Minimax Option Pricing: How Robust is Black-Scholes?

Rafael Frongillo

Department of Computer Science
University of California at Berkeley

July 20, 2012

Joint work with Jake Abernethy and Andre Wibisono
Jake Abernethy
now at UPenn

Andre Wibisono
in 1225 this summer!
A new financial instrument which is a function of old ones.

Class of derivatives we consider:

- Expiration date T (typically 1)
- Base stock/asset S
- Derivative pays out $g(S(T))$ at time T

$S(t)$ is the value of S at time t

E.g. $\cos(\text{gas price on Aug 1})$
Financial Derivatives

A new financial instrument which is a function of old ones.

Class of derivatives we consider:

- Expiration date T (typically 1)
- Base stock/asset S
- Derivative pays out $g(S(T))$ at time T

$S(t)$ is the value of S at time t

E.g. $\cos(\text{gas price on Aug 1})$
Financial Derivatives

A new financial instrument which is a function of old ones.

Class of derivatives we consider:

- Expiration date T (typically 1)
- Base stock/asset S
- Derivative pays out $g(S(T))$ at time T

$S(t)$ is the value of S at time t

E.g. $\cos(\text{gas price on Aug 1})$
Running example: European call option

\[g(S) = \max(0, S - K), \text{ where } K \text{ is the strike price} \]

Note: will use “option” and “derivative” interchangeably
How to Price?

What is a derivative g worth?

![Graph showing option price versus stock price](graph.png)

- A: Option price curve
- B: Option price curve
- T_1, T_2, T_3: Time periods

(Exercise Price = $20)
Fischer Black and Myron Scholes, 1973

- Intuition: price of derivative is cost of implementing it with existing instruments
- The algorithm which implements a derivative is a *replication strategy*
- The replication strategy has a fixed initial investment, which should be precisely the price of the derivative
Replication Strategies

Idea: As stock S fluctuates, use an algorithm A to “hedge” the option by buying and selling S

Result: guarantee the payoff of the option, minus a fixed cost c
Black-Scholes Assumptions

- No arbitrage opportunities
- 0% interest borrowing
- Can trade continuously
- No transaction fees, no dividend payments, etc
- Stock prices follow Geometric Brownian Motion (GBM)
Black-Scholes Assumptions

- No arbitrage opportunities
- 0% interest borrowing
- Can trade continuously
- No transaction fees, no dividend payments, etc
- Stock prices follow Geometric Brownian Motion (GBM)
Geometric Brownian Motion
Let $W(t)$ be Brownian Motion with drift μ and volatility σ^2

- $W(0) = 0$
- $W(t) - W(s)$ and $W(u) - W(t)$ are indep. for $s < t < u$
- $W(t) - W(s) \sim N(\mu(t - s), \sigma^2(t - s))$

$G(t)$ is GBM $\iff \log(G(t))$ is Brownian Motion
Let $W(t)$ be Brownian Motion with drift μ and volatility σ^2

- $W(0) = 0$
- $W(t) - W(s)$ and $W(u) - W(t)$ are indep. for $s < t < u$
- $W(t) - W(s) \sim N(\mu(t - s), \sigma^2(t - s))$

$G(t)$ is GBM \iff $\log(G(t))$ is Brownian Motion
Delta-hedge Portfolio

Given option/derivative g:

- Let $V(S, t)$ be the value of the option at t
- Let $\frac{\partial V}{\partial S}$ be the replication portfolio

$\text{Hold } \$\frac{\partial V}{\partial S}(t) \text{ of stock @ time } t$

Now solve for V using the no-arbitrage condition:

- Stochastic PDE from Ito's Lemma:

$$\frac{\partial V}{\partial S} - \frac{1}{2} S^2 \frac{\partial^2 V}{\partial S^2} = 0$$

- Solution is:

$$V(S, t) = \mathbb{E}_{G \sim \text{GBM}}[g(SG(T - t))]$$
Delta-hedge Portfolio

Given option/derivative g:

- Let $V(S, t)$ be the value of the option at t
- Let $\frac{\partial V}{\partial S}$ be the replication portfolio

$Hold \ $ \frac{\partial V}{\partial S}(t) \ of \ stock \ @ \ time \ t$

Now solve for V using the no-arbitrage condition:

- Stochastic PDE from Ito’s Lemma:

$$\frac{\partial V}{\partial S} - \frac{1}{2}S^2 \frac{\partial^2 V}{\partial S^2} = 0$$

- Solution is:

$$V(S, t) = \mathbb{E}_{G \sim GBM}[g(SG(T - t))]$$
Delta-hedge Portfolio

Given option/derivative g:

- Let $V(S, t)$ be the value of the option at t
- Let $\frac{\partial V}{\partial S}$ be the replication portfolio

\[\text{Hold } \$ \frac{\partial V}{\partial S}(t) \text{ of stock @ time } t \]

Now solve for V using the no-arbitrage condition:

- Stochastic PDE from Ito’s Lemma:

\[\frac{\partial V}{\partial S} - \frac{1}{2} S^2 \frac{\partial^2 V}{\partial S^2} = 0 \]

- Solution is:

\[V(S, t) = \mathbb{E}_{G \sim \text{GBM}}[g(SG(T - t))] \]
The Black-Scholes Price

Price of option is therefore:

\[V(S, 0) = \mathbb{E}[g(S \text{ GBM}(T))] \]

Some surprises:
- Replication succeeds with probability 1!
- GBM above has drift 0 not \(\mu \)!
The Black-Scholes Price

Price of option is therefore:

\[V(S, 0) = \mathbb{E}[g(S \text{ GBM}(T))] \]

Some surprises:

- Replication succeeds with probability 1!
- GBM above has drift 0 not \(\mu \)!
The Black-Scholes Price

Price of option is therefore:

$$V(S, 0) = \mathbb{E}[g(S \text{ GBM}(T))]$$

Some surprises:

- Replication succeeds with probability 1!
- GBM above has drift 0 not μ!
Beyond Black-Scholes

Problems with Black-Scholes

- Continuous-time trading
- Assumes GBM!

Why stochastic prices?

Prices respond to decisions of other traders!

Why not *adversarial* prices? [DeMarzo, Kremer, Mansour ’08]
Beyond Black-Scholes

Problems with Black-Scholes

- Continuous-time trading
- Assumes GBM!

Why stochastic prices?

Prices respond to decisions of other traders!

Why not adversarial prices? [DeMarzo, Kremer, Mansour ’08]
Beyond Black-Scholes

Problems with Black-Scholes

- Continuous-time trading
- Assumes GBM!

Why stochastic prices?

Prices respond to decisions of other traders!

Why not *adversarial* prices? [DeMarzo, Kremer, Mansour ’08]
An Option-Pricing Game

\[\inf_{A \in A} \sup_{X \in X} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right] \]

- An \(n \)-round game between Investor and Nature
- Discrete-time trades at \(t = m/n, m \in [n] \)
An Option-Pricing Game

\[\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right] \]

- \(A \in \mathcal{A} \) is the replication algorithm (Investor)
- \(A \) chooses \(\Delta_m \) to invest in \(S \) at time \(t = m/n \)
An Option-Pricing Game

\[
\inf_{A \in A} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

- \(A \in \mathcal{A} \) is the replication algorithm (Investor)
- \(A \) chooses \(\Delta_m \) to invest in \(S \) at time \(t = m/n \)
An Option-Pricing Game

\[
\inf_{A \in A} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

- \(X \in \mathcal{X} \) is the price path (Nature)
- \(T_m \) is the fluctuation at time \(t = m/n \):
 \[
 X \left(\frac{m}{n} \right) = X \left(\frac{m-1}{n} \right) (1 + T_m)
 \]
An Option-Pricing Game

\[
\inf_{A \in A} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

- \(X \in \mathcal{X} \) is the price path (Nature)
- \(T_m \) is the fluctuation at time \(t = m/n \):

\[
X \left(\frac{m}{n} \right) = X \left(\frac{m-1}{n} \right) (1 + T_m)
\]
An Option-Pricing Game

\[\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(\mathcal{X}(1)) - \sum_{m=1}^{n} T_m \Delta_m \right] \]

- Option payout
- Earnings of Investor
- Difference = “Regret”
An Option-Pricing Game

\[
\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

- Option payout
- Earnings of Investor
- Difference = “Regret”
An Option-Pricing Game

\[\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right] \]

- Option payout
- Earnings of Investor
- Difference = “Regret”
Value of the Game

\[
\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

Value of the game \(\geq \) option price!

Upper bound because of the worst-case assumptions

Interested continuous trading limit as \(n \to \infty \)
Value of the Game

\[\inf_{A \in A} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right] \]

Value of the game \(\geq \) option price!

Upper bound because of the worst-case assumptions

Interested continuous trading limit as \(n \to \infty \)
Constraining Nature

\[
\inf_{A \in A} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

What price paths \(\mathcal{X} \) can Nature choose from?

We require:

\[
\mathbb{E}[T_m^2 | T_{m-1}] \leq \frac{c}{n}
\]

\(c \) is the "volatility"
What price paths \mathcal{X} can Nature choose from?

We require:

$$\mathbb{E}[T_m^2 | T_{m-1}] \leq \frac{c}{n}$$

c is the “volatility”
Constraining Nature

\[
\inf_{A \in A} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

What price paths \(\mathcal{X} \) can Nature choose from?

We require:

\[
\mathbb{E}[T_m^2 | T_{m-1}] \leq \frac{c}{n}
\]

\(c \) is the “volatility”
Step I: Duality

By Sion’s Minimax Theorem, we can swap inf and sup!
Step I: Duality

\[
\sup_{X \in \mathcal{X}} \inf_{A \in A} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

By Sion’s Minimax Theorem, we can swap inf and sup!
Step II: Martingale

\[
\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

Now \(\{T_m\} \) must be a martingale sequence

- Assume not: \(\mathbb{E}[T_m|T_{m-1}] \neq 0 \)
- Investor can choose \(\Delta_m \to \pm \infty \)
- Nature would have unbounded loss!

But now the algorithm is completely irrelevant!
Step II: Martingale

\[\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right] \]

Now \(\{T_m\} \) must be a martingale sequence

- Assume not: \(\mathbb{E}[T_m | T_{m-1}] \neq 0 \)

- Investor can choose \(\Delta_m \to \pm \infty \)

- Nature would have unbounded loss!

But now the algorithm is completely irrelevant!
Step II: Martingale

\[
\sup_{X \in \mathcal{X}} \inf_{A \in A} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

Now \(\{T_m\} \) must be a martingale sequence

- Assume not: \(\mathbb{E}[T_m | T_{m-1}] \neq 0 \)
- Investor can choose \(\Delta_m \to \pm \infty \)
- Nature would have unbounded loss!

But now the algorithm is completely irrelevant!
Step II: Martingale

\[
\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

Now \(\{T_m\} \) must be a martingale sequence

- Assume not: \(\mathbb{E}[T_m|T_{m-1}] \neq 0 \)
- Investor can choose \(\Delta_m \to \pm \infty \)
- Nature would have unbounded loss!

But now the algorithm is completely irrelevant!
Step II: Martingale

\[
\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

Now \(\{T_m\} \) must be a martingale sequence

- Assume not: \(\mathbb{E}[T_m|T_{m-1}] \neq 0 \)
- Investor can choose \(\Delta_m \to \pm \infty \)
- Nature would have unbounded loss!

But now the algorithm is completely irrelevant!
Step II: Martingale

\[
\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]
\]

Now \(\{T_m\} \) must be a martingale sequence

- Assume not: \(\mathbb{E}[T_m|T_{m-1}] \neq 0 \)
- Investor can choose \(\Delta_m \to \pm \infty \)
- Nature would have unbounded loss!

But now the algorithm is completely irrelevant!
Step III: Max Variance

\[
\sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) \right].
\]

When \(g \) is convex, Nature wants to maximize variance

\[
\mathbb{E}[T_m^2 | T_{m-1}] = \frac{c}{n}
\]

Similar reasoning to the Maximum Principle.
Step III: Max Variance

$$\sup_{X \in \mathcal{X}} \{T_m\} \text{ mtg.} \quad \mathbb{E} \left[g(X(1)) \right]$$

When g is convex, Nature wants to maximize variance

$$\mathbb{E} [T_m^2 | T_{m-1}] = \frac{c}{n}$$

Similar reasoning to the Maximum Principle
Step III: Max Variance

\[\sup_{X \in \mathcal{X}} \left\{ T_m \right\} \text{mtg.} \quad \mathbb{E} \left[g(X(1)) \right] \]

When \(g \) is convex, Nature wants to maximize variance

\[\mathbb{E} \left[T_m^2 | T_{m-1} \right] = \frac{c}{n} \]

Similar reasoning to the Maximum Principle
Step IV: Central Limit Theorem

Let X^*_n be Natures OPT price path at n

*Martingale sequence with conditional variance c/n

Applying a martingale CLT: Lindeberg–Feller Theorem

Theorem

As $n \to \infty$, $X^*_n \xrightarrow{d} GBM$

Corollary

As $n \to \infty$, $\mathbb{E}[g(X^*_n(1))] \to \mathbb{E}[g(GBM(1))]$
Step IV: Central Limit Theorem

Let X^*_n be Natures OPT price path at n

Martingale sequence with conditional variance c/n

Applying a martingale CLT: *Lindeberg–Feller Theorem*

Theorem

As $n \to \infty$, $X^*_n \xrightarrow{d} GBM$

Corollary

As $n \to \infty$, $\mathbb{E}[g(X^*_n(1))] \xrightarrow{} \mathbb{E}[g(GBM(1))]$

Value of the game Black-Scholes price!
Step IV: Central Limit Theorem

Let X^*_n be Natures OPT price path at n

Martingale sequence with conditional variance c/n

Applying a martingale CLT: Lindeberg–Feller Theorem

Theorem

As $n \to \infty$, $X^*_n \overset{d}{\to} GBM$

Corollary

As $n \to \infty$, $\mathbb{E}\left[g(X^*_n(1))\right] \to \mathbb{E}\left[g(GBM(1))\right]$

Value of the game Black-Scholes price!
Step IV: Central Limit Theorem

Let X_n^* be Natures OPT price path at n

Martingale sequence with conditional variance c/n

Applying a martingale CLT: \textit{Lindeberg–Feller Theorem}

\begin{itemize}
 \item \textbf{Theorem}
 \begin{align*}
 \text{As } n \to \infty, \quad X_n^* & \xrightarrow{d} GBM
 \end{align*}
 \\
 \item \textbf{Corollary}
 \begin{align*}
 \text{As } n \to \infty, \quad \mathbb{E} \left[g(X_n^*(1)) \right] & \to \mathbb{E} \left[g(GBM(1)) \right]
 \end{align*}
\end{itemize}

Value of the game Black-Scholes price!
Step IV: Central Limit Theorem

Let X_n^* be Natures OPT price path at n

Martingale sequence with conditional variance c/n

Applying a martingale CLT: Lindeberg–Feller Theorem

Theorem

As $n \to \infty$, $X_n^* \xrightarrow{d} GBM$

Corollary

As $n \to \infty$, $\mathbb{E}\left[g(X_n^*(1))\right] \to \mathbb{E}\left[g(GBM(1))\right]$

Value of the game Black-Scholes price!
What Just Happened?

Black-Scholes Option Pricing

- Assume stock \sim GBM
- Construct optimal replication strategy

$$\text{Price}(g) = \mathbb{E}[g(\text{GBM}(1))]$$

Minimax Option Pricing

- Assume stock is adversarial
- Analyze *dual* of the game
- Worst-case price path \rightarrow GBM

$$\text{Price}(g) = \mathbb{E}[g(\text{GBM}(1))]$$
What Just Happened?

Black-Scholes Option Pricing

- Assume stock \sim GBM
- Construct optimal replication strategy

$$\text{Price}(g) = \mathbb{E}[g(\text{GBM}(1))]$$

Minimax Option Pricing

- Assume stock is adversarial
- Analyze \textit{dual} of the game
- Worst-case price path \longrightarrow GBM

$$\text{Price}(g) = \mathbb{E}[g(\text{GBM}(1))]$$
Our constraint on Nature:

$$\mathbb{E}[T_m^2 | T_{m-1}] \leq \frac{c}{n}$$

[DeMarzo, Kremer, Mansour '08] use a *cumulative* constraint:

$$\sum_{m=1}^{n} \mathbb{E}[T_m^2 | T_{m-1}] \leq c$$

- Weaker constraint
- Allows for price jumps

GBM is continuous w.p. 1
Our constraint on Nature:

\[\mathbb{E} [T_{m}^2 | T_{m-1}] \leq \frac{c}{n} \]

[DeMarzo, Kremer, Mansour ’08] use a *cumulative* constraint:

\[\sum_{m=1}^{n} \mathbb{E} [T_{m}^2 | T_{m-1}] \leq c \]

- Weaker constraint
- Allows for price jumps

GBM is continuous w.p. 1
Our constraint on Nature:

$$\mathbb{E}[T_m^2 | T_{m-1}] \leq \frac{c}{n}$$

[DeMarzo, Kremer, Mansour ’08] use a cumulative constraint:

$$\sum_{m=1}^{n} \mathbb{E}[T_m^2 | T_{m-1}] \leq c$$

- Weaker constraint
- Allows for price jumps

GBM is continuous w.p. 1
Still Obtain Black-Scholes Price?

From [DeMarzo, Kremer, Mansour ’08]:

![Graph showing the comparison of Black-Scholes, optimal bound, and learning algorithm for option value against strike price.](image-url)
Some Speculation

We believe:

- \(X_n^* \rightarrow \text{GBM} \)
- \(X_n^*(1) \rightarrow \text{GBM}(1) \)

Hence, we would still obtain the Black-Scholes price!

Proof ideas:

- \(\text{support}(T_m) = 2 \) in dual game
- Optimal \(\Delta_m \) balances these two points
- Then \(\Delta_m \) is a discrete derivative of \(V \)
- This \(V \) approaches Black-Scholes \(V \), and \(\Delta_m \) approaches the delta-hedge portfolio!
Some Speculation

We believe:

- $X_n^* \not\rightarrow \text{GBM}$
- $X_n^*(1) \rightarrow \text{GBM}(1)$

Hence, we would still obtain the Black-Scholes price!

Proof ideas:

- $\text{support}(T_m) = 2$ in dual game
- Optimal Δ_m balances these two points
- Then Δ_m is a discrete derivative of V
- This V approaches Black-Scholes V, and Δ_m approaches the delta-hedge portfolio!
Consider the value function for this game:

\[
V_n(S, n) := g(S)
\]
\[
V_n(S, m) := \inf_\Delta \sup_{t \in [-z, z]} \Delta t + V_n(S(1 + t), m - 1)
\]

And let \(\Delta = \Delta(S, m) \) be the optimal investment for Investor

Lemma

If \(\Delta = \Delta(S, m) \), then Nature's sup \(t \) is achieved by at least two points \(t_1, -t_2 \) with \(t_1, t_2 > 0 \)
Consider the value function for this game:

\[V_n(S, n) := g(S) \]

\[V_n(S, m) := \inf_{\Delta \in \mathbb{R}} \sup_{t \in [-z, z]} \Delta t + V_n\left(S(1 + t), m - 1\right) \]

And let \(\Delta = \Delta(S, m) \) be the optimal investment for Investor

Lemma

If \(\Delta = \Delta(S, m) \), then Nature’s \(\sup_t \) is achieved by at least two points \(t_1, -t_2 \) with \(t_1, t_2 > 0 \)
Consider the value function for this game:

\[V_n(S, n) := g(S) \]
\[V_n(S, m) := \inf_{\Delta \in \mathbb{R}} \sup_{t \in [-z, z]} \Delta t + V_n(S(1 + t), m - 1) \]

And let \(\Delta = \Delta(S, m) \) be the optimal investment for Investor.

Lemma

If \(\Delta = \Delta(S, m) \), then Nature's \(\sup_t \) is achieved by at least two points \(t_1, -t_2 \) with \(t_1, t_2 > 0 \).
By the Lemma, Δ must balance $V_n(S, m - 1)$ at t_1 and $-t_2$:

$$V_n(S, m) = \Delta(S, m) t_1 + V_n(S(1 + t_1), m - 1)$$

$$= -\Delta(S, m) t_2 + V_n(S(1 - t_2), m - 1)$$

Solving for Δ:

$$\Delta(S, m) = \frac{V_n(S(1 - t_2), m - 1) - V_n(S(1 + t_1), m - 1)}{t_1 + t_2}$$

Foreshadowing

A discrete derivative... reminiscent of the delta-hedge portfolio!
By the Lemma, \(\Delta \) must *balance* \(V_n(S, m - 1) \) at \(t_1 \) and \(-t_2\):

\[
V_n(S, m) = \Delta(S, m) t_1 + V_n\left(S(1 + t_1), m - 1\right)
\]

\[
= -\Delta(S, m) t_2 + V_n\left(S(1 - t_2), m - 1\right)
\]

Solving for \(\Delta \):

\[
\Delta(S, m) = \frac{V_n\left(S(1 - t_2), m - 1\right) - V_n\left(S(1 + t_1), m - 1\right)}{t_1 + t_2}
\]

Foreshadowing

A discrete derivative... reminiscent of the delta-hedge portfolio!
By the Lemma, Δ must *balance* $V_n(S, m - 1)$ at t_1 and $-t_2$:

\[
V_n(S, m) = \Delta(S, m) t_1 + V_n\left(S(1 + t_1), m - 1\right)
\]

\[
= -\Delta(S, m) t_2 + V_n\left(S(1 - t_2), m - 1\right)
\]

Solving for Δ:

\[
\Delta(S, m) = \frac{V_n\left(S(1 - t_2), m - 1\right) - V_n\left(S(1 + t_1), m - 1\right)}{t_1 + t_2}
\]

Foreshadowing

A discrete derivative... reminiscent of the delta-hedge portfolio!
Martingale??

Plugging Δ back in:

$$V_n(S, m) = \frac{t_1}{t_1 + t_2} V_n(S(1-t_2), m-1) + \frac{t_2}{t_1 + t_2} V_n(S(1+t_1), m-1)$$

Introduce a random variable $T = \begin{cases} t_1 & \text{w.p. } \frac{t_2}{t_1 + t_2} \\ -t_2 & \text{w.p. } \frac{t_1}{t_1 + t_2} \end{cases}$

Note $\mathbb{E}[T] = 0$

$$V_n(S, m) = \mathbb{E}_T \left[V_n(S(1 + T), m - 1) \right]$$
Plugging Δ back in:

$$V_n(S, m) = \frac{t_1}{t_1 + t_2} V_n(S(1-t_2), m-1) + \frac{t_2}{t_1 + t_2} V_n(S(1+t_1), m-1)$$

Introduce a random variable $T = \begin{cases} t_1 & \text{w.p. } \frac{t_2}{t_1 + t_2} \\ -t_2 & \text{w.p. } \frac{t_1}{t_1 + t_2} \end{cases}$

Note $\mathbb{E}[T] = 0$

$$V_n(S, m) = \mathbb{E}_T \left[V_n(S(1+T), m-1) \right]$$
Martingale??

Plugging Δ back in:

$$V_n(S, m) = \frac{t_1}{t_1 + t_2} V_n(S(1-t_2), m-1) + \frac{t_2}{t_1 + t_2} V_n(S(1+t_1), m-1)$$

Introduce a random variable $T = \begin{cases} t_1 & \text{w.p. } \frac{t_2}{t_1 + t_2} \\ -t_2 & \text{w.p. } \frac{t_1}{t_1 + t_2} \end{cases}$

Note $\mathbb{E}[T] = 0$

$$V_n(S, m) = \mathbb{E}_T \left[V_n(S(1 + T), m - 1) \right]$$
Applying this at every round:

$$V_n(S, 0) = \mathbb{E} \left[V_n \left(S \cdot \prod_{m=1}^{n} (1 + T_m), n \right) \right]$$

= \mathbb{E} \left[g \left(S \cdot \prod_{m=1}^{n} (1 + T_m) \right) \right]

Conjectures

1. $V_n(S, n) \longrightarrow V_{B-S}(S, 1)$
2. $\Delta(S, m) \longrightarrow \frac{\partial}{\partial S} V_{B-S}(S, \frac{m}{n})$
thank you