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1 Week 1

1.1 Lecture 1: 8-24-09

The following notation will be used throughout the course:

• Probability density function (pdf): f

• Cumulative distribution function (cdf): F

1.1.1 Basic Definitions

When we say that a random variable X has a “probability density function,” we mean one of two things:

1. If X is discrete, then X has a probability mass function f (x), where f (x) = P(X = x). The probability mass
function tells us the likelihood of the random variable X taking on the value x.

2. If X is continuous, then the probability density function is defined differently out of necessity. Because P(X =
x) = 0 for all x, it makes no sense to define f (x) as we did in the discrete case. Consequently, we are interested in
P(a < X ≤ b), the probability that X falls within the range [a,b). Thus, we define a probability density function

f (x) for continuous random variables in terms area: P(a < X ≤ b) =
b∫

a

f (x)dx.

Whether X is discrete or continuous, the cumulative distribution function is defined as F(x) = P(X ≤ x) (the probability
that X takes on a value less than or equal to x).

• If X is continuous, F(x) = P(X ≤ x) =
x∫

−∞

f (u)du

• If X is discrete, F(x) =
x

∑
u=−∞

P(X = u)

A probability density function is the derivative of a corresponding cumulative distribution function, meaning f (x) =
d
dx F(x). Note that if X is discrete and x ∈ Z, f (x) = F(x)−F(x−1).
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1.1.2 The Geometric Distribution

Consider a sequence of independent trials in an experiment where each trial can be a “success” or “failure” (abbreviated
S or F). As a side note, the sequence of trials is often called a Bernoulli process and each trial in the sequence is called
a Bernoulli trial. In each trial, let the probability of success be p, where 0≤ p≤ 1. Let X be the number of trials till
the first success. The following is the probability mass function of X :

P(X = 1) = p
P(X = 2) = (1− p)p

...

P(X = x) =
{

(1− p)x−1 p for x = 1,2,3 . . .
0 otherwise

Intuitively, (1− p) is the probability of failure on a trial, so (1− p)x−1 is the probability of x−1 consecutive failures.
Thus (1− p)x−1 p is the probability of x−1 consecutive failures followed by a success. This probability mass function
is called the geometric distribution.

Some textbooks define the geometric distribution in terms of the number of failures before the first success. Under
this assumption, we have P(X = x) = (1− p)x p where x = 0,1,2 . . .. The range of x starts at 0 because it is possible to
succeed on the first trial, hence have no failures.

We usually say that X ∼ geom(p), where the tilda means “has the distribution.”

1.1.3 The Exponential Distribution

Imagine sitting at the door to a bank. Assume that the arrival rate of people is 4.3 customers per minute. Also assume
that the number of arrivals in 2 non-overlapping periods of time are independent. Let X be the time between any two
consecutive arrivals. We can (but won’t) show that f (x) = 4.3e−4.3x, where x > 0. X is said to have the exponential
distribution with rate 4.3, X ∼ exp(rate = 4.3). The mean inter-arrival time is the inverse of the arrival rate.

1.1.4 Indicator Notation

Let A be a set. The indicator function I for A is defined as:

IA(x) =
{

1 if x ∈ A
0 if x /∈ A

Example: Let X ∼ geom(p). The probability mass function written in indicator notation is f (x)= (1− p)x−1 pI{0,1,...}(x)

1.2 Lecture 2: 8-26-09

1.2.1 Marginal Probability Density Functions

Suppose that X and Y are continuous random variables with joint probability distribution function f (x,y). The

marginal probability distribution function for X is fx(x) =
∞∫
−∞

f (x,y)dy. Similarly, the marginal for Y is fy(y) =
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∞∫
−∞

f (x,y)dx. In both cases, we are integrating with respect to the variable we want to get rid of. Although we are inte-

grating from negative to positive infinity, the pdf’s may only have a small support (part of domain where the function
is non-zero).

1.2.2 Independence

X and Y are independent if and only if f (x,y) = fx(x) fy(y)

Example: Let X and Y have joint pdf f (x,y) = xy, where 0 < x < 1 and 0 < y < 2. Implicitly, f is 0 outside of this
range. The marginals of X and Y are:

fx(x) =
∞∫
−∞

f (x,y)dy =
2∫

0

(xy)dy =
(
.5xy2) |20 = 2x where 0 < x < 1

fy(y) =
∞∫
−∞

f (x,y)dx =
1∫

0

(xy)dx =
1
2

y where 0 < y < 2

fx(x) fy(y) = f (x,y)

Therefore, X and Y are independent.

Example: Let f (x,y) = 8xy, where 0 < x < y < 1.

fx(x) =
∞∫
−∞

f (x,y)dy =
1∫

x

(8xy)dy =
(
4xy2) |1x = 4x

(
1− x2) where 0 < x < 1

fy(y) =
∞∫
−∞

f (x,y)dx =
y∫

0

(8xy)dx = 4y3

fx(x) fy(y) 6= f (x,y)

Therefore, X and Y are not independent.

It is not always the case that a messy Indicator Function (as in the above example) implies non-independence.

Consider f (x,y) = stuff that factors I(0,∞) (xy) I(0,∞) (y− xy). By graphing out where those two indicator functions are
“on” (e.g. where is xy in the range (0,∞)), we can simplify the indicator notation to I(0,1) (x) I(0,∞) (y). Since the stuff
in front of the indicator notation factors (by assumption) and the indicator functions form a rectangular region, the X
and Y are independent.

1.2.3 Finding Distributions of Transformations of Random Variables

Example: Suppose X is a discrete random variable, X ∼ geom(p). Find the pdf of y = 5x.

fy (y) = P(Y = y) = P(5X = y) = P
(

X =
y
5

)
= fx

( y
5

)
= (1− p)

y
5−1 pI{1,2,...}

( y
5

)
= (1− p)

y
5−1 pI{5,10,...} (y)
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The above approach only works in the discrete case, since P(X = x) = 0 for a continuous random variable. To find the
distribution of a transformation of a continuous random variable, you need to work with the cumulative distribution
function and then take its derivative (because fy(y) = d

dy Fy(y)).

Example: Assume X has pdf fx(x) and cdf Fx(x) and that Y = g(X). g is our transformation function. Although it isn’t
always going to be true, for now, assume g is invertible. We know the following:

g is increasing↔ g−1 is increasing
g is decreasing↔ g−1 is decreasing

How do we write the pdf for y? We must evaluate the increasing/decreasing cases of g separately (ultimately they’ll
be proven to be the same).

Case 1: g is increasing: Fy(y) = P(Y ≤ y) = P(g(x)≤ y) = P(g−1(g(x))≤ g−1) = P(x≤ g−1(y)) = Fx(g−1(y)). This
just means that the cdf of Y is the cdf of X transformed by g−1(y). Because of this, we can write the pdf of y in terms
of the pdf of x:

fy (y) =
d
dy

Fy (y) =
d
dy

Fx
(
g−1 (y)

)
= F ′x

(
g−1 (y)

) d
dy

g−1 (y) = fx
(
g−1 (y)

) d
dy

g−1 (y)

Case 2: g is increasing: We ran out of time in class, but just assert for now that fy(y) = fx(g−1(y))
∣∣∣ d

dy g−1(y)
∣∣∣

1.3 Lecture 3: 8-28-09

1.3.1 Integration

In this class, we rarely need to do integration. What integration we have to do can often be rewritten as a known
distribution (hence with an integral of 1).

Example:

∞∫
0

e−x2
dx =

1
2

∞∫
−∞

e−x2
dx

This looks sort-of like a normal distribution with mean 0 and variance .5. Let’s now rewrite it as a normal distribution
and solve it:

1
2

√
2π

1
2

∞∫
−∞

(
2π

1
2

)− 1
2

e−x2
dx =

1
2
√

π

∞∫
−∞

N
(

0,
1
2

)
=

1
2
√

π

1.3.2 Finding Distributions of Transformations of Random Variables (cont.)

Last lecture, we did not finish showing that when g is decreasing, we get the same result as if it were increasing.

Because g is decreasing, we know that Fy(y) = P(Y ≤ y) = P(g(x)≤ y). Because g−1 is also decreasing and probabil-
ities sum to 1, we know that P(x≥ g−1(y)) = 1−P(x < g−1(y)).
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So, the pdf is given by:

fy(y) =
d
dy

Fy(y) =
d
dy

[
1−Fx(g−1(y))

]
= 0−F ′x(g

−1(y))
d
dy

g−1(y) =− fx(g−1(y))
d
dy

g−1(y)

Since g−1(y) < 0, the above quantity is positive1. Thus we can conclude that whether g is increasing or decreasing,
the pdf after the transformation g is:

fy(y) = fx(g−1(y))
∣∣∣∣ d
dy

g−1(y)
∣∣∣∣

1.3.3 Gamma Distribution

Suppose that X has a gamma distribution with parameters α and β. We write X ∼ Γ(α,β). The pdf for a gamma
distribution is:

fx (x) =
1

Γ(α)
β

αxα−1e−βxI(0,∞) (x)

Example similar to homework 1, problems 2 and 3:

Suppose Y = 5X . Find the distribution and name it. Solution: We have y = g(x) = 5x⇒ x = g−1(y) = y
5 . We find that:

fy(y) = fx(g−1(y))
∣∣∣∣ d
dy

g−1(y)
∣∣∣∣= ( 1

Γ(α)
β

α

( y
5

)α−1
e−

βy
5 I(0,∞)

( y
5

)) 1
5

fy(y) =
1

Γ(α)

(
β

5

)α

yα−1e−
βy
5 I(0,∞) (y)

Therefore, y∼ Γ

(
α, β

5

)
.

1.3.4 Gamma Function

What is this mysterious Γ(α) we used in defining the gamma distribution? It is given by:

Γ(α) =
∞∫

0

xα−1e−xdx

Some basic properties of the gamma function:

1. Γ(1) = 1
2. Γ(α) = (α−1)Γ(α−1).
3. If n is a positive integer, Γ(n) = (n−1)!

1How do we know g-inverse is negative??
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1.3.5 Bivariate to Bivariate Transformations

Given X1 and X2 with joint probability density function fx1x2(x1,x2), we want to go to Y1 and Y2 with joint probability
density function fy1y2(y1,y2), where y1 = g1(x1,x2) and y2 = g2(x1,x2). This is like what we did previously, but for
two random variables.

The analog of d
dy g−1(y) is the (backward) Jacobian of the transformation:

JB =

∣∣∣∣∣ dx1
dy1

dx1
dy2

dx2
dy1

dx2
dy2

∣∣∣∣∣
The vertical bars indicate that we’re taking the determinant of the matrix of partial derivatives.

2 Week 2

2.1 Lecture 4: 8-31-09

2.1.1 Bivariate to Bivariate Transformations

This is picking up from where we left off last time.

We have:

fy1y2 (y1,y2) = fx1x2

(
g−1

1 (y1,y2) ,g−1
1 (y1,y2)

)
|JB|

Note that |JB| is the absolute value of the backward Jacobian. The backward Jacobian is just a number. It is a function
of y1 and y2 (a forward Jacobian would have been a function of x1 and x2).

2.1.2 A Very Long Example

• Let X1,X2 ∼ Γ(α,β) where X1 and X2 are identically and independently distributed (iid).
• Find the distribution of Y = X1

X1+X2
.

To do this define, y1 = x1
x1+x2

and y2 = anything. We’ll find fy1y2 and marginalize out y2:

fy1 (y1) =
∞∫
−∞

fy1y2 (y1,y2)dy2

For convenience, we’ll set y2 = the denominator of Y = x1 + x2. Since x1 and x2 are independent,
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fx1x2 (x1,x2) = fx1 (x1) fx2 (x2)

=
(

1
Γ(α)βαxα−1

1 e−βx1 I(0,∞) (x1)
)(

1
Γ(α)βαxα−1

2 e−βx2 I(0,∞) (x2)
)

= 1
(Γ(α))2 β2α (x1x2)

α−1 e−β(x1+x2)I(0,∞) (x1) I(0,∞) (x2)

Now we write x1 and x2 in terms of y1 and y2. In other words, we are finding g−1
1 (y1,y2) and g−1

2 (y1,y2).

y1 = g1(x1,x2) =
x1

x1 + x2

y2 = g2(x1,x2) = x1 + x2

y1 =
x1

y2

x1 = y1y2 = g−1
1 (y1,y2)

x2 = y2− x1 = y2− y1y2 = g−1
2 (y1,y2)

Since x1 = y1y2 and x2 = y2− y1y2, the backward Jacobian is given by:

JB =

∣∣∣∣∣ dx1
dy1

dx1
dy2

dx2
dy1

dx2
dy2

∣∣∣∣∣=
∣∣∣∣ y2 y1
−y2 (1− y1)

∣∣∣∣= y2 (1− y1)− (−y1y2) = y2

Using the expression we found earlier for fx1x2 (x1,x2) and also the previously derived fact that

fy1y2 (y1,y2) = fx1x2

(
g−1

1 (y1,y2) ,g−1
1 (y1,y2)

)
|JB|

We can now say that

fy1y2 (y1,y2) = 1
(Γ(α))2 β2α (y1y2 (y2− y1y2))

α−1 e−β(y1y2+y2−y1y2)I(0,∞) (y1y2) I(0,∞) (y2− y1y2) |y2|

= |y2| 1
(Γ(α))2 β2α (y2)

2α−2 [y1 (1− y1)]
α−1 e−βy2 I(0,1) (y1) I(0,∞) (y2)

= 1
(Γ(α))2 β2α (y2)

2α−1 [y1 (1− y1)]
α−1 e−βy2 I(0,1) (y1) I(0,∞) (y2)

In that last step, we moved the |y| into the y2α−2
2 term. Because of the indicator function, we do not need to worry about

y2 being negative and can drop the absolute value. Now we can finally marginalize out y2 from the joint probability
density function. This is done as follows:
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fy1 (y1) =
∞∫
−∞

fy1y2 (y1,y2)dy2

=
∞∫

0

1

(Γ(α))2 β
2αy2α−1

2 [y1 (1− y1)]
α−1 e−βy2 I(0,1) (y1) dy2

= 1
(Γ(α))2 β2αI(0,1) (y1) [y1 (1− y1)]

α−1
∞∫

0

y2α−1
2 e−βy2 dy2

Note that the indicator function for y2 is no longer needed, since we are integrating over its support. Also note that the
integrand is basically Γ(2α,β) sans some constants. Our job now is to give it those constants so that we don’t have to
do a messy integration. We will multiply the outside of the integral by Γ(2α) and divide the inside by the inverse of
that. We also will move β2α inside the integrand.

fy1 (y1) = Γ(2α)
(Γ(α))2 I(0,1) (y1) [y1 (1− y1)]

α−1
∞∫

0

1
Γ(2α)

β
2αy2α−1

2 e−βy2 dy2

= Γ(2α)
(Γ(α))2 I(0,1) (y1) [y1 (1− y1)]

α−1
∞∫

0

Γ(2α,β)

= Γ(2α)
(Γ(α))2 [y1 (1− y1)]

α−1 I(0,1) (y1)

= Γ(2α)
(Γ(α))2 yα−1

1 (1− y1)
α−1 I(0,1) (y1)

Y ∼ β(α,al pha)
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