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Human Contingency Judgments: Rule Based or Associative?

Lorraine G. Allan

The study of the mechanism that detects the contingency between events, in both humans and non-
human animals, is a matter of considerable research activity. Two broad categories of explanations
of the acquisition of contingency information have received extensive evaluation: rule-based models
and associative models. This article assesses the two categories of models for human contingency
judgments. The data reveal systematic departures in contingency judgments from the predictions of
rule-based models. Recent studies indicate that a contiguity model of Paviovian conditioning is a
useful heuristic for conceptualizing human contingency judgments.

The study of the mechanism that detects the contingency be-
tween events, in both humans and nonhuman animals, is a
matter of considerable research activity. With humans, numer-
ous studies have varied the contingency or covariation between
two variables and have examined how such variations influence
judgments about the relationship between the two variables.
With animals, interest has focused on how such covariations
influence conditioned responses (Pavlovian conditioning) or op-
erant behavior (operant conditioning). Two broad categories of
explanations of the effects of contingency manipulations on be-
havior have received extensive evaluation: rule-based models
and associative models. Rule-based models represent organisms
as intuitive statisticians who extract contingency information
by applying a rule to integrate probabilities or frequencies of
events (e.g., Peterson & Beach, 1967). Associative models pos-
tulate that apparent contingency learning is really the result of
Pavlovian associations formed between all contiguously pre-
sented events. The purpose of this article is to assess the status
of these two categories of models for human contingency judg-
ments (see also Shanks, in press).

Contingency-Judgment Tasks

With few exceptions (see Well, Boyce, Morris, Shinjo, &
Chumbley, 1988), studies concerned with human contingency
judgments have involved binary variables. In the simplest case,
there are only two binary variables. The subject is presented
with information about pairings between the two values of the
two variables and then asked about the relationship between the
variables. Even in the case of only two binary variables, differ-
ent tasks have been used. The tasks have varied along a number
of dimensions: the question asked, the type of scale used, the
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presentation mode, the representation of the variables, and the
trial procedure.

Experimenters have posed various questions when probing
subjects about the relationship between two variables. Subjects
have been asked about the contingency or connection between
the two variables; about the control, influence, or effectiveness
of one variable over the other variable; and about whether one
variable predicts or causes the other variable. In this article,
contingency judgment is used as the generic term.

The perceived relationship between two variables is usually
assessed with a rating scale. The rating scale can be unidirec-
tional (one end labeled rno contingency and the other labeled per-
fect contingency) or bidirectional (one end labeled perfect nega-
tive contingency, the middle labeled no contingency, and the
other end labeled perfect positive contingency). A bidirectional
scale provides information about the sign and the strength of
the contingency judgment; the unidirectional scale provides in-
formation only about the strength.

Information about the pairings of the values of the two binary
variables has been summarized for the subject in a 2 X 2 con-
tingency matrix (described situation; see Shanks, 1991b) or has
been presented sequentially in a trial-by-trial format (experi-
enced situation). The sequential information can, of course, be
summarized by the 2 X 2 contingency matrix. Figure 1 shows
the standard matrix, with I, and I as the two values of the input
variable (I}, and O; and O, as the two values of the outcome
variable (O). The letters in the cells (a, b, ¢, and d) represent the
joint frequency of one value of I and one value of O.

The two values of I and of O can be represented symmetri-
cally as two events or asymmetrically as event and nonevent.
Using the notation introduced by Allan and Jenkins (1980,
1983), we designate the situation where both values of I are
events as 2I and the situation where only one value of I is an
event as 11; similarly, 20 designates the situation where both
values of O are events, and 10 the situation where only one
value of O is an event. The four conditions resulting from the
combination of the two representations of I (2I and 11) with the
two representations of O (20 and 1O) are 21/20, 11720, 21/10,
and 11/10. In most contingency studies, it is the 11/10 represen-
tation that has been used. For the 11/10 representation, I, and
O, in Figure 1 denote events, and I, and O, denote nonevents. In
Allan and Jenkins (1980) study, for example, the subject could
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O1 02
Iy a b a+b
Iy ¢ d c+d
a+c b+d a+b+c+d =N

Figure 1. The standard 2 X 2 contingency matrix. (I, and I, are the
two values of the input variable [1], and O, and O, are the two values of
the outcome variable [O]. The lettersin the cells [a, b, ¢, and d] represent
the joint frequency of one value of I and one vatue of O.)

choose to move a joystick (event) or to leave the joystick in its
resting position {nonevent). At the end of the response period,
one of two pictures occurred. One picture showed a lake scene
with the Loch Ness Monster poking its head out of the lake
(event); the other picture showed the same lake scene without
the Monster (nonevent).

Variants of two basic procedures have been used to present
the information sequentially: discrete trial and free operant. In
the discrete-trial procedure, each of a series of trials is divided
into clearly defined input and outcome periods. The joystick
situation described above is an example of a discrete-trial pro-
cedure (e.g., Allan & Jenkins, 1980, 1983). Another version of
the discrete-trial procedure is a video game developed by
Shanks and collaborators (e.g., Dickinson, Shanks, & Evenden,
1984; Shanks, 1985a, 1985b, 1986). In this game, subjects are
asked to judge the effectiveness of a new type of shell in destroy-
ing tanks. On each trial, a tank moves across the video screen,
passing through a gun sight. The subject has the choice of firing
or not firing a shell at the tank and then observes whether the
tank was destroyed.

Wasserman and collaborators (e.g., Chatlosh, Neunaber, &
Wasserman, 1985; Wasserman, Chatlosh, & Neunaber, 1983)
introduced the free-operant procedure as an alternative to the
discrete-trial procedure. In the free-operant procedure, trials
are not defined. Subjects can respond (for example, press a key)
whenever they wish rather than just during a predefined period.
The presentation of the outcome (for example, a brief illumina-
tion of a light) is determined on the basis of a sampling interval
(e.g., I s). If at least one response occurs during the sampling
interval, then the outcome occurs with probability P(O,|1,); if
no response occurs during the sampling interval, then the out-
come occurs with probability P(O, | L,).

The task variations described above do have some influence
on contingency judgments. Fortunately, data relevant to an
evaluation of theoretical accounts of contingency judgments are
relatively independent of the task used.

Rule Analyses of Contingency Judgments

The appropriate statistical measure of the dependency of the
outcome variable O on the input variable I is AP, which is the
difference between two independent conditional probabilities
(see Allan, 1980). Referring to Figure 1,

AP =PO1) = PO\lL) = af(a+ b) — c/(c+d). (1)

Many studies of contingency judgments have concentrated on
determining whether humans could accurately judge the size or

the sign of the contingency between two binary variables. In
such studies, a number of problems are presented to the subject,
with the contingency between the input and outcome variables
varying over problems. After each problem, the subject is asked
to rate the contingency between the variables. Most of these
studies used the IR/10 representation, and usually reported a
high correlation between contingency judgments and the actual
contingency between the input and output variables (AP) (e.g..
Allan & Jenkins, 1980, 1983; Alloy & Abramson, 1979; Chat-
losh et al., 1985; Dickinson et al., 1984; Neunaber & Wasser-
man, 1986; Shanks, 1985a, 1987; Wasserman, 1990b: Wasser-
man et al., 1983; Wasserman, Dorner, & Kao, 1990; Wasser-
man, Elek, Chatlosh, & Baker, 1993; Wasserman & Shaklee,
1984).

Although the correlation between judgments and AP was of-
ten high for the 1R/10 representation, systematic departures
from AP were noted. There were reports, for example, of a den-
sity bias: Judgments of contingency were not constant for a
fixed AP, but increased with the frequency of the outcome event
[P(O))] (e.g., Allan & Jenkins, 1980, 1983; Alloy & Abramson,
1979; Baker, Berbrier, & Vallee-Tourangeau, 1989; Chatlosh et
al., 1985; Dickinson et al., 1984; Shanks, 1985a: Shanks &
Dickinson, 1991). One attempt to deal with the density bias was
to correlate judgments with a weighted AP, rather than with
the unweighted AP defined in Equation 1. The unweighted AP
weights each cell of the matrix equally; the weighted AP weights
the four cells differentially. The use of a weighted AP is sup-
ported by the finding that subjects do not evaluate the four cells
of the contingency matrix to be of equal importance; they rank
the necessity of the four kinds of information as cell a > cell b
> cell ¢ > cell d (e.g., Kao & Wasserman, 1993; Levin, Wasser-
man, & Kao, 1992; Wasserman et al., 1990). Weighting AP by,
for example, assigning a greater weight to P(O,|I,) than to
P(O,|1,) does improve the fit (e.g., Kao & Wasserman, 1993;
Levin et al., 1992; Shanks & Dickinson, 1986; Wasserman et
al., 1990).

Another attempt to deal with the density bias was reported
by Wasserman et al. (1993). They asked subjects to estimate
P(O,|1,) and P(O,|1,) and found these estimates to be inaccu-
rate. They investigated the possibility that contingency judg-
ments were determined by estimates of AP based on these inac-
curate probability estimates. Wasserman et al. (1993) did not
find support, however, for this hypothesis. Rather, contingency
judgments were better described by AP based on presented
probabilities (Equation 1) than by AP based on the subjects’
estimated probabilities.

Cheng and Novik (1990, 1991, 1992) and Melz, Cheng,
Holyoak, and Waldmann (1993) also addressed departures in
judgments from AP. They proposed that the AP rule applies
across a focal set of trial types rather than across all trials. For
the standard AP rule, P(O,{1,) is based on all I, trials and
P(O,|1,) on all I, trials. The presence of other inputs is ignored
in the determination of AP. For the focal-set AP rule, these other
inputs would define the 1, and I, trials on which P(O,|I,) and
P(O,|1,) are based. If only a subset of trials are included in the
calculation of AP, then the value of AP could be very different
than if all trials are included.

Cheng and Novik (1992) suggested that the focal-set AP rule
is relevant to the human contingency literature. They made no
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reference, however, to the many studies that were conducted in
recent years that provided evidence against the AP rule (e.g.,
Baker & Mazmanian, 1989; Baker, Mercier, Vallee-Tourangeau,
Frank, & Pan, 1993; Chapman, 1991; Chapman & Robbins,
1990; Dickinson et al., 1984; Shanks, 1985b, 1986, 1989,
199 1b; Wasserman, 1990a).

Shanks (1993, in press) provided an eloquent critique of the
focal-set AP rule. He showed that the focal-set AP rule could
account for some data that were inconsistent with the simple
AP rule. In the typical 11/10 contingency-judgment task, the
outcome event (O,) occurs both in the presence and in the ab-
sence of the input event. P(O, |1,) is calculated across all trials
on which the input is present (I,) and P(O;|L;) is calculated
across all trials across on which the input is absent (I,). A mod-
ification of this simple contingency-judgment task is to signal
all O, events that occur in the absence of the input event
(Shanks, 1986, 1989). Shanks (1989), for example, used a com-
puter version of the free-operant task. Subjects had the option
of pressing or not pressing the space bar on a computer key-
board, and the outcome was the presence or the absence of an
event on the computer screen. In the signaled condition, every
outcome that occurred in the absence of the action was pre-
ceded by another event, the signal, which was a short tone. If AP
was calculated across all trials, then the value would be the same
for the signaled and the unsignaled conditions. Shanks (1986,
1989), however, found that judgments about the effectiveness of
responding were greater in the signaled condition than in the
unsignaled condition.

Focal-set AP would not be determined across all trial types.
Rather, it would be determined by contrasting what happens
when P(O, |I,) and P(O, |1,) are based on trials that are identical
except for the presence and absence of the input event. In the
unsignaled condition, AP and focal-set AP would be identical.
In the signaled condition, this would not be the case. Focal-set
AP would ignore those trials on which the outcome event was
signaled, resulting in a smaller value of P(O, | 1,) and therefore a
larger AP.

In his critique of the focal-set AP rule, Shanks (1993) showed
that although the model could account for data from some con-
tingency experiments (such as signafing), it often failed. More-
over, although there were situations in which it was clear how to
define the focal set, the focal-set AP rule provided no indepen-
dent means of determining what the focal set was for a given
subject in a given experimental situation:

It seems that all we can do is to elicit judgments in some situation,
and then infer back to what the subject’s focal set must have been,
assuming he or she is computing contingency according to condi-
tional probabilities. . ..The focal set is therefore just an additional
degree of freedom available to the experimenter. (Shanks, 1993)

Alloy and Tabachnik (1984) also addressed departures in
judgments from AP. They suggested that the situational infor-
mation available from the 2 X 2 matrix interacted with prior
expectations. According to Alloy and Tabachnik, two sources of
information are relevant to perceiving contingency: situational
information that specifies the objective contingency between
events and the subject’s prior expectations or beliefs about event
contingency (see aiso Arkes & Harkness, 1983; Baker & Mer-
cier, 1989). Alloy and Tabachnik argued that their theoretical

framework could encompass results from animal experiments
concerned with manipulations of contingency on strength of
conditioning, as well as human contingency judgments.

In a critique of the Alloy and Tabachnik (1984) framework,
Goddard and Allan (1988) suggested that their framework led
to predictions that were inconsistent with available data, both
human and animal. They also showed that even when the
framework could account for the data, the explanation was post
hoc and often would not have been predicted by the framework.
Moreover, there is now abundant evidence that a contiguity
model of Pavlovian conditioning is the appropriate way to ac-
count for the effects of contingency manipulations with infra-
human subjects (see Papini & Bitterman, 1990).

The Search for the Rule

The strong relationship that is often observed between con-
tingency judgments and AP does not necessarily imply that
judgments are based on AP. Although AP is the statistically ap-
propriate summary of the 2 X 2 matrix (sec Allan, 1980), it
is, of course, not the only summary. AP compares conditional
probabilities. A summary of the matrix can be based on fre-
quencies. One possibility is AD, the difference between the
sums of the two diagonal cell frequencies. Referring to Fig-
ure 1,

AD=(a+d)—(b+0).

The two summary numbers, AP and AD, are perfectly corre-
lated when the two input values are equally likely; that is, P(I;)
= P(I,) (Allan, 1980). Specifically,

AD = NAP if(a+ b)=(c+4d).

The coordination of AD to the cells of the matrix depends on
the representation of the input and outcome variables (Allan &
Jenkins, 1983). For the 11/10 representation, AD can be de-
scribed as a comparison of confirming and disconfirming cases.
Confirming cases are the joint occurrence of two events (input
event paired with outcome event) and of two nonevents (input
nonevent paired with outcome nonevent), whereas disconfirm-
ing cases are the joint occurrence of an event and a nonevent
(input event paired with outcome nonevent, and input non-
event paired with outcome event). Although AD can be calcu-
lated for the other three representations (21/10, 1120, and 21/
20), the coordination of AD to the cells of the matrix is arbi-
trary, because the cells cannot be represented as confirming
cases and disconfirming cases (see Allan & Jenkins, 1983).

AD uses information from all four cells of the matrix. Other
summaries use less information. Two possibilities examined in
the literature are (a) a comparison of cell a frequency with cell
¢ frequency (F,_ ) and (b) a comparison of cell a frequency with
cell b frequency (F, _ ;). AP is perfectly correlated with F, _ .
when the two input values are equally likely [P(I,) = P(I)] and
with F,, _ , when the two outcome values are equally likely [P(O,)
= P(0,)]. Specifically,

F,_.=NAP2 if(a+b)=(c+d)
and

F,,=NAP/2 if(a+c)=(b+4d).
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Great effort has been expended on attempts to determine
which summary or rule best describes human contingency
judgments. One approach has been to correlate contingency
Judgments with the various rules to determine which rule pro-
vides the best fit to the judgments. This correlational analysis is
only informative when the marginal frequencies are different;
that is, when P(I,) does not equal P(I,) and P(O,) does not equal
P(O,). Some studies that have imposed this constraint have con-
cluded that AP provides a better description than any of the
frequency rules (e.g., Wasserman, 1990b; Wasserman et al,,
1983), but others have concluded otherwise. For example, judg-
ments in Allan and Jenkins (1983) were best described by AD,
whereas in Wasserman et al. (1990) F, _ , provided the best de-
scription for many subjects.

Arkes and Harkness (1983) and Shaklee and collaborators
(¢.g., Shaklee, 1983; Shaklee & Mimms, 1982; Shaklee &
Tucker, 1980; Shaklee & Wasserman, 1986) used a different ap-
proach in their attempts to identify the best rule. They con-
structed a problem set designed to produce a distinct judgment
pattern by each of the rules. This rule-analytic technique re-
vealed that the modal rule was not AP; it was AD in some stud-
iesand F,_, in others.

Shanks (1985a, 1987) suggested that another way to evaluate
the rules was to track contingency judgments across time. He
showed that AP and AD make different predictions about the
manner in which judgments should change with exposure to the
relationship between the input and outcome variables. While
estimates of conditional probabilities become more accurate
with increasing sample size, the mean estimate is independent
of sample size. According to the AP rule, weighted or un-
weighted, judgments should be constant across trials. This is
also the case for the focal-set AP rule. In contrast, AD changes
across trials, increasing for a positive contingency and decreas-
ing for a negative contingency. For zero contingency, AD is con-
stant across trials if the cells are unweighted. If confirming cases
are given more weight than disconfirming cases, AD increases
across trials for zero contingency. Shanks (1985a, 1987) showed
that contrary to AP rules, judgments did change across trials
and that the changes in judgments across trials could not be
attributed to changes in confidence with increasing number of
trials. However, the acquisition functions did not conform to
the predictions of the AD rule, weighted or unweighted.

Most studies that have searched for the best rule have used
the 11/10 representation. One of the earliest studies of human
contingency judgments, that of Jenkins and Ward (1965), ex-
plored the 2I/10 representation, as did later studies by Allan
and Jenkins (1980, 1983). For the 2I/10 representation, the two
input values are both events. In Allan and Jenkins (1980), for
example, the values of the input variable were controlled by the
position of a joystick: The subject could choose to move the
joystick to the left (an event) or to move it to the right (an event).
In the studies using the 2I/10 representation, judged contin-
gency was not well described by any of the rules discussed so
far. Rather, judgments increased as the frequency of outcome
event, O, increased. Instead of comparing the occurrence of
the outcome event for the two input values, subjects appeared
to compare the overall occurrence of the outcome event to an
assumed baseline of no occurrence of the outcome event in the
absence of an input event. Subjects appeared to judge contin-

gency as though they assumed that in the absence of an input
event, the outcome event would not have occurred.

Allan and Jenkins (1983) compared judgments under all four
representations. The input variable was the same as that used
by Allan and Jenkins (1980). The outcome variable was move-
ment of a dot on a computer screen. When the outcome values
were asymmetric (10), the dot moved up (an event) or it re-
mained stationary (a nonevent); when the outcome values were
symmetric (20), the dot moved up (an event) or down (an
event). Allan and Jenkins (1983) conducted an extensive corre-
lational analysis of their data. Judgments were not well de-
scribed by AP when P(1,) was not equal to P(L,). Although AD
was somewhat better, the coordination of AD to the cells of the
2 X 2 matrix was ad hoc for all representations except 11/10.,
because for the other three representations, the cells could not
be represented as confirming and disconfirming cases.

Summary

The search for the best rule has revealed systematic depar-
tures in contingency judgments from AP. This is the case even
when weights are applied to the cells of the matrix or when AP
is based on estimates of the cell frequencies. Other modifica-
tions to the AP rule, such as the focal set AP rule and the in-
teraction of expectations with AP, have been shown to be inad-
equate. Studies designed to discriminate among the rules have
often found that frequency rules describe the data better than
AP. Although the frequency rules fare better than AP, the shape
of the acquisition function is not in accord with any of the rules
that have been examined. The quest for a rule to describe hu-
man judgments of the contingency between binary variables has
not yet yielded a satisfactory solution.

Associative Models

In early research on human contingency judgments, the task
was conceptualized as involving one input variable and one out-
put variable. More recent research has examined human con-
tingency judgments in situations where multiple input variables
are present. The video game described earlier, for example, can
be presented with two input variables. In the two-input version
of the game, subjects are informed that as the tank moves across
the screen, it is moving through a minefield. In this description,
firing and mines are the two input variables, and tank destruc-
tion is the outcome variable.

The research with multiple input variables has revealed that
the judgment of the contingency between one of the input vari-
ables and the output variable is influenced by the copresence of
the other input variables and by the pairing history of the input
variables (e.g., Baker & Mazmanian, 1989; Baker et al., 1993;
Chapman, 1991; Chapman & Robbins, 1990; Dickinson et al.,
1984; Shanks, 1985b, 1986, 1989, 1991b; Wasserman, 1990a).
The nature of the interaction between the input variables is
reminiscent of that observed in animal-conditioning experi-
ments and is addressed by associative models. Such data have
suggested to a number of researchers that “‘rather than assum-
ing that subjects mathematically transform real-time events
into probabilities and then arithmetically compare those
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probabilities. . .one might look to elementary associative prin-
ciples for a viable account” (Wasserman et al., 1993, p. 183).

Early learning theorists assumed that temporal contiguity of
a conditioned stimulus (CS) and an unconditioned stimulus
(UCS) was sufficient for associative learning. In the 1960s, a
number of experiments showed that conditioning was not the
inevitable result of CS-UCS pairings (e.g., Kamin, 1969a,
1969b; Rescorla, 1968; Wagner, 1969a). These experiments
identified two difficulties for the traditional contiguity view of
conditioning. They showed that conditioning was influenced
not only by the occurrence of the UCS in the presence of the CS
but also by the occurrence of the UCS in the absence of the CS;
that is, by AP. These experiments also showed that for simulta-
neously presented stimuli, the conditioning of one stimulus was
influenced by the copresence of the other stimuli (e.g., overshad-
owing) and by the pairing history of the stimuli (e.g., blocking).

Rescorla (1968) postulated a contingency model, similar to
the AP rule (Equation 1), to describe the influence of contin-
gency manipulations on conditioning. A year later, Rescorla
(1969), and also Wagner (1969a), expressed dissatisfaction with
the idea that animals “take in large blocks of time, count up
numbers of US events, and somehow arrive at probability esti-
mates” (Rescorla, 1969, p. 84). Building on a proposal by
Kamin (1969a, 1969b), they developed a new contiguity theory
that accounted for many of the results challenging the old (Re-
scorla & Wagner, 1972; Wagner & Rescorla, 1972). This theory
provided the means for animals to “bring together the effects of
events separated in time in such a way as to permit all learning
to depend on events occurring closely in time” (Rescorla, 1969,
p. 88).

Kamin (1969a) proposed that “perhaps for an increment in
associative connections to occur, it is necessary that the US in-
stigate some ‘mental work’ on the part of the animal. This men-
tal work will occur only if the US is unpredictable—if it in some
sense ‘surprises’ the animal” (p. 293). The Rescorla—Wagner
(R-W) model formalizes this notion by postulating that the
change in the strength of the association between a CS and a
UCS is proportional to the degree to which the UCS is unpre-
dicted or surprising. More precisely, the associative or predictive
strength (V) of a CS will change on each trial it is presented
according to the standard linear operator equation

AV = af(A — ZV),

where AV is the change in predictive strength of the CS, « and 8
are learning-rate parameters that depend on the salience of the
CS and the effectiveness of the UCS, respectively, A is the maxi-
mum amount of predictive strength supported by the UCS, and
2 Vis the algebraic sum of the predictive strengths of all stimuli
present on that trial. The change in the J value of a particular
cue is determined not only by its own V" value but aiso by the
associative strength of all cues present on the trial, =¥, The sur-
prise value of the UCS is the difference between A and £V The
greater the difference between A and Z V, the more surprising the
UCS is.

The essence of the R-W model is associative competition:
There is a limit, A, to the amount of associative strength that a
UCS can support. This limited amount of associative strength is
allocated among all stimuli present on the trial: If one stimulus
acquires more of the associative strength available, then all other

stimuli that are present at the same time must get less. Because
a CS never occurs in isolation but is always compounded with
contextual (background) stimuli, the UCS is associated with the
CS and also with contextual cues. There is always competition;
the CS competes with contextual stimuli for associative
strength.

The R-W model is one example of current contiguity theories
of animal learning (e.g., Gibbon & Balsam, 1981; Jenkins,
Barnes, & Barrera, 1981; Mackintosh, 1975; Pearce & Hall,
1980). All of the models share the assumption that the UCS is
associated both with the nominal CS and with all other stimuli,
including the context. The critical feature of these models for
human contingency judgments is that they incorporate a pro-
cess of selective attribution: The attribution of an outcome (i.e.,
an effect) to a target input (i.e, a cause) depends on the predic-
tive value of other potential inputs (causes) that are simulta-
neously present.

Adaptive Network Models

Gluck and Bower (1988; see also Shanks, 1990, 1991a)
pointed out the similarities between associative models of ani-
mal learning and adaptive network models, also known as par-
allel distributed processing or connectionist networks (McClel-
land & Rumelhart, 1986; Rumelhart & McClelland, 1986).
Adaptive networks consist of processing units or nodes con-
nected by weighted, unidirectional links of activation. The
nodes are separated into layers: an input layer, an output layer,
and hidden layers. When a stimulus is presented to the network,
aset of input nodes is activated. These nodes pass their weighted
activation to nodes in the next layer. The resulting pattern of
activation in the output layer corresponds to the estimated out-
come. The network then receives feedback regarding the desired
output. The weights are adjusted to bring the output closer to
the feedback. By repeated cycling through output-feedback
pairings, the system “learns” the weights that will achieve the
closest match.

Gluck and Bower (1988) described a network model that is
formally equivalent to the R-W model. The R-W network has
two layers, an input layer and an output layer. The weights of the
links between the input and output nodes are altered according
to the least mean squares (LMS) rule, which is mathematically
equivalent to the R-W learning rule. These weights are updated
only on trials on which a node is activated; that is, on trials when
the stimulus is present.

Although the Gluck-Bower LMS network is formally equiv-
alent to the R-W model, the human-contingency-judgment lit-
erature has generally relied on the latter. For that reason, the
language of the R-W model will be used in this article.

Associative Models and Human Contingency Judgments

The new contiguity models were developed to explain classi-
cal conditioning but have been applied to operant conditioning
as well (e.g., Dickinson, 1980; Mackintosh, 1983). Some of the
experimental tasks used to evaluate an associative account of
human contingency judgments resemble classical conditioning
(cue-outcome); others resemble operant conditioning (action-
outcome; see Shanks, in press). In a cue-outcome task, the judg-
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ucCs noUCS
CS + context a b a+b
context c d c+d
a+c b+d atb+c+d=N

Figure 2. The standard 2 X 2 contingency matrix with labels appro-
priate for an aminal contingency experiment. (UCS = unconditioned
stimulus, no UCS = no unconditioned stimulus, CS = conditioned
stimulus.)

ment is about the contingency between a cue (e.g., the presence
or absence of a symptom) and an outcome (e.g., the presence or
absence of a disease): The cue is the CS, and the outcome is
the UCS. In an action-outcome task, the judgment is about the
contingency between an action (e.g., pressing or not pressing a
key) and an outcome (e.g., the presence or absence of a light
flash): The action is the operant, and the outcome is the rein-
forcer. For simplicity, the classical-conditioning notation is used
in this article.

In all tasks used to evaluate an associative account of human
contingency judgments, whether action-outcome or cue-out-
come, both binary variables have been asymmetric; the two val-
ues of each variable are event and nonevent. In the notation
introduced earlier, the 11/10 representation of the variables has
been used in such studies.

There is now considerable evidence of similarities between
the operations that modulate the strength of conditioning in an-
imals and those that modulate the rating of contingency by hu-
mans. The correspondences include the influence of contin-
gency manipulations (e.g., Allan & Jenkins, 1980, 1983; Alloy
& Abramson, 1979; Chatlosh et al., 1985; Dickinson et al.,
1984; Neunaber & Wasserman, 1986; Shanks, 1985a; Wasser-
man, 1990b; Wasserman et al., 1983, 1990, 1993); Wasserman
& Shaklee, 1984); the effect of signaling (e.g., Shanks, 1986,
1989); the shape of the acquisition (learning) functions (Baker
et al., 1989; Shanks, 1985a, 1987); the effect of temporal conti-
guity (Reed, 1992; Shanks, 1989; Shanks & Dickinson, 1991;
Shanks, Pearson, & Dickinson, 1989; Wasserman & Neunaber,
1986); and the role of stimulus interactions, such as blocking
(e.g.. Chapman, 1991; Chapman & Robbins, 1990; Dickinson
etal., 1984; Shanks, 1985b), conditioned inhibition (e.g., Chap-
man, 1991; Chapman & Robbins, 1990), and relative cue valid-
ity (e.g., Baker & Mazmanian, 1989; Baker et al., 1993; Shanks,
1991b; Wasserman, 1990a). These similarities in outcome of
animal-learning experiments and human-contingency-judg-
ment experiments suggest a common theoretical account.

Contingency Manipulations

According to the R-W model, contingency manipulations
affect conditioning because of the competition for associative
strength among various assoctations formed, both with the CS
and with contextual cues. Specifically, the context-UCS associ-
ations compete with and block the CS-UCS association. Figure
2 contains the 2 X 2 contingency matrix, with labels appropriate
for an animal contingency experiment. On CS trials, the CS is
compounded with the context. On noCS trials, only the context

is present. On UCS trials, the UCS is available; on noUCS trials,
the UCS is absent. The following equations represent the change
in associative, or predictive, strength of the CS and of the
context for the four trial types specified by the 2 X 2 matrix.
Ves and Vy represent the associative strength of the CS and the
context respectively; AVes and AV represent the change in as-
sociative strength of the CS and of the context, respectively; acs
and ax represent the salience of the CS and of the context re-
spectively; Bucs and Bhoucs represent the effectiveness of the
UCS when it is present and absent, respectively; and A is the
maximum amount of associative strength supported by the
UCS, with X = 0 when the UCS is absent. On CS-UCS trials
(cell a), both the CS and the context gain associative strength,

AVes = acsBucs[h — (Ves + V)]
and
AVx = axBucsIh — (Ves + V).

On CS-noUCS trials (cell b), both the CS and the context lose
associative strength,

AVes = acsBroucs[0 — (Ves + V)]

and
AVyx = axBroucsl0 — (Vs + ¥yl

On noCS-UCS trials (cell ¢), the associative strength of the CS
is unchanged, and the context gains associative strength,

AVx = axBucslA — (V)]

On noCS-noUCS trials (cell d), the associative strength of the
CS 1s unchanged, and the context loses associative strength,

AVx = axBroucsl0 — V)l

Learning will continue until both AV and AVx approach
zero. When learning is at asymptote, Vs = AP if it is assumed
that Bucs = Bnoucs: The associative strength of the CS, as de-
scribed by the R-W model, is identical to the contingency be-
tween the input and outcome variables as described by AP (see
Chapman & Robbins, 1990). The R-W model, like the AP rule,
stipulates that asymptotic strength is independent of the mar-
ginal probabilities. The marginal probabilities, however, will
affect preasymptotic strength according to the R-W model.
Figure 3 contains learning curves for 200 trials, piotted in
blocks of 10 trials. The curves were generated by the R-W
model for an arbitrary set of parameter values: acs = .9, ax =
.2, Bucs = Bnoucs = -2, A = 1 on UCS trials and A = 0 on noUCS
trials. Each curve is the average of 50 runs. The associative
strength of the CS and of the context is shown for a strong posi-
tive contingency [P(UCS|CS) = .9 and P(UCS |noCS) = .1] and
for a strong negative contingency [P(UCS}CS) = .1 and P(UC-
S{noCS) = .9]. For all curves, P(CS) = P(noCS) = .5. Consider,
first, the outcome of the simulation at the end of the 200 training
trials. When the contingency is positive, the context-UCS asso-
ciation is weak, providing little competition for the CS-UCS
association. The CS becomes excitatory; the organism learns
that the CS is associated with the presence of the UCS. When
the contingency is negative, there is a strong context-UCS asso-
ciation, which drives the associative strength of the CS negative.
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Figure 3. Learning curves for 200 trials plotted in blocks of 10 trials. (The curves were generated by the
R-W model for acs = .9, ax = .2, Bucs = Broucs = -2, A = | on unconditioned-stimulus [UCS] trials and
A = 0 on no-unconditioned-stimulus [noUCS] trials. The associative strength of the conditioned stimulus
[CS] and of the context is shown for a strong positive contingency [P(UCS|CS) = .9 and P(UCS{noCS) =

.1] and for a strong negative contingency [P(UCS|CS) = .1 and P(UCS | noCS) = .9].)

The CS becomes inhibitory; the organism learns that the CS is
associated with the absence of the UCS.

The predictions of the R-W model with regard to contingency
manipulations have been confirmed many times in the animal-
conditioning literature. UCSs interspersed among CS-UCS
pairs influence conditioning (e.g., Rescorla, 1968, 1969): When
the contingency is positive, conditioning is excitatory; when the
contingency is negative, conditioning is inhibitory. As was sum-
marized earlier, parallel results are seen with human contin-
gency judgments. Ratings of contingency are influenced by the
size and sign of AP: Positive contingencies are judged as posi-
tive, and negative contingencies are judged as negative (e.g., Al-
lan & Jenkins, 1980, 1983; Alloy & Abramson, 1979; Baker et
al., 1989; Chatlosh et al., 1985; Dickinson et al., 1984; Neu-
naber & Wasserman, 1986; Shanks, 1985a, 1987; Wasserman,
1990b; Wasserman et al., 1983, 1990, 1993; Wasserman &
Shaklee, 1984).

Signaling

In a signaling experiment, as in a contingency experiment, on
some trials the UCS is presented without the CS. In a signaling
experiment, however, these UCSs are signaled by another CS.
That is, on some trials, the UCS is paired with the target CS
(CS1), and on other trials, the UCS is paired with a signal CS
(CSs). According to the R-W model, the CSg-UCS association
should compete with and thereby decrease the strength of the
context-UCS associations, resulting in greater associative

strength between CSt and the UCS. A number of investigators
have reported, in agreement with the R-W model, that the
strength of CSy is higher in a signaled condition than in a con-
trol condition where the extra UCSs are not signaled (e.g., Dur-
lach, 1983; Rescorla, 1984).

Shanks (1986, 1989) has demonstrated the signaling effect in
human contingency judgments. Shanks (1986) used a version of
the video game described earlier. Subjects were informed that
as the tank moved across the screen, it was moving through a
minefield. In this situation, firing is the input variable, tank de-
struction is the outcome variable, and the minefield is the
context. In the signaled condition, a jet plane crossed the screen
above the tank on trials when the subject did not fire but the
tank blew up. That is, all destructions of the tank that occurred
when a shell was not fired were signaled by the jet. Judgments
about the effectiveness of the shell were greater in the signaled
condition than in the control (unsignaled) condition. Signaling
tank destruction by the jet protected tank destruction from be-
ing attributed to the minefield.

Shanks (1989) demonstrated the signaling effect using a com-
puter version of the free-operant task. Subjects had the option
of pressing or not pressing the space bar on a computer key-
board, and the outcome was the presence or the absence of an
event on the computer screen. In the signaled condition, every
outcome that occurred in the absence of the action was pre-
ceded by another event, the signal, which was a short tone. Judg-
ments about the effectiveness of responding were greater in the
signaled condition than in the unsignaled condition.
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Figure4. Learning curves generated by the R-W model for two zero contingencies: [P(UCS|CS) = P(UC-
S{noCS) = .5]) and [P(UCS|CS) = P(UCS | noCS) = .9]. (The curves were generated using the same param-
eter values as the curves in Figure 3. UCS = unconditioned stimulus, CS = conditioned stimulus, noCS =

no conditioned stimulus.)

Acquisition

According to the R-W model, for positive and negative con-
tingencies, the strength (excitatory and inhibitory) of the CS-
UCS association increases over trials. Simulated learning func-
tions for a positive and a negative contingency are seen in Figure
3. Figure 4 shows the learning functions for two zero contingen-
cies: [P(UCS|CS) = P(UCS|noCS) = .5] and [P(UCS|{CS) =
P(UCS |noCS) = .9]. The curves in Figure 4 were generated us-
ing the same parameter values as the curves in Figure 3. When
the contingency is zero, the CS is excitatory on early trials, the
associative strength increasing with the probability of the UCS.
That is, the R-W model predicts a preasymptotic density bias.
The associative strength for a zero contingency is transitory,
however, and at asymptote there is no conditioning of the CS.

Incremental learning curves are the norm in animal condi-
tioning, the shape and the asymptote being determined by the
contingency between the CS and the UCS. The predictions of
the R-W model with regard to the acquisition functions for zero
contingency have also been confirmed in the animal-condition-
ing literature. When the contingency is zero, conditioning is ex-
citatory early in training, the associative strength increasing
with the overall frequency of the UCS, but at asymptote there
is no conditioning {(e.g., Kremer, 1971, 1974; Rescorla, 1972;
Rescorla & Wagner, 1972).

In most contingency judgment research involving sequential
presentation of the input and outcome events, subjects are
asked for only one contingency judgment, after all the informa-
tion has been presented. In a few studies, subjects have been

probed for a contingency judgment a number of times during
the sequential presentation of the information (e.g., Baker et al.,
1989; Shanks, 1985a, 1987). Acquisition functions similar to
the negatively accelerated learning functions predicted by the
R-W model were found by Shanks (1985a, 1987) and by Baker
et al. (1989) in one experiment but not in another. Judgments
increased across trials when the contingency was positive and
decreased across trials when the contingency was negative.
When the contingency was zero, judgments first increased and
then decreased. This positive density bias was greater when the
probability of the outcome was high than when it was low.

Shanks (1985a, 1987) and Baker et al. (1989) found that judg-
ments of a zero contingency were negative when the probability
of the outcome was low. The R-W model predicts that for a zero
contingency, preasymptotic judgments will be more positive
when the probability of the outcome is high than when it is low,
but the model does not predict negative judgments for a zero
contingency. Note, however, that in other contingency studies,
zero contingency was not judged as negative even when the
probability of the outcome was low (e.g., Chatlosh et al., 1985;
Neunaber & Wasserman, 1986; Wasserman et al., 1983).

Rather than probe the subject multiple times during the se-
quential presentation of the information, Dickinson et al.
(1984) varied the number of trials given to different groups of
subjects. They also found that for a zero contingency, judgments
decreased as the number of trials increased.

Preasymptotic associative strength As was noted earlier, the
R-W model, like the AP rule, stipulates that for a fixed contin-
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gency, asymptotic associative strength is independent of P(O))
and P(I,). These marginal probabilities, however, will affect pre-
asymptotic associative strength according to the R-W model.

Allan (1993) showed that preasymptotic dependence of asso-
ciative strength on P(O;) and P(I,) provides an account for data
originally reported by Allan and Jenkins (1983; Experiment 3).
Allan and Jenkins (1983) varied AP, P(O,), and P(I;). They
found that judgments increased with AP but were also depen-
dent on P(Q,) and P(I,). Allan (1993) presented simulations for
these data that were based on the R-W model. The simulations
capture the judgment patterns seen in the Allan and Jenkins
(1983) data. The R-W model can explain how P(O,) and P(I,)
influence human judgments of contingency.

Temporal Contiguity

According to the R-W model, decreasing the temporal conti-
guity between the CS and the UCS effectively decreases the fre-
quency of CS-UCS pairings and increases the frequency of
context-UCS pairings. The context-UCS association would be
strengthened, thereby weakening the CS-UCS association. Fill-
ing the temporal gap would prevent the formation of strong
context-UCS associations, thereby protecting the CS-UCS as-
sociation. Animal studies have shown that temporal contiguity
does influence conditioning; conditioning is weakened as the de-
lay between the CS and the UCS is increased (e.g., Williams,
1976). Also, in accord with the R-W model, filling the temporal
gap with a stimulus strengthens conditioning in relation to an
empty gap (e.g., Reed & Reilly, 1990; Schachtman, Reed, &
Hall, 1987).

Wasserman and Neunaber (1986), Reed (1992), and Shanks
and collaborators (Shanks, 1989; Shanks & Dickinson, 1991;
Shanks et al., 1989) investigated the effect of temporal contigu-
ity on human contingency judgments. They reported that
judged contingency decreased as the temporal delay between the
input and the outcome was increased. Reed (1992} and Shanks
(1989) showed that the effect of a temporal delay was reduced
when the gap was filled.

Blocking

The prototypic blocking experiment has two phases. In the
first phase, CS, is paired with the UCS (CS,-UCS). In the sec-
ond phase, CS, is presented simultaneously with a new CSg,
the compound being paired with the UCS (CS,CS-UCS). The
prior learning of the CS,~UCS association competes with and
thereby blocks the learning of the new CSp-UCS association. It
is well established in the animal-learning literature that prior
CSA-UCS pairings do attenuate the associative strength of the
new component of the compound, CSg; CS4 blocks CSp (e.g.,
Kamin, 1968, 1969a, 1969b).

Blocking in human contingency judgments was demon-
strated by Shanks and collaborators (Dickinson et al., 1984;
Shanks, 1985b), using the video game. In the blocking condi-
tion, the compound trials (firing plus minefield) were preceded
by single-element trials (minefield only). That is, subjects were
first allowed to see how effective the minefield was without firing
the shells. Then the subject was allowed to fire shells. In the
control condition, the compound trials were not preceded by

minefield-only trials. Subjects in the blocking condition judged
the effectiveness of the shells in destroying the tank lower than
subjects in the control condition. Learning about the minefield~
destruction relationship attenuated subsequent learning about
the firing~destruction relationship.

More recently, Chapman and Robbins (1990) demonstrated
blocking with a new contingency judgment task and a within-
subject design. Subjects viewed a series of trials containing in-
formation about a fictitious stock market. Each trial provided
information about the price of four stocks and the price of the
entire market. The four stocks were P (predictive), N (nonpre-
dictive), B (blocking), and C (control). The trials were divided
into two training phases. In Phase 1, there were three types of
trials: only Stock P rose in price and so did the market (CSp-
UCS), only Stock N rose in price and the market was stationary
{CSx-noUCS), and none of the stocks rose in price and the mar-
ket was stationary (noCS-noUCS). In Phase 2, there were three
types of compound trials: both Stock P and Stock B rose in
price and so did the market (CSpCSs-UCS), both Stock N and
Stock C rose in price and so did the market (CSNCSc—UCS),
and none of the stocks rose in price and the market was station-
ary (noCS-noUCS). At the end of each phase, the subject was
asked to judge the extent to which the rise in price of each of the
four stocks was predictive of the rise in price of the entire mar-
ket. Chapman and Robbins (1990) found that Stock B was
judged as less predictive than Stock C at the end of Phase 2, even
though Stock B and Stock C had the same relationship to the
rise of the market. The predictive Stock P blocked the associa-
tion between Stock B and the market. Chapman (1991) repli-
cated Chapman and Robbins (1990) by using a similar design
but a different task concerned with fictitious medical patients.

Waldmann and Holyoak (1992) were critical of the blocking
design on the basis that few of the possible trial types are
presented. There are eight possible trial types in Phase 2 of a
typical blocking experiment: CS,CSp-UCS, CS,noCS-UCS,
noCSACSz-UCS, noCS,noCSg-UCS, CSACSg-noUCS, CS,-
noCSg-noUCS, noCSACSg—noUCS, and noCS,noCSp-noUCS.
Waldmann and Holyoak (1992) stated that in the human con-
tingency studies that investigated blocking, only two trial types
were presented in Phase 2: CS,CSp-UCS and noCS,noCSp-
noUCS. This was not an accurate description, however, of the
blocking experiments conducted by Shanks and collaborators
(Dickinson et al., 1984; Shanks, 1985b). In these experiments,
CS, and noCS, were mine and no mine, respectively; CSg and
noCSg were shell and no shell, respectively; and UCS and
noUCS were destruction and no destruction, respectively. There
were four trial types presented in Phase 2 of these experiments:
CSACSp-UCS, CSACSz-noUCS, CS,noCSs-UCS, and CS,-
noCSg-noUCS. Waldmann and Holyoak (1992) were incorrect
about the number and type of trial types presented in these
human-blocking studies. Their concern about the importance
of missing trial types for theory evaluation was legitimate, how-
ever, and should be examined.

Conditioned Inhibition

A well-investigated inhibitory procedure in animal learning
is conditioned inhtbition (e.g., Rescorla, 1969; Rescorla & Hol-
land, 1977). In conditioned-inhibition training, CS, is paired
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with the UCS (CS,-UCS), and the compound CS,CSp is pre-
sented without the UCS (CS,CSg-noUCS). With this proce-
dure, CSp becomes inhibitory—it controls a response tendency
opposite that of the excitatory CS,. According to the R-W
model, CS, gains associative strength on CS, trials. On CS,CS;
trials, both CS, and CSj, lose associative strength. Because CSg
never gains strength, the loss of CSy associative strength on
CSACSp trials results in negative associative strength.

Conditioned inhibition in human contingency judgments
was demonstrated by Chapman and Robbins (1990), with the
fictitious stock market task.' There were three stocks: P (predic-
tive), [ (inhibition), and N (neutral). In Phase 1, a rise in the
price of Stock P was established as predictive of a rise in the
market (CSp-UCS). In Phase 2, CSp~UCS trials were contin-
ued, and two new trials types were added. Stock P and Stock 1
rose in price and the market was stationary (CSpCS;—noUCS),
and Stock N rose in price and the market was stationary (CSy-
noUCS). Although I and N had the same relationship to the rise
of the market, I was rated as a more negative predictor than N.
On CSpCS;-noUCS trials, the expected outcome was absent
and CS; became inhibitory. Chapman (1991) replicated condi-
tioned inhibition in contingency judgments with the fictitious
medical patients task.

Relative Cue Validity

Wagner, Logan, Haberlandt, and Price (1968; see also
Wagner, 1969b) conducted an experiment in which compound
CSs were either correlated or uncorrelated with the UCS. For
the correlated condition, the compound CS,CSx was always
paired with the UCS (CS,CSx-UCS), and the compound
CSgCSx was never paired with the UCS (CSgCSx-noUCS). For
the uncorrelated condition, the compound CSACSx sometimes
was paired with the UCS (CS,CSx-UCS) and was sometimes
not (CSACSx-noUCS), and, similarly, the compound CSCSx
sometimes was paired with the UCS (CSgCSx-UCS) and some-
times was not (CSgCSx-noUCS). Thus, in the correlated con-
dition, CS, predicted UCS and CSy predicted noUCS, whereas
in the uncorrelated condition, neither CS, nor CSg was predic-
tive. Although CSx had the same relationship to UCS and
noUCS in both the correlated and uncorrelated conditions,
Wagner et al. (1968) found less conditioning to CSy in the cor-
related condition than in the uncorrelated condition. Training
with CS, and CSp differentially correlated with UCS and
noUCS lowered the predictiveness of CSx compared with train-
ing with CS, and CS; uncorrelated with UCS and noUCS, even
though CSy had the same relationship to UCS and noUCS in
the two conditions. The critical feature in forming an associa-
tion was not the absolute validity of the cue as a predictor of the
outcome, but its relative validity.

Wasserman (1990a), Shanks (1991a, 1991b), and Baker et al.
(1993) reported a similar result with human contingency judg-
ments. In the Wasserman (1990a) study, subjects were told to
pretend that they were allergists trying to determine the cause
of a food-related allergic reaction. They were given descriptions
of food combinations and allergic response. In the correlated
condition, Foods 4 and X (4X) always caused an allergic reac-
tion, and Foods B and X (BX) never did. In the uncorrelated
condition, AX caused an allergic reaction after half of the meals

and did not after the remaining meals, and likewise for BX.
Thus, in both conditions, Food X occurred with an allergic re-
action after half of the meals. Subjects rated Food X lower in the
correlated condition than in the uncorrelated condition.
Shanks (1991a, 1991b) used a medical diagnosis situation. In
the correlated condition, Symptoms 4 and X (4.X) were paired
with the disease, whereas Symptoms B and X (BX) were never
accompanied by the disease. In the uncorrelated condition,
Symptoms AX and BX were paired with the disease on half of
the trials and did not accompany the disease on the remaining
trials. Subjects rated the relationship between the Symptom X
and the disease lower in the correlated condition than in the
uncorrelated condition.

Baker et al. (1993) explored relative cue validity using 2 mod-
ification of the video game. Subjects were asked to estimate
whether camouflaging the tank increased or decreased the like-
lihood of successfully traversing the minefield. Of interest was
the influence of a second predictor, the presence of a spotter
plane accompanying the tank, on the estimates of the effective-
ness of the camouflage. Under many different contingencies, the
presence of a more valid predictor of the outcome reduced the
Judged effectiveness of a moderate predictor.

Summary

Although associative models were developed primarily to de-
scribe results from animal-conditioning experiments, recent
studies with human subjects suggest that judgments of contin-
gency can be described by these same models. An associative
interpretation of contingency judgments has been supported by
a variety of demonstrations that manipulations of the putative
CS and UCS have conditioninglike effects. Judgments of con-
tingency are affected by contingency, signaling, and temporal
contiguity manipulations. They show changes over trials. They
are subject to blocking, conditioned inhibition, and relative cue
validity.

There are now many results that indicate that associative
learning principles are useful in understanding human contin-
gency judgments. These data strongly support the position
taken by Mowrer (1960) over 30 years ago: “We arrive at the
conclusion that the causal relationship, as psychically appre-
hended, is a special case of the more general phenomenon of
conditioning or learning by contiguity” (p. 327).2

Associative Models: Modifications and Alternatives

The R-W model can account for much of the human contin-
gency data. There are some results, however, that are inconsis-
tent with that model and with the other new associative models
as well. In addition, experimental situations that fall outside the
boundaries of these models have been explored.

! The experiment was designed to demonstrate context conditioning
in addition to conditioned inhibition. Only those aspects of the design
relevant to conditioned inhibition are described.

2 This quote was brought to my attention by David R. Shanks in an
unpublished manuscript.



RULE BASED OR ASSOCIATIVE 445

Trial Order Effects

Trial order is critical in the R-W model. Blocking, for exam-
ple, should occur if compound CS,CSp training follows single
CS, training (referred to as forward blocking) but not if com-
pound CSACSs training precedes single CS, training (referred
to as backward blocking). In forward blocking, the learning of
the CS,-UCS association in Phase 1 will block the learning of
the CSp-UCS association in Phase 2. In backward blocking,
both CS, and CSg will gain associative strength in Phase 1. In
Phase 2, CS, will continue to gain associative strength, but the
strengthening of the CS, association will not affect the associa-
tive strength of CS because associative strength is not altered if
the stimulus is not present.

The R-W model also predicts trial order effects in condi-
tioned inhibition. Conditioned inhibition should be more
effective if the CSA-UCS trials are presented before the
CS,CSg-noUCS trials (forward-conditioned inhibition) rather
than in the reverse order (backward-conditioned inhibition). In
forward-conditioned inhibition, CS, gains associative strength
on CS, trials. On CS,CSg trials, both CS, and CSg lose associa-

" tive strength. Because CSg never gains associative strength, the
loss on CSACSg trials results in negative associative strength (in-
hibition). In backward-conditioned inhibition, the associative
strength of both CS, and CS would remain unchanged in
Phase 1. In Phase 2, CS,. would gain associative strength, but
the strengthening of the CS, association should not affect the
strength of the CSj association because CSp is not present. CSp
should not become inhibitory in the backward-conditioned in-
hibition paradigm.

Shanks (1985b) examined trial order in blocking using the
video game. In the forward-blocking condition, subjects ob-
served the frequency with which the tank exploded as a result
of the mines, before they had the opportunity to fire shells at
the tanks. In the backward-blocking condition, the observation
period followed the firing period. In the control condition, there
was no observation period. The forward- and backward-block-
ing conditions differed not only in whether the observation pe-
riod preceded or followed the compound trials but also in the
temporal delay between the firing period and the rating of con-
tingency. A second control condition was included to evaluate
the contribution of the temporal delay. Shanks (1985b) found
that both blocking conditions produced lower ratings of the
shell’s effectiveness in relation to the appropriate control condi-
tions. Contrary to the R-W model, forward- and backward-
blocking procedures had similar effects on contingency judg-
ments.

Chapman (1991) also reported data relevant to trial order
effects in human contingency judgments. She used the fictitious
health task and compared forward blocking with backward
blocking and also forward-conditioned inhibition with back-
ward-conditioned inhibition. Trial order effects were observed
for both blocking and conditioned inhibition. The forward pro-
cedure was more effective in establishing blocking than was the
backward procedure, and the forward procedure produced
more inhibition than did the backward procedure. However,
contrary to the R-W model, the backward procedures did result
in blocking and conditioned inhibition.

Holyoak, Koh, and Nisbett (1989) proposed a nonassociative

“theory of classical conditioning based on a parallel, rule-based
performance system integrated with mechanisms for inductive
learning” (p. 315). This model, like the R-W model, predicted
trial order effects in blocking. Holyoak et al. provided a simula-
tion of blocking that was based on their model. According to the
simulation, backward blocking would yield identical perfor-
mance to a control group who received only Phase 2 training.
Holyoak et al. emphasized that Kamin’s (1968) blocking data
were consistent with their model. They did not address the fact
that other animal data (e.g., Matzel, Schachtman, & Miller,
1985) and the human-blocking data were not.

The animal-learning data and the human contingency data,
which were contrary to the predictions of the R-W model with
regard to trial order effects, resulted in suggestions for modifi-
cations to the original model.

Rehearsal. To incorporate trial order effects, some investiga-
tors (e.g., Baker & Mercier, 1989; Chapman, 1991) postulated
that a stimulus that was not presented on a trial might never-
theless be retrieved from memory. Chapman (1991) suggested,
for example, that the presentation of CS, during Phase 2 of
the backward-blocking experiment would result in retrieval, on
some trials, of memories of similar trial types; that is, of
CSACSg. Because CS, would be present more often than the
memories of CSg, CS4 would gain more of the total strength
available, and CSg would thereby lose strength.

Compounds as unitary events. A different modification to
associative models to incorporate trial order effects is to ac-
knowledge a compound stimulus as a unitary event (e.g., Re-
scorla, 1981; Rescorla & Durlach, 1981; Rudy & Wagner,
1975). Shanks and Dickinson (1987), for example, proposed a
model for human contingency judgment that treated a com-
pound (whether of two CSs or of a CS and the context) as a
single event with its own associative strength, which was inde-
pendent of that attached to the components. Although this
model could encompass the backward-blocking effects ob-
served with human contingency judgments, it had difficulty
with other results, such as relative cue validity. As noted earlier,
the need to incorporate “configural cues’ was recognized in the
animal-learning literature, as was the central role that config-
ural cues had in recently proposed associative models for ani-
mal learning (e.g., Wagner & Brandon, 1989).

Experienced Versus Described

In summarizing the research thus far, no distinction was
made between studies that presented the input-outcome pair-
ings sequentially(experienced situations) and those that sum-
marized the information in the 2 X 2 matrix (described situa-
tions). Some data indicated that similar results were obtained
with the two formats (e.g., Baker et al., 1989; Shanks, 1991a,
199 1b; Wasserman, 1990a; but see Ward & Jenkins, 1965). At
first glance, this might appear problematic for an associative
account of human contingency judgments. Associative theories
would require the occurrence of temporally distributed events,
so that associations could be incremented and decremented
trial by trial.

Shanks (1991b) addressed this apparent dilemma and pro-
vided a solution. He suggested that organisms possessed an as-
sociative learning mechanism that operated in experienced sit-
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uations, particularly in unfamiliar experienced situations. This
mechanism could create new specific causal beliefs, which
would then provide a sufficient basis for making judgments in
described situations. Specific beliefs would be retrieved from
memory to allow judgments to be made in described situations.

Conclusion

Miller, Barnet, and Grahame (in press) recently provided an
assessment of the R-W model for animal-learning data. They
reviewed the model’s predictive successes and failures. They
also discussed the model’s heuristic value. They concluded
“that the model has had and likely will continue to have a dis-
tinctly positive influence on the study of simple associative
learning in that it has stimulated illuminating research and has
contributed to the development of new models.”” The same
could be concluded for the model’s heuristic value with regard
to human contingency judgments. There are now many results
that indicate that associative learning principles are useful in
understanding human contingency judgments. Associative
models in general, and the R-W model in particular, can ac-
count for much of the human contingency data. These models
have most certainly stimulated important and exciting research.
Not infrequently, these models have prompted the examination
of issues unlikely to have been explored outside the framework
of associative models.

“Research in the two areas of human and infrahuman learn-
ing shares a long history that has focused on elementary asso-
ciative learning. . .About 20 years ago, however, animal and
human learning research became divorced from each other”
(Gluck & Bower, 1988, p. 227). The recent trends in human
contingency judgments show that a reconciliation is possible.
This reconciliation gains additional support from recent re-
search in human perception. Allan and Siegel (e.g., Allan & Sie-
gel, 1986, 1993; Siegel & Allan, 1992; Siegel, Allan, & Eissen-
berg, 1992) demonstrated the applicability of associative learn-
ing principles to an understanding of contingent aftereffects
(e.g., the McCollough effect).
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