21l OFFICE PRINTERS TESTED

MAY 1994

Graphical Front Ends Ease
Access to the Internet rices

21-inch Monitors race 157

IBM’s Personal Dictation

System Reviewed race 145
THE MAGAZINE OF TECHNOLOGY INTEGRATION

ComponentWare

Object-oriented computing has failed. But component
software, such as Visual Basic’s custom controls,
is succeeding. Here’s why. :.:.

Il 7

L2

A

A
3
i

o Wireics, Grmminie~¥i)ng Gets Real ||‘ '

I

|

Il

w - 16 . 014402350
o Lotus ce:Mai' -~ ~_soft Mall o s
| | * . e A McGraw-Hill Publication/0360-5280

Object technology failed to deliver on the promise

| | of reuse. Visual Basic’s custom controls succeeded,
What role will object-oriented programming play
in the component-software revolution
that’s now finally under way?

JON UDELL

om Button, Microsoft’s Visual Basic czar,
loves to show how Visual Basic’s custom
controls have galvanized the component-
software business. “Here are the 16 controls
we shipped with Visual Basic for Windows
1.0,” he says, positioning the Toolbox win-
eft corner of the screen. “When we shipped
| version 2.0, third-party custom controls were already be-

coming common.” He sweeps the Toolbox upward to reveal
several dozen controls. “And here’s the situation today.” Now
the Toolbox fills the screen with a dense mosaic of all the

custom controls the machine’s memory and disk can hold.

[' The fact that VBXes (Visual Basic custom controls) today
best exemplify the decades-old notion of reusable software has
|‘ been a surprise for everyone, including Microsoft. VBXes
' aren’t just for 3-D buttons, gauges, and scrollable grids. Na- These ironies have s
i tional Instruments (Austin, TX) will sell youa VBX that con- ware industry to rethin
. trols GPIB (general-purpose interface bus) instruments. Cim- reusable components

purred all the major plaers in the soft
k the role of object technology vis-a-vis wher
. What has emerged is a new, more re- agenm

flex Teknowledge (Palo Alto, CA) offers a VBX-based expert alistic understandin g of how a component-software industry jects)
system. Distinct (Saratoga, CA) packages its TCP/IP pro- can work. Grou
gramming kit into a VBX. Diamond Head Software (Hon- Brok:

olulu, HI) offers a suite of image-handling VBXes. Stylus Rethinking Reuse

ponel
Innovation (Cambridge, MA) sells one that you use to build The traditional OOP visjon was, at best, vague on the subject a resl
voice-response and fax-on-demand applications, of reuse: Objects would appear as by-products of software de- and a
These are all actual “off-the-shelf components that you can velopment, a market would emerge, and programmers would creat
use to build real applications in a hurry. They are not, however, become producers and consumers of objects. Why didn’t this who
objects—at least, not the sort of objects that aficionados of happen? There were two major roadblocks. Most OOP lan- At
C++, Smalltalk, or Objective-C embrace. guage systems, including C++, lack the means to package and Thirty
Real objects, as OOP (object-oriented programming) experts distribute objects effectively in binary form. More subtly, the crisis
rightly point out, rest on the tripod of inheritance, polymor- skills and disciplines needed to build components are often mers,
phism, and encapsulation, while VBXes stand only on the quite different from those needed to use them. new |
single leg of encapsulation. But if that’s a crippling limitation, Apple, DEC, IBM, Microsoft, Novell, Sun, and others are progr
why has VBX—rather than OOP—ignited the component busily revamping their system software and tools in an ef- of the
revolution? Why have C+4+ vendors such as Microsoft and fort to break through these roadblocks. Despite incessant backl
Borland had to reverse-engineer Visual Basic so that pro- bickering, they're all headed down the same path. ware
grammers, lacking reusable C++ objects, can tap the rich An alphabet soup of standards, including Microsoft’s COM build
VBX component market? (Common Object Model), IBM’s DSOM (Distributed Sys- partic
46 BYTE MAY 1994 ILLUSTF

WARE

Layout Pro — [ANNUAL REPORT)

AL SILSE "l

NManagonu b LIS SUs

e Object Model), Sun’s DOE (Distributed Objects Every-
where), Hewlett-Packard’s DOMF (Distributed Object Man-
agement Facility), Next’s PDO (Portable Distributed Ob-
jects), Novell's AppWare Bus, and the Object Management
Group's all-embracing CORBA (Common Object Request
Broker Architecture), will provide the mechanisms for com-
ponent exchange that pure OOP failed to deliver. Meanwhile,
a restructuring of the software industry will define niches
and appropriate technologies for the component builders who
create reusable packages, as well as for the solution builders
who assemble components into end-user applications.

At the end of the day. applications are all that really matters.
Thirty years ago, we began hearing about a software crisis. The
crisis was, simply, an applications backlog—too few program-
mers, too little time, and too much demand. Since then, every
new paradigm for the construction of software—structured
programming, CASE, OOP—has been billed as the way out
of the software crisis. Yet we’ve hardly made a dent in the
backlog. True, we're far better served by commercial soft-
ware than in the past, but it remains horribly expensive to
build custom software that automates processes unique to
particular industries or individual companies.

ILLUSTRATION: JOHN CORBITT © 1994

VUYEL dLUIY

(4

To drive down the cost of custom software development,
you have to apply a principle that software theorists have
known for years. The best programmers aren’t just a little
better than average programmers; they’re shockingly bet-
ter—10 times, maybe 100 times more productive. And yet,
says Richard Probst, SunSoft’s manager of business devel-
opment for project DOE, today we see virtually no division of
labor in the software industry. “The way you work is about the
same no matter what kind of software you work on,” he says,
“and that’s a sure sign of an immature industry.”

The VBX phenomenon is an important first step toward
maturity. VBX-enabled programming differs markedly from
conventional programming. You create applications by ar-
ranging controls on forms, editing the controls’ properties,
and writing a few—often surprisingly few—lines of event-han-
dling code in Visual Basic, or C++, or whatever language is
native to the environment that hosts the VBX.

This simple discipline, which is standard across all do-
mains served by VBX controls, enables average program-
mers (like me) to build custom applications in hours or days.
It took me just two days to put together a useful client/server
database application using Coromandel’s Integra VDB. And

MAY 1994 BYTE

47

while I haven’t yet tried Stylus Innova-
tion’s Visual Voice, I'm certain that I could
leverage the programming expertise it en-
capsulates to build the fax-on-demand sys-
tem our editorial assistants have been ask-
ing for, and do the job in the day or two I
could justify spending on it.

The Dark Side of VBX

Despite its success, VBX is a flawed com-
ponent architecture. Most glaringly, it’s
tied to Windows and (less tightly) to Visual
Basic. That puts the cart before the horse.
As a prospective buyer, notes SunSoft’s
Probst, “you should ask first about a com-
ponent’s functionality, quality, and price,
and its supplier’s track record, not about its
required operating system and language
environments.” ~

Moreover, a rich supply of components
cannot erase the inherent limitations of
Windows 3.x—segmentation, cooperative
multitasking, and fragility. “Some of our
customers want to build T voice-response
systems that handle 24 lines,” says Mike
Cassidy, president of Stylus Innovation,
“but Windows can handle only about 15
connections.”

In the realm of Windows 3.x, VBXes
are further restricted to Visual Basic and a
small number of other development tools,
including Microsoft’s and Borland’s C++

compilers, Powersoft’s PowerBuilder, and
Gupta’s SQLWindows. These tools jump
through hoops to emulate the Visual Basic
run-time environment—with varying de-
grees of success. “Hosting VBXes was not
the most pleasant engineering task we’ve
undertaken,” says Bill Rabkin, senior tech-
nical evangelist with Powersoft (Burling-
ton, MA), “and we got no cooperation from
Microsoft.”

Other critics find the boundary between
the VBX and its environment too rigid.
The allure of real object technology, after
all, is that you can modify a component
that does 90 percent of what you need,
adding the last 10 percent yourself. Next-
Step programmers find it ridiculous that
you can’t extend VBXes in this way. Their
equivalent to a VBX is the palettized ob-
Ject, which other objects can freely inher-
it from and specialize.

In NextStep, component builders and
component users share the same Objec-
tive-C messaging and inheritance mecha-
nisms. Doesn’t that violate the principle
of division of labor? Not when program-
mers use their own components. Alex
Cone, president of Objective Technolo-
gies (New York, NY), markets NextStep
components and also uses them in his con-
sulting work. “The power of NextStep,”
he says, “is that I always use the same

messaging model, I always build objects
and systems the same way, and I never
have to shift paradigms.”

From VBX to OCX

Recognizing these limitations, Microsoft
has created a new component model based
on OLE. When Visual C++ 2.0 ships,
probably this summer, developers will gain
access to the tools needed to build a new
generation of VBX—the OLE custom con-
trol, or OCX. OLE controls won’t silence

all the criticisms of VBXes, but they will |

move the Windows component market
onto a much firmer foundation.

Some of the infrastructure for OLE con-

trols is already visible in Visual C++ 1.5

and MFC (Microsoft Foundation Classes)

2.5. That tool set radically simplified the
creation of OLE 2.0 in-process servers that
can embed themselves in container docu-
ments and export their internal methods
to callers by means of the OLE automa-
tion interface, IDispatch.

Note that Visual Basic—or its embedd-
able variant, VBA (Visual Basic, Appli-
cations Edition)—is only the first of po-
tentially many languages that will be
optimized to control OLE automation serv-
ers. Lisp, Smalltalk, and other interpretive
languages, once they are retrofitted with
IDispatch support, will be able to wield

Approaches to Component Software s
ahuhuunudinhhﬂﬂqﬁdﬁuﬁ-mnhdhuﬂﬁndu

MMMMM&WWMIMM“&MIM
MMIMW&:HMMWHbmmMthuMI

i
!

Mwmmmmmammmmmmmcww—wum-.mmuunismmﬂﬁ .’
ljmmﬂniﬂ-dwuuﬁalWIhUdnhmuh*nmmm—huuwhhnWﬂhﬂl

0SF/1

DOEORB

Today.OlEZ.Onlemithonhum,
Macintosh) components. A distributed version of OLE
Z.Othatwllwmilmmmmhaboln
the works, and it has been demonstrated using a
version of COM licensed to DEC.

DEC plans to bridge the worlds of OLE/COM and
CORBA. ObjectBroker, acting as a gateway, will enable
OLE components to communicate with CORBA
components running on a variety of platforms,
including 0SF/1, VMS, AIX, and HP/UX.

OpenStep brings to the Solaris platform the rich
application environment of NextStep and its wealth of
object-oriented components. Sun plans to support OLE
and OpenDoc. DOE components will communicate with
each other and with other CORBA implementations.

:
.
!
i
I
!

l

48 BYTE MAY 1994

OLE controls just as they can
now call DLLs.

Visual C++ 2.0, with MFC
3.0 and the OLE Custom
Control Developer’s Kit, will
enable such automation-
aware in-process servers to
mutate into full-blown OLE
controls that maintain ed-
itable properties, generate
events, and can bind to data
the way VBXes do today.
The redistributable run-time
DLL containing support for
these extensions will be avail-
able in 16- and 32-bit ver-
sions; unlike VBXes, OCXes
will run natively on Windows
3.x, NT, and their successors.
They will not initially exploit
multithreading, however,
even though the enabling substrate—MFC
3.0—will itself finally be thread-aware
and thread-safe.

It’s very likely that OCXes will also ap-

pear on the Macintosh, as a by-product of

work that Microsoft is doing to support its
own Mac applications. Versions of Visu-
al C++ 2.0 that are hosted on Windows
NT—but target 680x0- and PowerPC-
based Macs—are in the pipeline. These
tool sets support an MFC layer that rests on

OpenDoc

“The way you work is

about the same no
matter what kind of
software you work
on, and that’s a
sure sign of an im-

mature industry.”

a Win32 layer that in turn
talks to the native Mac Tool-
box. FoxPro 2.5 for the Mac,
which is built with an internal
version of this technology,
validates what Microsoft has
long claimed: that the Win-
dows API has the ability to
serve as a cross-platform API
capable of expressing the
core of substantial commer-
cial applications.

If Visual C++ 2.0, MFC
3.0, and OLE 2.0 all materi-
alize on the Mac as planned,
there’s every reason to expect
that OCXes will become
portable, at least across those
operating systems that mat-
ter to Microsoft—the Win-
dows variants and System 7.
Prospecls for OS/2 and Unix, where Mi-
crosoft has no commercial interest, are
rather dim, as members of the OpenDoc
consortium like to point out.

VBXes talk to hosts by firing events.
To implement OCXes in a similar way,
the run-time DLL will add new interfaces
to OLE 2.0 to implement an event mecha-
nism. It will also supply common dialog
boxes for property editing; stock proper-
ties, events, and methods; and mechanisms

Cover Story B

for self-registration, persistence, and li-
censing. From the developer’s perspec-
tive, an OLE control will be just one more
target the tool set can crank out, not no-
ticeably different from a DLL or an EXE.

The transition from VBX to OCX is not
hard at all, VBX vendors say, in part be-
cause Microsoft provides a jump-start tool
that can look at the properties and events
supported by a VBX and generate the skel-
eton of a compatible OCX. “It’s a fairly
mechanical port,” says Joe Modica, vice
president for R&D at Sheridan Software
Systems (Melville, NY), “although if your
VBX was written in C, you may want to
think about converting to C++.”

Dorai Swamy, executive vice president
of Coromandel (Forest Hills, NY), also
reports that the VBX-to-OCX transition
is a no-brainer and that OCX performance
seems fairly snappy. Especially interest-
ing to him, in view of Coromandel’s grow-
ing consultancy business, is the tool sup-
port for building OCX hosts. Just as
controls are specialized OLE in-process
servers, hosts are specialized OLE con-
tainers—thanks, again, to new MFC ab-
stractions. The next version of Visual Ba-
sic will be one such host, but the idea
is that any application should, with mini-
mal effort, be able to host OLE controls.
“We’re defining frameworks for specific

Document Object %
Network substrate

Component

File Edit Tools Help

OpenDoc

Apple

-'

Novell is also considering DSOM and COM support.

IBM will support visual and interactive Windows- and
Presentation Manager-based components using
OpenDoc. The real payoff, though, will come from
DSOM's ability to integrate these components into
large-scale distributed systems.

For Apple, OpenDoc represents a way for the Macintosh
to duplicate—and, it is hoped, improve upon—the
kinds of document- and component-based applications
that have flowered on Windows, thanks to OLE.

MAY 1994 BYTE 49

industries, such as retail and finance,”
Swamy says, “and the ability to plug OLE
controls into our own applications will be
very important to us.”

Doesn’t all this dependence on MFC
and OLE extensions tie developers to the
Microsoft tool set? In principle,
no. “Everything works in terms
of OLE 2.0,” says Eric Lang, Mi-
crosoft program manager for OLE
custom controls, “so any-
one who understands those
interfaces can reproduce
what we’ve done.” In prac-
tice, however, that will be
very difficult.

In principle, OLE con-
trols, unlike VBXes, can be
extended—not by inheri-
tance, which COM doesn’t
support, but by aggregation
of interface pointers. In
practice, that, too, will be
difficult. Most developers
say that, until Microsoft
evolves tools that simplify
the mechanics of aggrega-
tion, they aren’t willing to
wrestle with it. Note, how-
ever, that the audience for
whom OCXes are intended
won’t necessarily find multiple inheritance
any more congenial than inheritance. The
VBX model succeeded precisely because
it hid this level of complexity from cor-
porate developers.

Alternative Approaches

Years ago, Visual Basic’s spiritual ances-
tor, HyperCard, popularized the visual-
prototyping, script-oriented programming
style that now fuels the success of Visual
Basic. It also defined a component stan-
dard of sorts—the XCMD/XFCN mech-
anism that’s used to surface C or Pascal
modules as HyperCard primitives.

Why, given these ingredients, did the
HyperCard component industry stagnate?
It happened in part because the Mac OS
has lacked an effective way to load gen-
eral-purpose extensions dynamically. As a
result, XCMDs and XFCNs are awkward
constructs, limited in their access to mem-
ory, global data, and toolbox calls. The
new DLL technology in the PowerPC ver-
sion of System 7 will solve that problem,
according to BYTE’s Macintosh expert
Tom Thompson. At this late date, howev-
er, Macintosh DLLs will mean more to
the emerging OpenDoc standard than the
aging XCMD standard.

More recently, Parts from Digitalk (San-
ta Ana, CA) has stirred up many of the
same ingredients—visual programming,
S0

BYTE MAY 1994

“The power of NextStep
is that | always use the

same messaging mod-

el, I always build ob-

jects and systems the
same way, and | never

have to shift paradigms.”

scripting, and components—to create an
attractive Smalltalk-based development
kit for Windows, NT, and OS/2. Like Pro-
graph CPX from Prograph International
(Halifax, Nova Scotia, Canada) and No-
vell’s Visual AppBuilder, Parts pushes
visual programming to the limit. In
these systems you program, at the
highest level, by creating diagrams.
You drag icons representing com-
ponents, functions, and syn-
tactic constructs onto the
surface of a form and con-
nect them with links. To en-
capsulate a complex part of
a diagram—thereby creat-
ing a component—you
draw a boundary that hides
what’s inside, exposing a
few inputs and outputs.

In Digitalk’s system, the
simplest parts to create are
those that encapsulate code
expressed entirely in the di-
agrammatic language. More
advanced parts wrap objects
written in the system’s na-
tive language, Smalltalk, or
wrap DLLs that employ C,
COBOL, CICS, SQL, or
other languages. “Many of
the most critical components come from
technology specialists who cannot nec-
essarily write VBXes in C,” notes Mike
Arrigo, vice president of marketing for
Digitalk. Fortune 1000 companies with
hundreds of millions of dollars invested
in legacy systems can benefit enormously
from the ability to componentize those
systems so that, for example, a host-based
CICS transaction becomes just another
part that can be assembled using the Parts
workbench.

Darrell Deming, manager of brokerage
systems for USAA (San Antonio, TX),
finds this approach highly productive.
“We’ve built a sophisticated discount bro-
kerage application, with a client/server
connect, and we’ve stayed true to the par-
adigm of Parts as an object assembler,”
he says. What hasn’t yet evolved is any
significant exchange of components be-
tween the brokerage group and other units
within USAA. It’s feasible, using DLLs
as the medium of exchange, but so far it
hasn’t happened. “Component distribution
has to be driven by business needs,” says
Deming, “and because our specialized
parts aren’t useful to other groups, we're
not being driven to distribute them.”

While Parts today is a proprietary com-
ponent model, Digitalk plans to support
OCX controls and has already demon-
strated that Parts can work with DSOM,

the exchange standard that underlies Open:
Doc. Another proprietary component mod-
el that’s portable across Windows, NT,
the Mac, Unix, and OS/2 is available o-
day from XVT Software (Boulder, CO)
XVT’s thin, operating-system-neutral GUI
layer is the linchpin of one of the premier
cross-platform development toolkits.

Last year, XVT Software extended the
kit with XVT-PowerObjects, which are
modeled on VBXes but are portable across
all XVT-supported platforms. The first sel
of components included toolbars, toggle
buttons, status windows, and tabl¢ and
spreadsheet widgets. XVT Software, its
partners, and its customers are busily ex:
tending the PowerObjects catalog. Because
the company has always preferred to use
native services where available, it’s eyeing
the emerging component-exchange stan-
dards with great interest.

Despite the incessant “Windows every-
where” mantra, Roger Oberg, XVT Soft-
ware’s marketing vice president, reports
no slackening of Mac sales, and particu-
larly strong demand on the Motif side. “If
Microsoft’s portable object technology
doesn’t address Motif,” he says, “then it
won't meet the XVT need.” OpenDoc’s
multivendor heritage and CORBA-com-
pliant DSOM foundation appeal to the
company, however.

Rediscovering NextStep
One of the great strengths of the VBX
approach is that it boils down a lot of tra-
ditional programming tasks to simple
design-time editing. NextStep’s Interface
Builder was doing that—and in a more so-
phisticated way—long before VBXes ever
existed. Objects that appear on the Inter-
face Builder palette are true first-class cil-
izens in the NextStep environment. Next's
ObjectWare catalog lists dozens of these
components—some for general-purpose
use, others specialized for the financial-
services realm, where NextStep has es-
tablished a strong beachhead.

Next developers say that it’s straight-
forward to palettize an object for use with
Interface Builder. The job does require
that you extend the system’s generic in-
spector to create the specialized one used
to display and edit the object’s state, bul
even that task will be streamlined in the
forthcoming version 3.3 of NextStep. The
ability to drag links between the outputs of
one object and the inputs of another comes
essentially for free. Clearly, components
arise more naturally from the normal Next-
Step development process than VBXes dc
from routine Windows development.

Moreover, says Dirk Fromhein, presi-
dent of Watershed Technologies (Marl-

Cover Story

borough, MA), objects that use the NX-
Connection class get networking for free.
That means that Watershed’s GraphRight,
a charting component, is able to serve both
local and remote clients. “The NXCon-
nection object traverses the whole netinfo
domain automatically,” says Fromhein,
“so the client literally does not know
whether the service is being provided lo-

++ created a peculiar sort of

doublethink in the software in-
dustry. The object-oriented features of
C++ presumably explain why it is slow-
ly but surely eclipsing C. Yet it clearly
has not delivered on one of the major
promises of OOP (object-oriented pro-
gramming): software reuse,

In terms of packaging and distributing
binary modules, C++ arguably repre-
sents a huge step backward. Statically
linked C libraries have always been an
effective way to exchange reusable code.
Dynamically linked C libraries worked
even better. Freed from the burden of
static linking, DLL-based operating sys-
tems such as Windows and OS/2 became
collections of field-upgradable parts.

When C++ class libraries change,
however, their clients typically have to
recompile to accommodate them. Tom
Pennello, vice president of MetaWare
(Santa Cruz, CA), says that operating-
system developers working in C++ are
hard-pressed to explain to their man-
agers why they can’t release object-ori-
ented libraries. The reaction, Pennello
says, is invariably something like, “What
do you mean? We’ve been doing this
for years with procedure libraries!” * -

There is also the vexing problem
of link compatibility across compilers.
“This is where the type safety of C++
comes back to bite you,” says Tom Kef-
fer, president of Rogue Wave Software
(Corvallis, OR), a leading vendor of C4++
class libraries.

Although we reflexively equate OOP
with reuse, Jim Bonine, former vice pres-
ident of engineering and now a consul-
tant to StepStone (Sandy Hook, €T);
says that C++ was never even meant to
solve the problem of large-scale com-
ponent exchange. “When we pressed
Bjarne on that point,” says Bonine, re-
~ calling a 1987 debate between AT&T"s
Bjarne Stroustrup (inventor of C++) and

52 BYTE MAY 1994

Object Wars

cally or remotely.”

Despite NextStep’s undisputed virtues
and its much-heralded port to Intel hard-
ware, it continues to struggle for mind
and market share. It's too early to know
whether SunSoft’s licensing of Next’s ap-
plication framework and tool set will turn
the tide, but the once-unthinkable alliance
between former rivals is a resounding af-

m)
il

)

N
ER&EZEE
StepStone’s Brad Cox (inventor of Ob-
Jective-C), “he admitted that the appro-
priate scope for reuse of C++ modules
was probably [at] the project or depart-
ment level.”

StepStone’s Objective-C was one re-
sponse to this problem; IBM’s SOM
(System Object Model) is another. Each
of these technologies employs a run-
time engine to enable objects to bind
dynamically while preserving the flow
of inheritance across object boundaries.
“With SOM, you can add virtual func-
tions, or even refactor the class hierar-
chy,” says MetaWare’s Pennello.

The DirectToSOM feature Pennello
is adding to MetaWare’s High C/C++
parallels the compiler’s internal object
model with IBM’s SOM, solving the
problems of component exchange and
link compatibility. The benefits of this
tactic, Pennello says, more than repay
its cost in performance. When IBM’s
C++ compiler adds the same feature,
says Cliff Reeves, IBM’s director of ob-
Ject-technology products, “you’ll see the
first [direct] binary exchanges between
different C++ compilers.”

StepStone’s Bonine thinks that SOM
makes sense for harnessing components
written in multiple languages, but he
questions the notion of retrofitting C++
in this way. “It’s unclear how much more
baggage C++ can take,” he says. Mike
Potel, vice president for technology de-
velopment at Taligent (Cupertino, CA),
says the DirectToSOM compiler won't
initially handle the full complexity of
C++. Taligent has built extensions to
its C++ compilers to get the dynamic
binding capability that is needed for its
forthcoming object-oriented operating
system.

Not surprisingly, the harshest criti-
cisms of IBM’s SOM and DSOM (Dis-
tributed System Object Model) come
from the Microsoft camp. “We take se-

.

firmation of the value of Next's technok
ogy. “T used to have trouble getting I§
people on Wall Street or in health care (o
consider a Next-based solution.” says Ob-
jective Technologies’ Cone, “but now the
Sun deal has validated the whole concept.”

SunSoft has intentions of grafting the
NextStep (or rather, the OpensStep) appli-
cation framework and tools onto its own

riously the idea that interfaces are sig-
natures, separate from implementations,”
says Microsoft’s Mark Ryland. “None
of the CORBA [Common Object Re-
quest Broker Architecture] schemes, in-
cluding SOM, face up to what it really
means to have millions of binary objects
out there.”

SOM will break, he says, in cases
where vendors supply competing im-
plementations of the same interface—
implementations that are at first equiva-
lent but diverge over time. Microsoft’s
COM (Common Object Model), he ar-
gues, avoids such problems by Spawning
interfaces: A single object can simulta-
neously express multiple versions and
varying sets of capabilities.

CILabs’ (Component Integration Lab-
oratories) executive manager Jed Harris
responds heatedly. “It’s a broken exam-
ple,” he says. “The two implementations
would no longer be valid subtypes, and
that’s just a bug that you can detect me-
chanically.” Neither SOM nor CORBA
requires a singly rooted inheritance tree,
he adds. Clients can use mixed-in mul-
tiple inheritance to select from a smor-
gasbord of components.

While that’s possible with SOM, says
Mark Bramhall, DEC’s technical direc-
tor for distributed computing services,
it’s less efficient than with COM. (DEC
has licensed COM so that its own com-
ponent toolkit, ObjectBroker, will be
able to act as a gateway between OLE
and the CORBA technologies.) “In the
distributed case, with DSOM, thousands
of remote objects means thousands of
proxies,” he says. “With COM, on the
other hand, you can quantize these into
a smaller set of interfaces so that things
scale nonlinearly. You can get away with
just tens or hundreds of proxies and
avoid exploding the type environment.”

Although the debate rages on, with
no end in sight, there is a subtext of
tacit consensus: Components are crucial:
C++ alone can’t deliver them: and new
mechanisms need to evolve. The ferment
is a sign of healthy growth.

Cover Story

CORBA-compliant distributed-object-
plumbing layer, DOE. SunSoft’s Probst
likens this to IBM’s plan to layer the Tal-
igent application framework on top of the
CORBA-compliant DSOM. A wrapper of
CORBA IDL (Interface Definition Lan-
guage) around Next components, says
Probst, will enable them to plug into the
same sockets that accept C++, Smalltalk,
or Ada components.

Won't that destroy the seamlessness of
pure Objective-C development that Next
programmers so highly prize? Not neces-
sarily. It’s true that Objective-C objects
can’t converse intimately with foreign ob-
Jjects. But a library that internally exploits
all the power of Objective-C can export
multiple interfaces and so appear, to cli-
ents, as a collection of independent com-
ponents.

The OpenDoc Alternative

OpenDoc is the cross-platform compound-
document standard that will be licensed
by CILabs (Component Integration Labo-
ratories), with the backing of Apple, IBM,
Novell, WordPerfect, and others. Open-
Doc’s charter, like that of OLE 2.0, goes
beyond compound documents; it defines
a full-blown component architecture (see
*“A Close-Up of OpenDoc,” March BYTE).
OpenDoc parts, like OCXes and OLE serv-
ers, can load dynamically, embed them-
selves in containers, and respond to com-
mands issued from a variety of languages.

Four foundation technologies underly
OpenDoc—a compound-document frame-
work for OLE-like embeddings, a com-
pound file format (Apple’s Bento), a lan-
guage-neutral automation architecture
(modeled on Apple Events), and a lan-
guage-neutral run-time mechanism for
dynamic object linking and binary com-
ponent exchange (IBM’s DSOM). (See
“IBM’s Assault on Distributed Objectsy”
November 1993 BYTE.)

CILabs will license the source code for
all four technologies to interested parties.
“There aren’t any secrets,” says David
Austin, Apple’s manager of OpenDoc de-
velopment. The first developer’s releases
of OpenDoc for at least three platforms
should start appearing around the time you
read this, from Apple (for the Mac), Word-
Perfect (Windows), and IBM (0S/2).

CILabs claims that OpenDoc will have
a number of advantages over OLE. In the
realm of compound documents, these in-
clude support for nonrectangular content

.and multiple active objects. “OpenDoc’s
screen-brokering technology is much
better than OLE’s,” says Doug Donzelli,
vice president for AppWare foundation
technology in Novell’s AppWare Systems

54 BYTE MAY 1994

Group. “ClarisWorks, which internally
uses a highly sophisticated component in-
tegration scheme, was one of the bench-
marks for the OpenDoc designers; you
could not build ClarisWorks with OLE 2.”
As a general component model, Open-
Doc’s strengths flow from its scripting
technology and DSOM. To support script-
ing, OpenDoc will support the >
registration of standard proto-
cols, or event suites, for ma-
jor classes of applications.
The event “advance to
next word,” for example,
will mean the same thing
in any word processing
application. OpenDoc pro-
ponents argue that this
discipline, like the Apple
Events model, ensures at
least some level of script
reusability across appli-
cations and components,

the edge.”

whereas OLE'’s approach Kimbo

guarantees none.

Microsoft’s response?
“We wanted to standard-
ize on suites of OLE automation verbs,”
says Mark Ryland, senior program man-
ager on the Cairo project, “but the major
independent software vendors couldn’t
come to a consensus. Do you leave the
cursor at the beginning of the next word?
The end? What about punctuation? We
would have had to mandate these things
like Apple does, and we chose not to.”

IBM’s DSOM, say the CILabs backers,
will endow all OpenDoc platforms with a
network-capable, language-neutral mech-
anism for packaging and distributing com-
ponents. The CORBA-compliant inter-
face-definition language used to describe
their interfaces means that users of com-
ponents can extend them—without access
to source code—using multiple inheri-
tance. Microsoft disputes these claims, and
the COM-versus-DSOM debate has lately
turned into a pitched battle (see the text
box “Object Wars™ and “Extensible Soft-
ware Systems” on page 57). Microsoft’s
Ryland argues that COM’s aggregation,
unlike DSOM’s inheritance, cleanly sepa-
rates interfaces from implementations.

A related argument is that while inher-
itance is useful—perhaps even essential
as a private discipline for builders of com-
ponents—it’s inappropriate as a public dis-
cipline for users of components. OpenDoc
proponents vehemently disagree. “Obvi-
ously, a well-encapsulated object has val-
ue,” says Cliff Reeves, IBM's director of
object-technology products. “But at what
point does it stop being something for
which inheritance is useful?”

“If Microsoft continues

to ignore the non-PC

Motif platforms, then

OpenDoc will have

Jed Harris, executive manager of Cl-
Labs, argues that Microsoft’s approach
forces the programmer to predeterming
the boundary between a component and
its environment. But that boundary can’t
be known in advance; it must be discoy-:
ered during iterative, exploratory devel-
opment. “You can never get it right the
first time,” says Harris, “and that’s why
you don’t want two different pro-

gramming models.”

The uses of OpenDoc are
as varied as the companies
backing it. Apple, focused on
the desktop, needs to enable
the Mac to duplicate—and
hopefully improve upon—the
kinds of document- and com-
ponent-based applications that
have flowered on Windows,
thanks to OLE. IBM, focused
on the enterprise, wants to
build complex, heterogeneous,
distributed systems using stan-
dard interchangeable parts.
WordPerfect sees OpenDoc as
a platform-neutral way to de- *
compose a monolithic application into
pieces that can be specialized for particu-
lar markets and to enable that application
to accept pluggable third-party extensions.

So far, developers have mixed reactions
to OpenDoc. “I'm focusing on OLE 2,”
says Ray Coté, president of Appropriate
Solutions (Antrim, NH). “It’s the holy grail
of reusable code, and it will be mature on
the Mac and Windows by the time Open-
Doc arrives.” Interleaf’s (Waltham, MA)
chief architect Kimbo Mundy says, “If
OpenDoc does a few more things than
OLE 2, then, frankly, I don’t care; I just
want one interface that will keep me com-
petitive on multiple platforms.” But Mundy
cautions that “if Microsoft continues to
ignore the non-PC Motif platforms, then
OpenDoc will have the edge.”

Acceptance of OpenDoc will certainly
depend, in part, on how effectively it can
interoperate with OLE. Can two such com-
plex standards really play together? “After
months of analysis, we’re convinced it will
work,” says Novell’s Donzelli. “Other-
wise we wouldn’t have backed OpenDoc.”

Novell’s AppWare Bus
Another toolkit for the construction of
portable components, due out by the time
you read this, is Novell’s AppWare. Ver-
sion 1.0 will include about 70 bundled
components, or ALMs (AppWare loadable
modules), and will support development
of ALMs—for Windows and the Macin-
tosh—in C and BASIC.

Novell's AppWare Systems Group will

Cover Story

unite technology from two acquisitions,
Serius and Software Transformation. Se-
rius provided the pictorial programming
environment, which is now called Visual
AppBuilder, and the AppWare Bus, which
defines how ALMs plug into and
communicate with hosts. Soft-
ware Transformation supplied
cross-platform foundation
classes that will make ex-
isting Windows and Mac
components more robust,
and it will also extend App-
Ware’s reach to OS/2 and
Unix platforms.

Central to the AppWare
foundation is the notion of
scalable families of compo-
nents. AppWare’s text wid-
get, for example, comes in
several API-compatible ver-
sions, ranging from a light-
weight multiline edit con-
trol to a near-full-function
word processor. This foun-
dation won’t be part of the
initial AppWare products;
Novell plans a developer’s
release of foundation-based
versions of the AppWare
Bus and Visual App Builder
by the end of 1994, with fi-
nal versions due in 1995,

Concurrently, Borland is working to
graft its OWL (Object Windows Library)
framework onto the AppWare foundation,
transforming OWL into a cross-platform
API and making ALMs an easy target
for Borland C++ developers. Eventually,
claims Novell’s Donzelli, “you’ll be able
to write an OLE part or an OpenDoc part
or an ALM from a single source. In fact,
OWL programmers are doing this today,
although they don’t realize it.”

While Visual AppBuilder’s pictorial ap-
proach to programming will likely receive
the lion’s share of attention at first, No-
vell says the product’s main purpose is to
expose the AppWare Bus and jump-start
the ALM binary standard. “We're giving
away the bus—the tool interface, the run-
time event engine, the messaging system,”
says Joe Firmage, vice president for App-
Ware Bus technology in Novell's App-
Ware Systems Group. Early adopters in-
clude Gupta, which has announced that a
future version of its SQLWindows will be
able to accept plug-in ALMs.

Why might developers prefer AppWare
over OLE or OpenDoc? These technolo-
gies are tuned for the desktop—for visual,
interactive tasks, Firmage argues—where-
as AppWare’s inherently asynchronous
approach favors distributed, communica-

B8 BYTE MAYVY 1004

“How will component
vendors compete when
a few hundred dollars
buys you a whole appli-
cation—or even a
suite—that’s also an
integrated develop-
ment environment with
most of the objects
you want and very few

missing pieces?”

tions-intensive applications. But version
1.0 does not let you distribute an applica-
tion based on ALM components. The next
version, due around September, will pro-
vide two mechanisms—PeerLogic’s Pipes,

and one of the CORBA-compliant
{ technologies, possibly DSOM.

Specialized Applications
Mainstream applications
can profit from component
technology, notes Mark
Ericson, object architect for
WordPerfect (Provo, UT),
who thinks that internal use
of OpenDoc parts will en-
able his company’s word
processor to handle new
kinds of content and thus
appeal to specialty markets.
“WordPerfect has a general
equation editor,” he says,
“but scientists or engineers
may require specialized
equation editors.”

In an era of shrinking
margins, the ability to create
and manage premium prod-
ucts could become critical
to vendors of what has tru-
ly become commodity soft-
ware. The same OpenDoc
technology used internally
to specialize WordPerfect for particular
markets, Ericson adds, will give Word-
Perfect users access to third-party compo-
nents. That means the company won’t have
to invent, maintain, and evangelize a pro-
prietary extension mechanism.

But Microsoft desktop marketing prod-
uct manager Mike Risse doesn’t yet see
a need to differentiate Excel by varying
its core components. “We give you the ob-
Ject set and the tools to customize Excel for
a medical office or an electrical-engineer-
ing firm,” he says. The next version will be
even more customizable, he adds, because
you'll be able to export user-written Vi-
sual Basic for Applications functions to
OLE automation controllers,

However, in Microsoft's development
labs, experiments are validating an OLE
building-block approach to applications.
“We've been playing with a word proces-
sor built out of components,” says OLE
architect Tony Williams, “and it’s blind-
ingly fast.” What's more, the user inter-
face of Cairo, the Windows NT successor
due in 1995, is literally a collection of user-
customizable OLE components.

Applications vs. Components
Today’s applications not only are in com-
petition with the new pluggable compo-

nents but also are growing increasin
component-like themselves. That’s es
cially true on the Macintosh, where
ple Events are now widely exploited.
Symantec C++, for example, is actu
ly a collection of independent compone
that talk to each other by means of Appl
Events. When the debugger needs to eval
uate an expression, it pipes it to the co
piler. As a result, the debugger is able to
handle very complex expressions, and i
automatically benefits from compiler up-
grades. Now that the Think Class Library
encapsulates the Apple Events APIs, it's
easier than ever before for users of Syman-

tec C++ to achieve the same effect in their
own applications.

Excel 5.0, Windows® bellwether appli-
cation, exposes dozens of objects—and
hundreds of methods and properties—to
programs written in its own internal script-
ing language or in Visual Basic 3.0, This
OLE automation capability, coupled with
Excel’s OLE embeddability, lets Visual
Basic programmers use the application as
though it were a high-powered custom
control for charting or data analysis.

The increasing programmability of main-
stream applications raises some interesting
questions. “How will component vendors
compete,” asks Jeffrey Tarter, publisher of
Softletter (Watertown, MA), “when a few
hundred dollars buys you a whole appli-
cation—or even a suite—that’s also an in-
tegrated development environment with
most of the objects you want and very few
missing pieces?”

Peter Mullen, development manager for
Shapeware (Seattle, WA), shares that con-
cern. Shapeware’s Visio, an intelligent
business graphics application, was one of
the first implementers of OLE automation,
Visio Express, the first pure OLE 2.0 serv-
er, exists only to embed the graphics with-
in OLE 2.0 containers.

Will Shapeware also cast its technol-
ogy in the OCX mold? Mullen’s not sure.
“Resellers love Express because it’s a sec-
ondary sell along with an application like
Word,” he says. “But where’s the mass
market for an OCX?”

While the VBX example proves that
component vendors can find comfortable
niches, these questions are extremely per-
tinent. Nearly everyone agrees that the is-
sues of cost, distribution, and support will
have to be worked out before a software-
components market can really thrive. The
technical foundations are being laid, but
the business model is ‘still up in the air. W

Jon Udell is a BYTE senior technical editor at
large. You can reach him on the Internet or BIX at
Judell@bix.com.

