APPM 5520: Introduction to Mathematical Statistics Course Notes

Robert Lindsey

Fall 2009

1 Week 1

1.1 Lecture 1: 8-24-09

The following notation will be used throughout the course:

- Probability density function (pdf): f
- Cumulative distribution function (cdf): F

1.1.1 Basic Definitions

When we say that a random variable X has a "probability density function," we mean one of two things:

1. If X is discrete, then X has a probability mass function $f(x)$, where $f(x)=P(X=x)$. The probability mass function tells us the likelihood of the random variable X taking on the value x.
2. If X is continuous, then the probability density function is defined differently out of necessity. Because $P(X=$ $x)=0$ for all x, it makes no sense to define $f(x)$ as we did in the discrete case. Consequently, we are interested in $P(a<X \leq b)$, the probability that X falls within the range $[a, b)$. Thus, we define a probability density function $f(x)$ for continuous random variables in terms area: $P(a<X \leq b)=\int_{a}^{b} f(x) d x$.

Whether X is discrete or continuous, the cumulative distribution function is defined as $F(x)=P(X \leq x)$ (the probability that X takes on a value less than or equal to x).

- If X is continuous, $F(x)=P(X \leq x)=\int_{-\infty}^{x} f(u) d u$
- If X is discrete, $F(x)=\sum_{u=-\infty}^{x} P(X=u)$

A probability density function is the derivative of a corresponding cumulative distribution function, meaning $f(x)=$ $\frac{d}{d x} F(x)$. Note that if X is discrete and $x \in \mathbb{Z}, f(x)=F(x)-F(x-1)$.

1.1.2 The Geometric Distribution

Consider a sequence of independent trials in an experiment where each trial can be a "success" or "failure" (abbreviated S or F). As a side note, the sequence of trials is often called a Bernoulli process and each trial in the sequence is called a Bernoulli trial. In each trial, let the probability of success be p, where $0 \leq p \leq 1$. Let X be the number of trials till the first success. The following is the probability mass function of X :

$$
\begin{aligned}
P(X=1) & =p \\
P(X=2) & =(1-p) p \\
& \vdots \\
P(X=x) & = \begin{cases}(1-p)^{x-1} p & \text { for } \mathrm{x}=1,2,3 \ldots \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Intuitively, $(1-p)$ is the probability of failure on a trial, so $(1-p)^{x-1}$ is the probability of $x-1$ consecutive failures. Thus $(1-p)^{x-1} p$ is the probability of $x-1$ consecutive failures followed by a success. This probability mass function is called the geometric distribution.

Some textbooks define the geometric distribution in terms of the number of failures before the first success. Under this assumption, we have $P(X=x)=(1-p)^{x} p$ where $x=0,1,2 \ldots$. The range of x starts at 0 because it is possible to succeed on the first trial, hence have no failures.

We usually say that $X \sim$ geom (p), where the tilda means "has the distribution."

1.1.3 The Exponential Distribution

Imagine sitting at the door to a bank. Assume that the arrival rate of people is 4.3 customers per minute. Also assume that the number of arrivals in 2 non-overlapping periods of time are independent. Let X be the time between any two consecutive arrivals. We can (but won't) show that $f(x)=4.3 e^{-4.3 x}$, where $x>0 . X$ is said to have the exponential distribution with rate 4.3, $X \sim \exp ($ rate $=4.3)$. The mean inter-arrival time is the inverse of the arrival rate.

1.1.4 Indicator Notation

Let A be a set. The indicator function I for A is defined as:

$$
I_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

Example: Let $X \sim \operatorname{geom}(p)$. The probability mass function written in indicator notation is $f(x)=(1-p)^{x-1} p \mathbf{I}_{\{0,1, \ldots\}}(x)$

1.2 Lecture 2: 8-26-09

1.2.1 Marginal Probability Density Functions

Suppose that X and Y are continuous random variables with joint probability distribution function $f(x, y)$. The marginal probability distribution function for X is $f_{x}(x)=\int_{-\infty}^{\infty} f(x, y) d y$. Similarly, the marginal for Y is $f_{y}(y)=$
$\int_{-\infty}^{\infty} f(x, y) d x$. In both cases, we are integrating with respect to the variable we want to get rid of. Although we are integrating from negative to positive infinity, the pdf's may only have a small support (part of domain where the function is non-zero).

1.2.2 Independence

X and Y are independent if and only if $f(x, y)=f_{x}(x) f_{y}(y)$
Example: Let X and Y have joint pdf $f(x, y)=x y$, where $0<x<1$ and $0<y<2$. Implicitly, f is 0 outside of this range. The marginals of X and Y are:

$$
\begin{aligned}
f_{x}(x) & =\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{2}(x y) d y=\left.\left(.5 x y^{2}\right)\right|_{0} ^{2}=2 x & & \text { where } 0<x<1 \\
f_{y}(y) & =\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{1}(x y) d x=\frac{1}{2} y & & \text { where } 0<y<2 \\
f_{x}(x) f_{y}(y) & =f(x, y) & &
\end{aligned}
$$

Therefore, X and Y are independent.
Example: Let $f(x, y)=8 x y$, where $0<x<y<1$.

$$
\begin{aligned}
f_{x}(x) & =\int_{-\infty}^{\infty} f(x, y) d y=\int_{x}^{1}(8 x y) d y=\left.\left(4 x y^{2}\right)\right|_{x} ^{1}=4 x\left(1-x^{2}\right) \quad \text { where } 0<x<1 \\
f_{y}(y) & =\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{y}(8 x y) d x=4 y^{3} \\
f_{x}(x) f_{y}(y) & \neq f(x, y)
\end{aligned}
$$

Therefore, X and Y are not independent.
It is not always the case that a messy Indicator Function (as in the above example) implies non-independence.
Consider $f(x, y)=$ stuff that factors $I_{(0, \infty)}(x y) I_{(0, \infty)}(y-x y)$. By graphing out where those two indicator functions are "on" (e.g. where is $x y$ in the range $(0, \infty)$), we can simplify the indicator notation to $I_{(0,1)}(x) I_{(0, \infty)}(y)$. Since the stuff in front of the indicator notation factors (by assumption) and the indicator functions form a rectangular region, the X and Y are independent.

1.2.3 Finding Distributions of Transformations of Random Variables

Example: Suppose X is a discrete random variable, $X \sim$ geom (p). Find the pdf of $y=5 x$.

$$
f_{y}(y)=P(Y=y)=P(5 X=y)=P\left(X=\frac{y}{5}\right)=f_{x}\left(\frac{y}{5}\right)=(1-p)^{\frac{y}{5}-1} p \mathbf{I}_{\{1,2, \ldots\}}\left(\frac{y}{5}\right)=(1-p)^{\frac{y}{5}-1} p \mathbf{I}_{\{5,10, \ldots\}}(y)
$$

The above approach only works in the discrete case, since $P(X=x)=0$ for a continuous random variable. To find the distribution of a transformation of a continuous random variable, you need to work with the cumulative distribution function and then take its derivative (because $f_{y}(y)=\frac{d}{d y} F_{y}(y)$).

Example: Assume X has pdf $f_{x}(x)$ and $\operatorname{cdf} F_{x}(x)$ and that $Y=g(X) . g$ is our transformation function. Although it isn't always going to be true, for now, assume g is invertible. We know the following:

$$
\begin{aligned}
& g \text { is increasing } \leftrightarrow g^{-1} \text { is increasing } \\
& g \text { is decreasing } \leftrightarrow g^{-1} \text { is decreasing }
\end{aligned}
$$

How do we write the pdf for y ? We must evaluate the increasing/decreasing cases of g separately (ultimately they'll be proven to be the same).

Case 1: g is increasing: $F_{y}(y)=P(Y \leq y)=P(g(x) \leq y)=P\left(g^{-1}(g(x)) \leq g^{-1}\right)=P\left(x \leq g^{-1}(y)\right)=F_{x}\left(g^{-1}(y)\right)$. This just means that the cdf of Y is the cdf of X transformed by $g^{-1}(y)$. Because of this, we can write the pdf of y in terms of the pdf of x :

$$
f_{y}(y)=\frac{d}{d y} F_{y}(y)=\frac{d}{d y} F_{x}\left(g^{-1}(y)\right)=F_{x}^{\prime}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y)=f_{x}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y)
$$

Case 2: g is increasing: We ran out of time in class, but just assert for now that $f_{y}(y)=f_{x}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|$

1.3 Lecture 3: 8-28-09

1.3.1 Integration

In this class, we rarely need to do integration. What integration we have to do can often be rewritten as a known distribution (hence with an integral of 1).

Example:

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

This looks sort-of like a normal distribution with mean 0 and variance .5 . Let's now rewrite it as a normal distribution and solve it:

$$
\frac{1}{2} \sqrt{2 \pi \frac{1}{2}} \int_{-\infty}^{\infty}\left(2 \pi \frac{1}{2}\right)^{-\frac{1}{2}} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi} \int_{-\infty}^{\infty} N\left(0, \frac{1}{2}\right)=\frac{1}{2} \sqrt{\pi}
$$

1.3.2 Finding Distributions of Transformations of Random Variables (cont.)

Last lecture, we did not finish showing that when g is decreasing, we get the same result as if it were increasing.
Because g is decreasing, we know that $F_{y}(y)=P(Y \leq y)=P(g(x) \leq y)$. Because g^{-1} is also decreasing and probabilities sum to 1 , we know that $P\left(x \geq g^{-1}(y)\right)=1-P\left(x<g^{-1}(y)\right)$.

So, the pdf is given by:

$$
f_{y}(y)=\frac{d}{d y} F_{y}(y)=\frac{d}{d y}\left[1-F_{x}\left(g^{-1}(y)\right)\right]=0-F_{x}^{\prime}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y)=-f_{x}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y)
$$

Since $g^{-1}(y)<0$, the above quantity is positive ${ }^{1}$ Thus we can conclude that whether g is increasing or decreasing, the pdf after the transformation g is:

$$
f_{y}(y)=f_{x}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|
$$

1.3.3 Gamma Distribution

Suppose that X has a gamma distribution with parameters α and β. We write $X \sim \Gamma(\alpha, \beta)$. The pdf for a gamma distribution is:

$$
f_{x}(x)=\frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha-1} e^{-\beta x} I_{(0, \infty)}(x)
$$

Example similar to homework 1, problems 2 and 3:
Suppose $Y=5 X$. Find the distribution and name it. Solution: We have $y=g(x)=5 x \Rightarrow x=g^{-1}(y)=\frac{y}{5}$. We find that:

$$
\begin{gathered}
f_{y}(y)=f_{x}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|=\left(\frac{1}{\Gamma(\alpha)} \beta^{\alpha}\left(\frac{y}{5}\right)^{\alpha-1} e^{-\frac{\beta y}{5}} I_{(0, \infty)}\left(\frac{y}{5}\right)\right) \frac{1}{5} \\
f_{y}(y)=\frac{1}{\Gamma(\alpha)}\left(\frac{\beta}{5}\right)^{\alpha} y^{\alpha-1} e^{-\frac{\beta y}{5}} I_{(0, \infty)}(y)
\end{gathered}
$$

Therefore, $y \sim \Gamma\left(\alpha, \frac{\beta}{5}\right)$.

1.3.4 Gamma Function

What is this mysterious $\Gamma(\alpha)$ we used in defining the gamma distribution? It is given by:

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
$$

Some basic properties of the gamma function:

1. $\Gamma(1)=1$
2. $\Gamma(\alpha)=(\alpha-1) \Gamma(\alpha-1)$.
3. If n is a positive integer, $\Gamma(n)=(n-1)$!
[^0]
1.3.5 Bivariate to Bivariate Transformations

Given X_{1} and X_{2} with joint probability density function $f_{x_{1} x_{2}}\left(x_{1}, x_{2}\right)$, we want to go to Y_{1} and Y_{2} with joint probability density function $f_{y_{1} y_{2}}\left(y_{1}, y_{2}\right)$, where $y_{1}=g_{1}\left(x_{1}, x_{2}\right)$ and $y_{2}=g_{2}\left(x_{1}, x_{2}\right)$. This is like what we did previously, but for two random variables.

The analog of $\frac{d}{d y} g^{-1}(y)$ is the (backward) Jacobian of the transformation:

$$
\mathbf{J}_{\mathbf{B}}=\left|\begin{array}{ll}
\frac{d x_{1}}{d y_{1}} & \frac{d x_{1}}{d y_{2}} \\
\frac{d x_{2}}{d y_{1}} & \frac{d x_{2}}{d y_{2}}
\end{array}\right|
$$

The vertical bars indicate that we're taking the determinant of the matrix of partial derivatives.

2 Week 2

2.1 Lecture 4: 8-31-09

2.1.1 Bivariate to Bivariate Transformations

This is picking up from where we left off last time.
We have:

$$
f_{y_{1} y_{2}}\left(y_{1}, y_{2}\right)=f_{x_{1} x_{2}}\left(g_{1}^{-1}\left(y_{1}, y_{2}\right), g_{1}^{-1}\left(y_{1}, y_{2}\right)\right)\left|\mathbf{J}_{\mathbf{B}}\right|
$$

Note that $\left|\mathbf{J}_{\mathbf{B}}\right|$ is the absolute value of the backward Jacobian. The backward Jacobian is just a number. It is a function of y_{1} and y_{2} (a forward Jacobian would have been a function of x_{1} and x_{2}).

2.1.2 A Very Long Example

- Let $X_{1}, X_{2} \sim \Gamma(\alpha, \beta)$ where X_{1} and X_{2} are identically and independently distributed (iid).
- Find the distribution of $Y=\frac{X_{1}}{X_{1}+X_{2}}$.

To do this define, $y_{1}=\frac{x_{1}}{x_{1}+x_{2}}$ and $y_{2}=$ anything. We'll find $f_{y_{1} y_{2}}$ and marginalize out y_{2} :

$$
f_{y_{1}}\left(y_{1}\right)=\int_{-\infty}^{\infty} f_{y_{1} y_{2}}\left(y_{1}, y_{2}\right) d y_{2}
$$

For convenience, we'll set $y_{2}=$ the denominator of $\mathrm{Y}=x_{1}+x_{2}$. Since x_{1} and x_{2} are independent,

$$
\begin{aligned}
f_{x_{1} x_{2}}\left(x_{1}, x_{2}\right) & =f_{x_{1}}\left(x_{1}\right) f_{x_{2}}\left(x_{2}\right) \\
& =\left(\frac{1}{\Gamma(\alpha)} \beta^{\alpha} x_{1}^{\alpha-1} e^{-\beta x_{1}} I_{(0, \infty)}\left(x_{1}\right)\right)\left(\frac{1}{\Gamma(\alpha)} \beta^{\alpha} x_{2}^{\alpha-1} e^{-\beta x_{2}} I_{(0, \infty)}\left(x_{2}\right)\right) \\
& =\frac{1}{(\Gamma(\alpha))^{2}} \beta^{2 \alpha}\left(x_{1} x_{2}\right)^{\alpha-1} e^{-\beta\left(x_{1}+x_{2}\right)} I_{(0, \infty)}\left(x_{1}\right) I_{(0, \infty)}\left(x_{2}\right)
\end{aligned}
$$

Now we write x_{1} and x_{2} in terms of y_{1} and y_{2}. In other words, we are finding $g_{1}^{-1}\left(y_{1}, y_{2}\right)$ and $g_{2}^{-1}\left(y_{1}, y_{2}\right)$.

$$
\begin{gathered}
y_{1}=g_{1}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{x_{1}+x_{2}} \\
y_{2}=g_{2}\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \\
y_{1}=\frac{x_{1}}{y_{2}} \\
x_{1}=y_{1} y_{2}=g_{1}^{-1}\left(y_{1}, y_{2}\right) \\
x_{2}=y_{2}-x_{1}=y_{2}-y_{1} y_{2}=g_{2}^{-1}\left(y_{1}, y_{2}\right)
\end{gathered}
$$

Since $x_{1}=y_{1} y_{2}$ and $x_{2}=y_{2}-y_{1} y_{2}$, the backward Jacobian is given by:

$$
\mathbf{J}_{\mathbf{B}}=\left|\begin{array}{ll}
\frac{d x_{1}}{d y_{1}} & \frac{d x_{1}}{d y_{2}} \\
\frac{d x_{2}}{d y_{1}} & \frac{d x_{2}}{d y_{2}}
\end{array}\right|=\left|\begin{array}{cc}
y_{2} & y_{1} \\
-y_{2} & \left(1-y_{1}\right)
\end{array}\right|=y_{2}\left(1-y_{1}\right)-\left(-y_{1} y_{2}\right)=y_{2}
$$

Using the expression we found earlier for $f_{x_{1} x_{2}}\left(x_{1}, x_{2}\right)$ and also the previously derived fact that

$$
f_{y_{1} y_{2}}\left(y_{1}, y_{2}\right)=f_{x_{1} x_{2}}\left(g_{1}^{-1}\left(y_{1}, y_{2}\right), g_{1}^{-1}\left(y_{1}, y_{2}\right)\right)\left|\mathbf{J}_{\mathbf{B}}\right|
$$

We can now say that

$$
\begin{aligned}
f_{y_{1} y_{2}}\left(y_{1}, y_{2}\right) & =\frac{1}{(\Gamma(\alpha))^{2}} \beta^{2 \alpha}\left(y_{1} y_{2}\left(y_{2}-y_{1} y_{2}\right)\right)^{\alpha-1} e^{-\beta\left(y_{1} y_{2}+y_{2}-y_{1} y_{2}\right)} I_{(0, \infty)}\left(y_{1} y_{2}\right) I_{(0, \infty)}\left(y_{2}-y_{1} y_{2}\right)\left|y_{2}\right| \\
& =\left|y_{2}\right| \frac{1}{(\Gamma(\alpha))^{2}} \beta^{2 \alpha}\left(y_{2}\right)^{2 \alpha-2}\left[y_{1}\left(1-y_{1}\right)\right]^{\alpha-1} e^{-\beta y_{2}} I_{(0,1)}\left(y_{1}\right) I_{(0, \infty)}\left(y_{2}\right) \\
& =\frac{1}{(\Gamma(\alpha))^{2}} \beta^{2 \alpha}\left(y_{2}\right)^{2 \alpha-1}\left[y_{1}\left(1-y_{1}\right)\right]^{\alpha-1} e^{-\beta y_{2}} I_{(0,1)}\left(y_{1}\right) I_{(0, \infty)}\left(y_{2}\right)
\end{aligned}
$$

In that last step, we moved the $|y|$ into the $y_{2}^{2 \alpha-2}$ term. Because of the indicator function, we do not need to worry about y_{2} being negative and can drop the absolute value. Now we can finally marginalize out y_{2} from the joint probability density function. This is done as follows:

$$
\begin{aligned}
f_{y_{1}}\left(y_{1}\right) & =\int_{-\infty}^{\infty} f_{y_{1} y_{2}}\left(y_{1}, y_{2}\right) d y_{2} \\
& =\int_{0}^{\infty} \frac{1}{(\Gamma(\alpha))^{2}} \beta^{2 \alpha} y_{2}^{2 \alpha-1}\left[y_{1}\left(1-y_{1}\right)\right]^{\alpha-1} e^{-\beta y_{2}} I_{(0,1)}\left(y_{1}\right) d y_{2} \\
& =\frac{1}{(\Gamma(\alpha))^{2}} \beta^{2 \alpha} I_{(0,1)}\left(y_{1}\right)\left[y_{1}\left(1-y_{1}\right)\right]^{\alpha-1} \int_{0}^{\infty} y_{2}^{2 \alpha-1} e^{-\beta y_{2}} d y_{2}
\end{aligned}
$$

Note that the indicator function for y_{2} is no longer needed, since we are integrating over its support. Also note that the integrand is basically $\Gamma(2 \alpha, \beta)$ sans some constants. Our job now is to give it those constants so that we don't have to do a messy integration. We will multiply the outside of the integral by $\Gamma(2 \alpha)$ and divide the inside by the inverse of that. We also will move $\beta^{2 \alpha}$ inside the integrand.

$$
\begin{aligned}
f_{y_{1}}\left(y_{1}\right) & =\frac{\Gamma(2 \alpha)}{(\Gamma(\alpha))^{2}} I_{(0,1)}\left(y_{1}\right)\left[y_{1}\left(1-y_{1}\right)\right]^{\alpha-1} \int_{0}^{\infty} \frac{1}{\Gamma(2 \alpha)} \beta^{2 \alpha} y_{2}^{2 \alpha-1} e^{-\beta y_{2}} d y_{2} \\
& =\frac{\Gamma(2 \alpha)}{(\Gamma(\alpha))^{2}} I_{0,1)}\left(y_{1}\right)\left[y_{1}\left(1-y_{1}\right)\right]^{\alpha-1} \int_{0}^{\infty} \Gamma(2 \alpha, \beta) \\
& =\frac{\Gamma(2 \alpha)}{(\Gamma(\alpha))^{2}}\left[y_{1}\left(1-y_{1}\right)\right]^{\alpha-1} I_{(0,1)}\left(y_{1}\right) \\
& =\frac{\Gamma(2 \alpha)}{(\Gamma(\alpha))^{2}} y_{1}^{\alpha-1}\left(1-y_{1}\right)^{\alpha-1} I_{(0,1)}\left(y_{1}\right) \\
Y & \sim \beta(\alpha, a l p h a)
\end{aligned}
$$

[^0]: ${ }^{1}$ How do we know g-inverse is negative??

