifeLong Learning & Design, Department of Computer Science, University of Colorado at Boulder, Campus Box
430, Boulder, CO 80309-0430. Tel. (303) 492-1349, Fax (303) 492-2844.

Andri Ioannidou (andri@cs.colorado.edu)
Center for LifeLong Learning & Design, Department of Computer Science, University of Colorado at Boulder, Campus Box
430, Boulder, CO 80309-0430. Tel. (303) 492-8136, Fax (303) 492-2844.

Jonathan Phillips (phillipj@cs.colorado.edu)
Center for LifeLong Learning & Design, Department of Computer Science, University of Colorado at Boulder, Campus Box
430, Boulder, CO 80309-0430. Tel. (303) 492-8136, Fax (303) 492-2844.

