Minimax Option Pricing Meets Black-Scholes in the Limit

Objective

- Study an adversarial setting for pricing options
 - Zero-sum game: Nature vs. Investor
 - Option price is the value of the game
- Consider the limit as trade frequency increases
- Under reasonable constraints, what does Nature’s optimal strategy look like?
- How does our price compare to the commonly-used Black-Scholes price?

Options

- Types of option
 - European call/put - exercise at expiration
 - American call/put - exercise any time
 - “Exotic” -- basically any derivative
- Our setting
 - Exercised only at time $t = 1$
 - $X : [0, 1] \rightarrow \mathbb{R}$ is the price path
 - Payoff is $g(X(1))$ for g convex
- European long call: $g(x) = \max(0, x - K)$

Replication Strategies

- Basic idea
 - A trading algorithm A with initial debt S_A
 - Attempts to replicate the option g
 - Payoff dominates the option, minus a
- Key observation: $Price(g) \leq a$

The Black-Scholes Price

Price(g) = $\mathbb{E}_{X \sim \text{GBM}}[g(X(1))]$

The Black-Scholes replication strategy

- Let $V(S, t)$ be the value of the option at t
- Let $\Delta \in A$ be the replication portfolio
- To solve for V, we need to solve a stochastic partial differential equation. Via Ito’s Lemma, we get
 \[\frac{\partial V}{\partial S} - \frac{1}{2} \frac{\partial^2 V}{\partial S^2} = 0 \]
- Solution is:
 \[V(S, t) = \mathbb{E}_{C \sim \text{GBM}}[g(SG(1-t))] \]

Black-Scholes, Kremer, Mansour, 2006

Option Pricing under Adversarial Assumptions

- What if prices were chosen by an adversary?
- Can we still replicate options in the worst case?
- DeMarzo et al: YES: Construct replication strategies via exponential-weight style algorithm
- Worst-case model gives a theoretical upper bound on the price of an option.

Our Game

- Nature vs. Investor

\[\inf_{A} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m} T_m \Delta_m \right] \]
- Discrete-time trades at $t = m/n, m \in [n]$
- $A \in \mathcal{A}$ is the replication algorithm (Investor)A chooses Δ_m to invest at time $t = m/n$
- $X \in \mathcal{X}$ is the price path (Nature)
- T_m is the fluctuation at time $t = m/n$
 \[X(\frac{m}{n}) = X(\frac{m-1}{n}) (1 + T_m) \]
- Value of the game = option price!
- Interested in continuous trading limit as $n \to \infty$

Constraints on Nature

- Bounded per-round variance:
 \[\mathbb{E} \left[\left(\frac{X(t)}{X(s)} \right)^2 \right] \leq \exp(c(t-s)) - 1 \]
 - (GBM satisfies this with equality)
 - In particular, $\mathbb{E}[T_m^2 | T_{m-1}] \leq \exp(c/n) - 1$
- Bounded fluctuations:
 \[|T_m| \leq \zeta_n \implies \zeta_n \to 0 \]
 - GBM does not satisfy this
 - For a lower bound, we must truncate GBM
 - Need ζ_n to increase relative to trading freq: $\lim_{n \to \infty} \frac{n \zeta_n}{\log n} > 16c$

The Proof

Step I: Duality

- Sion’s minimax theorem applies: $\inf \leftrightarrow \sup$
 \[\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E} \left[g(X(1)) - \sum_{m} T_m \Delta_m \right] \]
 - (By ζ_n fluctuation constraint, \mathcal{X} is compact)

Step II: Martingality

- Claim: T_1, \ldots, T_m is a martingale sequence
- Suppose not; then Investor can make some $T_m \Delta_m \to \infty$
- Value of the game is now $\sup_{X \in \mathcal{X}} \mathbb{E}[g(X(1))]$

Step III: Max Variance

- Since g is convex, T_m has maximal conditional variance for all m
- Hence, $\mathbb{E}[T_m^2 | T_{m-1}] = \exp(c/n) - 1$

Step IV: Finale

- Let X^*_n be the optimal price path for n trades
- Theorem: $X^*_n \to \text{GBM}$ as $n \to \infty$
- Corollary: $\lim_{n \to \infty} \mathbb{E}[g(X^*_n(1))] = \mathbb{E}[g(\text{GBM}(1))]$
- Option price approaches Black-Scholes price!

Conclusion

- The Black-Scholes pricing scheme is valid even in an adversarial model!
- Moreover, the stochastic assumption made by Black and Scholes can be derived as the optimal strategy of Nature in our model.

Future Work

- Allowing price jumps
 - Only consider points $X(1/n), \ldots, X(n/n)$
- Per-round variance \to variance budget
 \[\sum_{n=1}^{\infty} \mathbb{E}[T_n^2 | T_{n-1}] \leq c \]
- Theorem breaks: $X^*_n \not\to \text{GBM}$
- But final price converges: $X^*_n(1) \to \text{GBM}(1)$
- Hence we still have our Corollary:
 \[\lim_{n \to \infty} \mathbb{E}[g(X^*_n(1))] = \mathbb{E}[g(\text{GBM}(1))] \]
- We still obtain the Black-Scholes price!