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Abstract

Although neural networks often achieve impressive learning and generalization performance, their internal workings are typically all but
impossible to decipher. This characteristic of the networks, their opacity, is one of the disadvantages of connectionism compared to more
traditional, rule-oriented approaches to artificial intelligence. Without a thorough understanding of the network behavior, confidence in a
system’s results is lowered, and the transfer of learned knowledge to other processing systems – including humans – is precluded. Methods
that address the opacity problem by casting network weights in symbolic terms are commonly referred to as rule extraction techniques. This
work describes a principled approach to symbolic rule extraction from standard multilayer feedforward networks based on the notion of
weight templates, parameterized regions of weight space corresponding to specific symbolic expressions. With an appropriate choice of
representation, we show how template parameters may be efficiently identified and instantiated to yield the optimal match to the actual
weights of a unit. Depending on the requirements of the application domain, the approach can accommodate n-ary disjunctions and
conjunctions with O(k) complexity, simple n-of-m expressions with O(k2) complexity, or more general classes of recursive n-of-m expres-
sions with O(kL12) complexity, where k is the number of inputs to an unit and L the recursion level of the expression class. Compared to other
approaches in the literature, our method of rule extraction offers benefits in simplicity, computational performance, and overall flexibility.
Simulation results on a variety of problems demonstrate the application of our procedures as well as the strengths and the weaknesses of our
general approach. q 1999 Published by Elsevier Science Ltd. All rights reserved.
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1. Rule extraction

Although neural networks often achieve impressive
learning and generalization performance, their internal
workings are typically all but impossible to decipher. Unlike
their rule-based counterparts, they cannot explain their deci-
sions. Networks are often described as opaque; one cannot
easily look inside them to ascertain how they produce their
results (Minsky, 1991). Although this characteristic may
contribute to some of the mystique associated with connec-
tionist systems, it is a serious problem in many situations.
This article is concerned with a specific approach for attack-
ing the opacity problem in neural networks, an approach that
provides visibility into a network’s operation by casting its
weights in the form of symbolic rules. Our approach gives
rise to several procedures for performing what is commonly
termed rule extraction.

Why is connectionist rule extraction important? Consider
a network whose units use the conventional inner product
activation and sigmoidal output functions with a [21, 11]
range, as is common in feedforward networks trained by

back propagation (Fig. 1). Although networks of these
units have been successfully used to learn many interesting
tasks, in most cases it is difficult to explain the behavior of
the trained system by inspecting the weights. As a simple
example of this situation, consider the following vector of
16 weights plus a bias. (We will adopt the convention that
the bias is the last element of the vector.)

w � 20.38 0.73 1.88 24.36 20.63 0.43 20.89 20.77
1.18 21.22 1.99 20.84 0.01 0.38 0.64 20.32 1.84.

These weights represent the knowledge embedded in a
trained 16-0-1 sigmoidal network. (The notation ‘16-0-1’
indicates that there are 16 input units, no hidden units,
and a single output unit.) This particular network was
trained to predict the political party affiliation (Democrat
or Republican) for members of the US House of Represen-
tatives based on their voting history on 16 key issues. The
network performs its task very well – over 95% accuracy on
both training and test data – but exactly how does it reach its
answers? One way to produce an explanation of the network
behavior is to fall back on the activation equation shown in
Fig. 1. However, this approach leads to a mathematical
description that does not much distill the raw information
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of the weights. An alternative approach is to describe the
behavior of the network at a higher level, a level where most
of the mathematical information is abstracted away. For
example, we might envision a purely symbolic explanation
that related the party affiliation by some sort of if-then rule
such as the following:

If (voted for health care bill or voted against capital
gains tax reduction bill) then (affiliation is Demo-
cratic).

Symbolic extractions of this sort are valuable for several
reasons. Compared to numbers, symbols are easier for
people to understand. Human understanding is critical if
one wishes to build confidence in a network’s performance
among people. This is particularly so in mission-critical
applications, where the consequences of failure are so
great that opaque, black-box systems are not perceived as
trustworthy. Human understanding is also important if we
wish to transfer the learning of a network to a person. This
might be the case if a network was used as an expert assis-
tant to provide input to a human decision maker. Symbolic
rules are also required should one wish to transfer the learn-
ing of a network to an expert system that uses rules as the
fundamental unit of knowledge. This situation might arise if
the network was being used as part of the knowledge engi-
neering phase of an expert system project.

Symbolic rules hide the detail and thus provide an effi-
cient base for subsequent levels of reasoning. The hiding of

detail often results in a certain loss of precision, but this is
usually an acceptable trade off. One might even conjecture
that the loss of precision brought about by rule extraction
from neural networks might actually improve performance
in some domains, because the rules help suppress noise and
provide constraints that restrict generalization.

Connectionist rule extraction is also valuable because it
provides a link between neural networks and traditional,
symbolic approaches to artificial intelligence (AI). This is
important because of a growing realization among research-
ers that AI is an eclectic endeavor, one that must draw upon
both connectionist and symbolic approaches to make signif-
icant progress. By showing how neural networks may be
interpreted in symbolic terms, connectionist rule extraction
makes a contribution toward bridging the gap between the
two paradigms. Effective use of rule extraction and other
hybrid models may well show the space between connec-
tionist and symbolic AI to be a continuum rather than a true
gap.

Connectionist rule extraction is thus a topic worthy of
investigation. Nevertheless we are not the first to reach
this conclusion; methods for analyzing connectionist
networks using various sorts of rules have already been
proposed by many researchers. We discuss some of these
methods later. For now, we simply state that none of the
existing methods are so universally applicable as to elim-
inate the need for additional work in this area.

2. A template-based approach to rule extraction

Any method that attempts a symbolic reformulation of
network behavior must first choose a language of descrip-
tion. The language of description used in this work is based
on n-of-m expressions. An n-of-m expression consists of a
list of m terms and a value n such that 1 # n # m. The
overall expression is true when at least n of the m terms are
true. An example of an n-of-m expression stated using logi-
cal variables is the majority voter function

X � 2 of �A;B;C�: �1�

As a means of symbolic description, n-of-m expressions are
interesting because they are capable of describing behaviors
intermediate to standard Boolean OR (n � 1) and AND (n �

m) functions. These intermediate behaviors are quite power-
ful, as they reflect a limited form of two-level Boolean logic.
To see why this is true, note that Eq. (1) is equivalent to the
logic expression

OR�AND�A;B�; AND�B;C�; AND�A;C��:

Later, we illustrate even more general behaviors that result
from taking a recursive view of these expressions. In addi-
tion to the descriptive power they afford, n-of-m expressions
are amenable to human comprehension, and n-of-m expres-
sions are a practical choice for use with sigmoidal units due
to the monotonic output function of such units.
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Fig. 1. Sigmoidal unit.

Table 1
Unit output for all input patterns

Inputs Net input Output

I1 I2 I3 I4 Actual Thresholded at 0
21 21 21 21 23 20.906 21
21 21 21 11 3 0.906 11
21 21 11 21 29 21.000 21
21 21 11 11 23 20.906 21
21 11 21 21 23 20.906 21
21 11 21 11 3 0.906 11
21 11 11 21 29 21.000 21
21 11 11 11 23 20.906 21
11 21 21 21 3 0.906 11
11 21 21 11 9 1.000 11
11 21 11 21 23 20.906 21
11 21 11 11 3 0.906 11
11 11 21 21 3 0.906 11
11 11 21 11 9 1.000 11
11 11 11 21 23 20.906 21
11 11 11 11 3 0.906 11



To see how a set of connectionist weights may be refor-
mulated as a symbolic n-of-m expression, consider a four-
input sigmoidal unit. Suppose that after training the unit’s
weights (and bias) are represented by the vector:

w � 6 0 26 6 0:

Assuming that four 21/11 inputs I12I4 are applied to these
weights, what symbolic function does this unit compute?
Treating 21 inputs and outputs as the Boolean state false,
and 11 inputs and outputs as the Boolean state true, Table 1
suggests that the unit computes a nearly exact version of the
n-of-m expression, 2 of �I1;

�I3; I4�: (The overbar notation is
used to indicate negation of a term.)

In this example we can be fairly certain that no other n-of-
m expression better describes the function being computed
by the unit. In general, however, the correspondence
between weights and symbolic expressions is less clear,
and a principled way of exploring many possible symbolic
interpretations is required. Essentially we must mount a
search over the n-of-m expression space, comparing the
actual weights to each possible expression using some simi-
larity to metric. To manage the search space, we introduce
the notion of a weight template to represent each n-of-m
expression under consideration. Following McMillan
(1992), we define a weight template as a parameterized
region of the weight space that corresponds to a given
symbolic expression. Each weight template is parameter-
ized to reflect invariances in the symbolic input–output
behavior of sigmoidal units. The template that describes
the expression given earlier is:

t � p 0 2p p 0:

As long as the parameter p is positive, the symbolic inter-
pretation of the unit’s behavior (obtained by treating the
sigmoidal units as a binary threshold unit, as in Table 1)
is independent of the actual value. The parameter p thus
allows many sets of actual weights to map onto the same
weight template. In this example, setting p to six causes the
actual weights to match the template exactly. As exact
matches are rare for real problems, in general we need to
compute the degree of fit between the actual weights and the
candidate templates. Once the template that best fits the
actual weights has been identified, we have extracted a
rule, because each template is associated with a unique n-
of-m expression.

The procedure for rule extraction that we have sketched –
and will elaborate in Section 3 – requires only the weights in
a trained network and not the training data. Instead of eval-
uating the candidate rules on the basis of weight differences,
one might consider evaluating them on the basis of output
differences over the training set. However, by emphasizing
the training data, such a procedure might fail to model the
regularities that the network has learned, thus compromising
generalization performance.

3. The algorithm in detail

Having presented an overview of our approach to the
connectionist rule extraction, we now describe our extrac-
tion methods in detail. We begin by characterizing the
general form of templates for n-of-m expressions, and
then elaborate a three-step extraction process. We also
discuss several interesting variations on the basic extraction
algorithm that demonstrates the generality of our approach.

3.1. Weight templates for n-of-m expressions

To illustrate how weight templates can be used to repre-
sent n-of-m expressions, consider a generalized weight
vector for a four-input sigmoidal unit:

w � w1 w2 w3 w4 b:

Now consider the following two template vectors:

t1 � 0 p 0 p p;

t2 � p 2p p 0 22p:

These templates are parameterized by the variable p, stipu-
lated to be positive. Given a large positive value of p (say
5.0) and an input vector I whose components are approxi-
mately 21 and 11, t1 describes the symbolic expression 1
of �I2; I4�, andt2 describes the symbolic expression 3 of
�I1;

�I2; I3�: We can use truth tables (e.g. Table 1) to confirm
that t1 and t2 really do represent the aforementioned expres-
sions, but how can we generate the weight template for a
given symbolic expression? For sigmoidal units with 21/
11 inputs, a general prescription for forming an n-of-m
template is as follows:

1. set each of the weight values associated with the m inputs
of interest to ^ p, choosing 1p for each positive
(normal) term, 2p for each negated term;

2. set all other weight values to zero;
3. set the bias value to (11m22n)p.

This prescription covers the expressions where 1 # m # k
and 1 # n # m. For completeness, it is useful to describe
templates for two additional expressions: one for a constant
true expression and one for a constant false expression. To
be consistent with the general form of n-of-m templates,
these constant expression templates have zero values in all
weight positions except the bias position, where a true
template has the value 1p and a false template has the
value 2p.

Now that we have specified how weight templates may be
generated for symbolic expressions within our language of
description, we are ready to explore the process of using
weight templates to find the optimal or the best-fitting
expression for a given set of weights. Optimal is defined
as the expression corresponding to a valid template, t*,
having the parameter p*, such that the Euclidean distance

d � it*2wi2
�2�
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is minimized. Finding an optimal expression involves three
steps. First, a set of candidate templates is identified. For
efficiency, an informed selection algorithm allows the set of
candidate templates to be much smaller than the set of all
possible n-of-m expressions. Second, each candidate
template’s parameters are then instantiated with optimal
values. Third, the instantiated template best fitting the actual
weights is chosen as the basis for symbolic interpretation.
We discuss these three steps in turn.

3.2. Establishing candidate templates for a given unit

Given an actual weight vector for a unit with k inputs
(k11 elements when the bias is counted), the total number
of n-of-m expressions that can be associated with that
weight vector is:

T �
Xk

m�1

Xm
n�1

2m
k

m

 !
�
Xk

m�1

m2m k!
�k2m�!m!

: �3�

For k � 10, T is 393660, and for k � 20, T is more than
46 billion. One reason why T is so large is because it
accounts for (using the exponential term) all possible
combinations of positive and negated terms. The other
reason is because it accounts for (using the factorial
terms) all possible subsets of m terms among the k inputs.
As we explain next, these high-complexity terms can be
eliminated, yielding a value for T that is only quadratic in k.

3.2.1. Pruning the search space using the signs of the actual
weights

To show how the signs of the actual weights may be used
to reduce the required number of templates, we must refer to
our optimality measure, Eq. (2). Any template whose jth
element, tj, has sign opposite to the jth element of the weight
vector, wj, will yield a larger distance measure than any
other template whose tj has the same sign as wj. Thus, we
can use the sign of the actual weight to determine a single
logical sense (positive or negated) for each term. We can
similarly use the sign of the actual bias to reduce the range
of the values of n for which n-of-m templates must be gener-
ated. The results are quite simple: for each j, a positive term
is considered for the corresponding input only if the actual
weight is positive and a negated term is considered for the
corresponding input only if the actual weight is negative.
With regard to the bias, only n-of-m templates for which the
sign of the template bias value agrees with the sign of the
actual bias value are considered. (For this method a template
bias value of 0 is considered both positive and negative.)
Theorem 1 in Appendix A shows that this procedure is
valid, i.e. it will not rule out the optimal template.

As an example of the implications of this sort of pruning,
consider the following weight vector:

w � 24 0 1 5 3:

If we are interested in generating templates whose terms
involve I1 and I3, then there are eight possible templates of

this form, as shown in the following equations:

t1 � 2p 0 2p 0 2p;

t2 � 2p 0 2p 0 p;

t3 � 2p 0 p 0 2p;

t4 � 2p 0 p 0 p;

t5 � p 0 2p 0 2p;

t6 � p 0 2p 0 p;

t7 � p 0 p 0 2p;

t8 � p 0 p 0 p:

Theorem 1 proves that of these eight templates, we need to
consider only t4, which represents the expression 1 of ��I1; I3�

When instantiated with its optimal value of p, this template
is guaranteed to have a smaller distance to w than any of the
other aforementioned templates.

3.2.2. Pruning the search space using the magnitudes of the
actual weights

The factorial terms in Eq. (3) reflect the fact that there are
in general many possible groups of m terms among a set of k
inputs, even when the logical sense of each term is fixed in
accordance with Theorem 1. Fortunately we need not gener-
ate weight templates for each possible grouping of m terms.
Theorem 2 in Appendix A shows that for a given choice of n
and m, we need only consider one template, the one whose
m terms correspond to the m highest absolute value actual
weights.

For an example of the implications of Theorem 2, we
return to the weight vector:

w � 24 0 1 5 3:

If we are considering templates for 1-of-2 expressions, then
taking into account the results of Theorem 1, there are six
possible templates of this form:

t1 � 2p p 0 0 p;

t2 � 2p 0 p 0 p;

t3 � 2p 0 0 p p;

t4 � 0 p p 0 p;

t5 � 0 p 0 p p;

t6 � 0 0 p p p:

Theorem 2 proves that of these six templates, we need to
generate only one, t3, which represents the expression 1 of
��I1; I4�, and when instantiated with its optimal value of p, it
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is guaranteed to have a smaller distance to w than any of the
other aforementioned templates.

The consequence of Theorems 1 and 2 is that the number
of n-of-m templates required for a unit with k inputs is
reduced to a polynomial function of k, i.e.

T �
Xk

m�1

X�m 1 1�
2

j k

n�1

1 �
1
4

k2
1

1
2

k1
1
4

� �
: �4�

This number is a dramatic reduction over the original value
of T [Eq. (3)]. Values for T for k � 10 and 20 are now 30 and
110, respectively. Thus, an efficient and exhaustive search
can be performed through the space of the possible n-of-m
expressions.

3.3. Instantiating template parameters

Having described the process of establishing candidate
templates, we proceed to the second step of the rule inter-
pretation algorithm: instantiating a weight template-select-
ing the value of the parameter p, call it p* that minimizes d
in Eq. (2) for a given template t. As d is quadratic in p, a
unique minimum exists. The general solution for any n-of-m
template is given by the following equation:

p* �

Pk11

i�1
wiui

Pk11

i�1
u2

i

; �5�

where ui [ {21; 0; 1} depending on whether ti is 2p, 0, or
1p, respectively, and index k11 corresponds to the bias
term and uk11 � m22n11. When t is consistent with the
result of Theorem 1 (i.e. when each non-zero ui agrees in
sign with the corresponding wi), p* will always be positive.

Applying Eq. (5) to the example vectors for w and t3 in
Section 3.2.2 yields p* � 4.0, which can be seen by inspec-
tion to be the best choice. The minimal distance d for this
instantiated template is then 3.0.

3.4. Finding the best-fitting template

The third step in interpreting the algorithm is identifying
the best-fitting template. To do this, the distance between
each instantiated template and the actual weight vector is

computed [Eq. (2)], and the minimum-distance template, t*,
is selected. We can use t* as part of a rudimentary check on
the validity of the extraction process, via the extraction
error

Eextraction � 100% ×
it*2wi2

iwi2 : �6�

This quantity measures how close the original weights are to
the nearest symbolic rule. When the nearest symbolic rule is
still relatively far from the actual weights, it suggests that
the unit in question is not computing a symbolic function, or
is computing a symbolic function beyond the ability of the
present algorithm to model. We can also examine the value
of p* used in t*. Small values of p* translate into activation
changes below a unit’s full dynamic range, compromising
the assumption of Boolean outputs propagating to subse-
quent inputs. Thus, Eextraction and p* serve as diagnostics on
the likely quality of the extracted rule.

3.5. Algorithm summary

The development of the preceding sections is summar-
ized in the following algorithm. Here and elsewhere in this
article, sign(x) is taken as 11 for x $ 0, 21 otherwise.

Given an actual weight vector
w � �w1w2…wkwk11�;

For m � 1 to k

For n � 1 to m
If �sign�11m22n� �� sign�wk11�� OR
�11m22n �� 0� {

1. Initialize template coefficient
vector u to all 0’s.

2. Set the template weight coefficients
corresponding to the m highest
absolute value weights in w (not
including wk11) to the sign of the
corresponding weight in w.

3. Set the template bias coefficient
uk11 to 11m22n.

4. Solve for p* using Eq. (5).
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Table 2
Enumeration of candidate templates for example weight vector

Expression type Candidate template p* Instantiated template Distance from w Extraction error

Constant 0 0 0 0 p 3.00 0.00 0.00 0.00 0.00 3.00 42.0 80.8%
12of21 0 0 0 p 0 5.00 0.00 0.00 0.00 5.00 0.00 26.0 51.0%
12of22 2p 0 0 p p 4.00 24.00 0.00 0.00 4.00 4.00 3.0 5.9%
12of23 2p 0 p p 2p 2.29 22.29 0.00 2.29 2.29 4.58 14.4 28.2%
22of23 2p 0 p p 0 3.33 23.33 0.00 3.33 3.33 0.00 17.7 34.7%
12of24 2p p p p 3p 1.46 21.46 1.46 1.46 1.46 4.38 23.2 45.5%
22of24 2p p p p p 2.60 22.60 2.60 2.60 2.60 2.60 17.2 33.7%



5. Compute t by multiplying each
element of u by p*.

6. Compute the distance d � it2w i2:
7. Save t, p*, and d if d is the minimum

found so far.

Return the n-of-m condition corresponding
to the template with minimal d.

3.6. A simple example

We present an example of the complete interpretation
process for the weight vector

w � 24 0 1 5 3:

Table 2 shows the seven templates generated by the algo-
rithm. The distances in the table indicate that the best
template is

t1-of-2 � 24 0 0 4 4:

For the purpose of interpreting, this unit may be said to be
computing a function fairly close to the symbolic expression
1 of ��I1; I4�: The extraction error, Eextraction, is low at 5.9%,
and p* � 4 indicates essentially the Boolean behavior.
Construction of a truth table offers further confirmation
that the aforementioned expression is a valid interpretation
of this unit’s behavior under binary inputs.

3.7. Variations on the basic algorithm

In this section we explore several variations on the basic
rule interpretation algorithm. The variations treated here are
by no means an exhaustive set, but they do serve to illustrate
the basic flexibility inherent in our approach to the connec-
tionist rule extraction.

3.7.1. Grouped-input representations
The derivation of our basic algorithm presumed that the

inputs to a network independent of each other. In problems

where the inputs possess some structure, we can utilize this
structure to constrain rule extraction. A common example of
structure is the grouped-input encoding, where instead of k
independent inputs, we have g groups of h inputs each, such
that each group codes a local (1 of h) representation of a
given input feature.1 To see how the interpretation algo-
rithm can be informed by this type of input structure,
consider the following weight vector, which has g � 2
groups of h � 3 alternatives.

w � w11w12w13w21w22w
23

b:

Each element is indexed by its group and its position within
the group. It can be seen that for any of the values cj,
j [ {1;…; g}, the following weight vector is an activation
invariant of w for any 21/11 inputs adhering to the encod-
ing scheme described earlier.

w 0
� w111c1 w121c1 w131c1 w211c2 w221c2

w231c2 b1�h22��c11c2�:

A convenient way of accounting for this invariance is to add
unknown values for the cj’s to the candidate weight
templates. Thus, a 1-of-2 template might appear as follows:

t � c1 c11p c1 c21p c2 c2 p1c11c2:

Instead of a single parameter p, the template now has g11 �

3 parameters requiring instantiation. Fortunately, even with
the added template parameters, the expression for the Eucli-
dean distance between a template and an actual weight
vector [Eq. (2)] describes a simple hyperparabolic surface,
and thus the parameters yielding the minimum distance can
be found by differentiating and solving a set of g11 linear
equations in g11 variables.

3.7.2. Augmented n-of-m expressions
Although the n-of-m expressions treated so far are quite

powerful, we have observed an interesting class of symbolic
behaviors exhibited by single units that cannot be described
using n-of-m expressions. The simplest example of this type
of behavior may be seen in the single hidden-unit xor
network described by Rumelhart et al. (1986), reproduced
in Fig. 2. In this figure, the numbers inside the circles repre-
sent unit bias values. Given that this network was trained
using 0/1 inputs, a simple analysis shows that the hidden
unit H has learned the expression AND ��I1;

�I2�; and the
output unit O has learned the expression

AND �OR ��I1;
�I2�; �H�;

which may also be written as

2 of �1 of ��I1;
�I2�; �H�:

This expression can be viewed as a nested or recursive form
of n-of-m expression, where at least one of the m terms is
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Fig. 2. 2-1-1 network for the xor problem.

1 The analysis here is easily extended to cases where each group has its
own value of h.



itself an n-of-m expression. Arbitrary recursive expressions
such as 1 of �2 of �I1; I2; I3�; 2 of �I4; I5; I6�� cannot be
computed by a single sigmoidal unit, because such expres-
sions are not generally linearly separable. However, at least
one significant subclass of recursive n-of-m expressions is
linearly separable. Here, we develop a description of this
subclass and show how templates for such expressions may
included in our rule extraction methodology.

The subclass of linearly separable recursive n-of-m
expressions of interest consists of the following two forms:

OR �Cn-of-m;A1;A2;…;Aq�;

AND �Cn-of-m;A1;A2;…;Aq�;

where Cn-of-m is an arbitrary n-of-m expression, 1 # n # m,
and the Ai; i [ {1;…; q}; are simple terms. We call these
forms augmented n-of-m expressions because they extend
simple n-of-m expressions with additional disjuncts or
conjuncts.

In considering how weight templates reflecting these
forms may be generated, recall that templates for simple
n-of-m expressions have a fundamental scaling parameter
p for the m non-zero weights and a bias multiplier on p that
is a function of n and m. The templates are set up such that
when the given expression is minimally satisfied, the net
input of the unit is p, and when the expression is minimally
violated, the net input is –p. To achieve a similar behavior
with an augmented n-of-m template, an additional multiplier
on p is required for the q non-zero template weights asso-
ciated with the additional terms Aj. This is because each of
those weights must affect the net input as much as the entire
inner Cn-of-m expression. (A single active additional disjunct
makes the entire augmented OR forms true, while a single
inactive additional conjunct makes the entire augmented
AND form false.) Templates for augmented n-of-m expres-
sions should thus have the following structure:

1. m of the template weights is set to ^ p, where p stands
for a positive quantity.

2. q of the template weights is set to ^ Kqp, where Kq is a
positive integer constant.

3. The rest of the template weights are set to 0.
4. The template bias is set to Kbp, where Kb is an integer

constant.

Appropriate values for the multipliers Kq and Kb may be
derived by considering certain boundary conditions for
each type of the augmented expression. For the OR type,
the unit must be active when n of the m terms in Cn-of-m are
true and none of the q terms Ai are true. The unit must also
be active when none of the m terms in Cn-of-m are true and one
of the q terms Ai is true. The unit must be inactive when n-1
of the m terms in Cn-of-m are true and none of the q terms Ai

are true. When 21/11 inputs are used, these conditions may
be expressed as:

�2n2m�p2qKqp1Kbp . 0;

2mp1�22q�Kqp1Kbp . 0;

�2�n21�2m�p2qKqp1Kbp , 0:

Equating the left-hand sides of these conditions to p, p, and
2p, respectively, gives the solutions for Kq and Kb as
follows:

Kq � n; �7�

Kb � m111n�q22�: �8�

These solutions are appealing because they are consistent
with those for simple n-of-m expressions, as can be seen by
setting q � 0, where the value for Kb then reverts to
m1122n, as we would expect. A different sort of degener-
acy occurs when n � 1. Now Kq is 1 and Kb is (m1q)2 1, so
the overall expression looks like a simple disjunction of
m1q terms.

Similar boundary conditions may be established for the
AND type. In this case the relevant conditions become:

�2n2m�p1qKqp1Kbp . 0;

�2�n21�2m�p1qKqp1Kbp , 0;

mp1�2�q21�2q�Kqp1Kbp , 0:

When the left-hand sides of these conditions are equated to
p,2 p and 2p, respectively, the solutions are:

Kq � m112n; �9�

Kb � �m11��12q�1n�q22�: �10�

These solutions also give Kb � m1122n when q � 0.
The other degeneracy for this type of expression occurs
when n � m: In this situation Kq is 1, Kb is 12�m1q�; and
the overall expression looks like a simple conjunction of
m1q terms. The existence of these special cases for both
the augmented types reflects the fact that the augmented n-
of-m expressions generalize simple n-of-m expressions in
the same way the simple n-of-m expressions generalize
pure disjunctions and conjunctions. Although it is possible
that other template forms exist to model the augmented n-
of-m expressions, the simulations detailed in Section 5 show
that single units readily evolve weights consistent with the
templates described here.

3.7.2.1. Combinatorics As 1 # n # m, the condition
Kq . 1 holds for the non-degenerate cases of both the OR
and AND augmented types. This means that the q template
weights associated with the additional disjuncts or conjuncts
will always be greater in magnitude than the m weights
associated with Cn-of-m: Note also that for the OR type the
relationship Kb . 0 holds, while for the AND type the
relationship Kb , 0 holds. Together these observations
allow us to eliminate many possible candidate templates
based on the sign of the bias and the absolute values of
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the actual weights we are matching against. The incremental
number of templates that must be generated to account for
augmented n-of-m expressions is then given by:

Xk 2 1

m�2

Xm 2 1

n�1

Xk 2 m

q�1

1 �
1
6

k3
2

1
2

k2
1

1
3

k:

When added to T [Eq. (4)], the total number of templates
required is:

Taug �
1
6

k3
2

1
4

k2
1

5
6

k1
1
4

� �
:

Although this figure is O(k) worse than for simple n-of-m
expressions, it is still polynomial in k and is quite
manageable for many problems.

3.7.2.2. Algorithm summary A procedure for including
templates for augmented n-of-m expressions in the
extraction process is as follows. This procedure is for
illustrative purposes, and is not meant to suggest the most
efficient implementation.

Given an actual weight vector
w � �w1w2…wkwk11�;

Find the best simple n-of-m template using
the procedure described earlier; save
this template’s value of d for comparison
as follows.

For m � 2 to k21

If wk11 is positive

Let n1 � 2
Let n2 � m
Let type � OR

Else if wk11 is negative

Let n1 � 1
Let n2 � m21
Let type � AND

For n � n1 to n2;

For q � 1 to k2m;

1. Initialize template coefficient
vector u to all 0’s.

2. Set the template weight coeffi-
cients corresponding to the q high-
est absolute value weights in w (not
including wk11) to Kqsign�wi�, using
Kq from Eq. (7) (for type � OR) or Eq.
(9) (for type � AND).

3. Set the template weight coeffi-
cients corresponding to the next m
highest absolute value weights to
sign�wi�:

4. Set the template bias coefficient

uk11 to Kb from Eq. (8) for
(type � OR) or Eq. (10) (for
type � AND).

5. Solve for p*.
6. Compute t by multiplying each

element of u by p*.
7. Compute the distance d � it2wi2.
8. Save t, p*, and d if d is the minimum

found so far.

Return the n-of-m condition correspond-
ing to the template with minimum d.

3.7.2.3. Other augmented forms The subclass of linearly
separable recursive n-of-m expressions discussed previously
can be extended by noting that the augmented n-of-m
expressions can themselves play the role of an inner
Cn-of-m expression. That is we can nest the OR and AND
augmented forms once again, by arriving at level-2
augmented expressions of the following forms:

AND �OR �Cn2of 2m;A1;A2;…;Aq�;B1;B2;…;Br�;

OR �AND �Cn2of 2m;A1;A2;…;Aq�;B1;B2;…;Br�;

where the Bi, i [ {1…r}, are additional simple terms.
Nesting of this sort can be repeated indefinitely, resulting
in level-L augmented expressions. The complexity of rule
extraction for a level-L expression is O�kL12

�. Each level of
nesting requires the introduction of another multiplier (for
another group of non-zero weights) in the weight templates
that model expressions of that nesting level. Thus for higher
levels of nesting, units must evolve weight groups whose
values span very large ranges. We omit a further discussion
on template generation for these nested forms as they are not
used in any of our simulations. (Given the weight ranges
required for a single unit to implement these complex
expressions, in practice it seems more likely that a
network will distribute responsibility for them across units
in different layers.)

3.7.3. Extraction algorithm for 0/1 inputs
Our development of the extraction algorithm has

presumed units with 21/11 inputs. Extraction can also be
performed with 0/1 inputs. The overall process differs a little
from that of 21/11 inputs, but there is a significant differ-
ence in the number of candidate templates required for the
0/1 case.

For the 21/11 representation, Theorems 1 and 2 proved
that the signs and magnitudes of the actual weights and bias
could be applied to select the single best template for each
possible combination of n and m values. This result is possi-
ble because the template definitions allow the sign of each
template weight (including the bias) to be chosen indepen-
dently. The difficulty with templates for 0/1 inputs is that the
choice of bias is coupled to the choice of which m
template weights to make non-zero. As a result, the total
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number of n-of-m templates that must be considered for a
unit with k inputs is given by the following equation:

T �
Xk

m�1

Xm
mneg�0

Xm
n�1

1 �
1
3

k3
1k2

1
2
3

k;

which is O(k) worse than Eq. (4), the expression for the
number of potential templates with 21/11 inputs.

4. Related work

Having laid down the basic principles underlying our
template-based symbolic interpretation of non-linear
connectionist units, we describe alternative rule extraction
techniques in the literature that make the most contact with
the present work, and contrast our approach with these alter-
natives.

4.1. McMillan

The RuleNet system of McMillan (1992) and McMillan
et al. (1991) was developed to demonstrate the merits of
connectionist rule learning using integrated symbolic and
subsymbolic processing. The RuleNet architecture is
closely related to the mixture-of-experts configuration
described by Jacobs et al. (1991). Although developed inde-
pendently, RuleNet can usefully be viewed as a specializa-
tion of the Jacobs configuration. This configuration features
a system of competing expert networks working in conjunc-
tion with a gating network. The outputs of the gating
network are normalized (Bridle, 1989) to form probabilities
that determine which expert network’s output is selected as
the overall output of the system. The error function is such
that the gating network is encouraged to divide the training
patterns into several subsets. The output mapping for each
subset is then produced by a different expert network.
McMillan used an approach like this to develop an archi-
tecture that learned condition–action rules (Holland et al.,
1986). His condition subnet plays the role of the gating
network, and the action subnet plays the role of the expert
networks. RuleNet is significant for several reasons, but we
are most interested in the rule extraction component of the
system.

McMillan performed template-based rule extraction on
both the condition and action subnets. The templates used
for the action subnet were highly specialized to the Rule-
Net’s learning task and are not directly comparable to those
discussed in the present work. Templates for the condition
subnet, however, are directly comparable, and McMillan’s
extraction of conditions is the focus of this commentary.
Abstracting the exact nature of the conditions learned by
RuleNet, the templates treated by McMillan fall into three
general types: simple, binary disjunctive, and binary
conjunctive. In the language of n-of-m expressions, these
types are described as 1-of-1, 1-of-2, and 2-of-2, respec-
tively. Our method would generate three candidate

templates for these types, whereas McMillan’s method
required a total of g2 (where g is the number of input groups
as described in Section 3.7.1), a substantial difference in
search efficiency.

As RuleNet was designed to explore more than just
connectionist rule extraction, it is not surprising that the
generality and efficiency of the extraction techniques was
not the focus. Nevertheless, McMillan’s work with RuleNet
must be credited as laying down the basic ideas behind
template-based rule extraction.

4.2. Towell

Towell (1991) and Towell and Shavlik (1991) have
attempted to combine the merits of explanation-based learn-
ing and empirical (inductive) learning. To carry out a learn-
ing task using Towell’s hybrid approach requires both an
initial domain theory—a set of rules—for the task and a set
of labeled training examples. These items are used in a
three-step learning process centered around Knowledge-
Based Artificial Neural Networks, or KBANNs. The first
step transforms the a priori domain knowledge into a struc-
tured initial connectionist network. The second step trains
the network using the labeled training examples. The final
step is rule extraction, whereby the weights of the trained
network are converted into a set of rules. As with McMil-
lan’s work, we are most concerned here with the rule extrac-
tion step.

Towell’s network training method works to ensure that
the assumption of Boolean activation behavior is satisfied.
Rule extraction is then performed on each unit to determine
the conditions causing that unit to become strongly active.
These conditions are expressed using a variant of the n-of-m
formalism used in this work. Towell’s first step is to itera-
tively cluster the unit’s weights, excluding the bias, into
groups. The procedure then checks each training pattern
against each weight group and eliminates weight groups
that do not affect the classification of any pattern. The
next step is to train the network biases only, other weights
being frozen; this step helps maintain Boolean unit behavior
in the modified network. Finally, rules are extracted by
searching for input combinations that activate the unit. In
the best case, these rules can be stated strictly in symbolic
terms, i.e. without using numeric quantities. The following
example, adapted from Towell and Shavlik (1991), illus-
trates the results for a single unit in such a case:

w � 6:2 1:2 6:0 1:0 1:0 6:0 1:2 210:9;

where the rule extracted is O � 2 of �I1; I3; I6�:

In this example, conversion of the rule from numeric to
symbolic form was possible because of the fact that after
group elimination the unit had only one group of weights.
When more than one group remains, Towell typically leaves
the rule in numeric form, rather than enumerating all the
conditions that cause the unit to become active. Even by
using n-of-m expressions, such an enumeration is
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problematic because of the combinations involved in the
activation equation. An example of a rule extracted from
the part of a network trained on the promoter recognition
task from molecular biology is:

Minus35 � 210 , 15:0nt�@ 2 37‘--T-G--A’�

1 3:1nt�@ 2 37‘---GT---’�

1 1:9nt�@ 2 37‘----C-CT’�

1 1:5nt�@ 2 37‘---C--A-’�

2 1:5nt�@ 2 37‘------GC’�

2 1:9nt�@ 2 37‘--CAW---’�;

where nt() returns the number of true terms, @-37 locates
the terms on the DNA strand, and ‘‘-’’ indicates a do not-
care term.

This rule is considerably more complicated than a basic
n-of-m expression and is not a complete description of cases
under which the Minus35 condition is true. In Towell’s
Prolog-like formulation, disjunctive conditions are indi-
cated by separate rule enumerations. The aforementioned
rule describes only one of the four disjuncts relevant to
the Minus35 condition. Nevertheless, rules of this sort are
much simpler than the complete networks from which they
are extracted and were found to be useful in the domains
studied by Towell and his collaborators.

Towell’s use of an iterative clustering step stands in
contrast to our use of template-based procedures specialized
for dividing weights into a fixed number of groups: one
group of value 0 and one group of value ^ p for simple
n-of-m templates, additional non-zero groups for augmented
n-of-m templates. Our simpler method appears to be more
efficient, but Towell’s extraction algorithm is more general
in that it can accommodate situations by clustering results in
numerous groups of non-zero weights.

However, there are disadvantages associated with
Towell’s method. The primary disadvantage is that the
rules produced by his method are in general not completely
symbolic. Although numeric expressions were convenient
for the domains Towell studied, in applications where one is
only interested in symbolic interpretations such expressions
might be seen as providing too much detail, and be difficult
for people to interpret and reason about. Sometimes one
wants to determine the nearest symbolic interpretation of
unit behavior rather than to extract the most precise math-
ematical description. Our method offers a simpler paradigm
for doing this.

In summary, Towell’s approach is capable of more expres-
sive descriptions of unit behavior and is therefore more
general. The trade off is that the descriptions are more
complex, and less comprehensible, than the purely symbolic
ones provided by our method. The two approaches represent
two different points on the complexity–expressiveness curve,

and each approach will have applications where it is most
appropriate. Thus we conclude that both methods have their
place in rule extraction tool kits.

4.3. Other research

Other methods for the connectionist rule extraction have
been suggested by Fu (1989, 1991) and Hayashi (1990).
Towell (1991) also describes several alternatives to the n-
of-m method described earlier. The work of Gallant (1988)
was an important early example of integrating connectionist
and rule-based approaches. Other examples of integrated
approaches include Dolan and Smolensky (1989), Tour-
etzky and Hinton (1998) and Sun (1991). Hybrid AI systems
have become quite popular in the recent years, and several
such systems are discussed in Dinsmore (1992).

Although explicit rule extraction is the focus of this work,
there are other ways to combat the problem of network
opacity. These include visualization techniques such as
those described by Hinton (1989), and statistical approaches
such as hierarchical cluster analysis (Sejnowski and Rosen-
berg, 1987). Other approaches that can be used to facilitate
network description include those described in Mozer and
Smolensky (1988) and Nowlan and Hinton (1991).

5. Simulations

We performed six sets of simulation experiments that
were designed to test the effectiveness of our method of
rule extraction. The simulations range from small-scale
problems for which we know the solution in advance and
can verify whether the interpretation procedure produces the
correct outcome, to larger-scale problems from the Univer-
sity of California at Irvine machine learning repository.

5.1. Random functions

Extraction performance was first tested using random n-
of-m functions known to be learnable by a single sigmoidal
unit. We tested 100 simple n-of-m functions of 10 Boolean
variables in groups of 10 using a 10-0-10 feedforward
network. An example of one of these groups of functions
is shown as follows:

f1 � 2 of ��I2; I10�

f2 � 1 of ��I2�

f3 � 6 of �I1; I2; I3;
�I4; I5; I6; I10�

f4 � 2 of �I1; I2; I3;
�I4; I5; I6; I7; I8;

�I9;
�I10�

f5 � 5 of �I4;
�I5; I7;

�I8;
�I9; I10�

f6 � 7 of ��I1; I3;
�I5; I7; I8;

�I9;
�I10�

f7 � 1 of ��I3; I6�
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f8 � 7 of ��I1;
�I2; I3;

�I4;
�I5; I6;

�I7; I8; I10�

f9 � 4 of ��I1;
�I2; I3; I4; I5;

�I6;
�I8; I9; I10�

f10 � 1 of �I2; I4;
�I8;

�I9�

The network was trained by back propagation on the
standard squared-differences error function (Rumelhart et
al., 1986) using the complete set of 210

� 1024 patterns
for each function. Training was stopped when outputs for
all patterns were within 0.05 of their target 21/11 values,
and testing was performed by reinjecting the extracted rules
and thresholding outputs at 0. In all simulations the network
learned all the functions and the extracted rules matched the
target functions exactly. The extracted rules therefore
correctly mapped 100% of the patterns. Table 3 summarizes
the extraction performance in terms of the two measures p*
and Eextraction. The high mean p* and low mean extraction
error indicate that the weight configurations taken on by the
network closely match those described by the weight
templates, further confirming the accuracy of the extraction
process. The statistics reported in Table 3 are the ensemble
values obtained by replicating the experiment 10 times with
different initial weights but with the same 100 target func-
tions. The low standard deviations for p* and Eextraction indi-
cate that the extraction process is consistent across both the
functions and the experimental replications.

Table 3 also gives the results of testing 20 random
augmented n-of-m functions of 10 inputs. The functions
were strictly augmented in the sense that values of n, m,
q, and the type of expression (OR or AND) were chosen
such that none of the functions had an equivalent simple
n-of-m form. In this case the functions were tested one at
a time, over 10 replications. In all cases the extracted rules
matched the target functions exceptionally and thus

correctly mapped all 1024 patterns. Statistical results for
these functions are similar to those for the simple n-of-m
functions. The figures for p* and Eextraction are encouraging
because they indicate that the more complicated descrip-
tions of templates for augmented n-of-m expressions are
valid models of weight configurations taken on by actual
networks.

The experiments in this section are admittedly simple, but
they provide evidence supporting the basic ideas behind a
template-based approach to the connectionist rule extrac-
tion. In particular, the experiments show that the informa-
tion on the weights is sufficient to extract a function
responsible for generating the training data. Extracting a
function from the training data itself is relatively easy;
extracting a function from the weights is yet another matter.

5.2. Simple logic problems

We also tested the extraction algorithms on a simple set
of logic problems that require multilayer nets for their solu-
tion. The problems are as follows:

• the rule-plus-exception problem, defined as
O � OR �AND �A;B�;AND � �A; �B; �C; �D��;

• xor-1 is the 2-1-1 version of xor shown in Fig. 2;
• xor-2 is a strictly layered (2-2-1) version of xor (Rumel-

hart et al., 1986);
• negation, also described in Rumelhart et al. (1986), is a

problem in which one of the four inputs controls if the
other inputs appear unchanged or negated at the outputs.

The xor-1 and negation problems make use of direct input–
output connections. The negation problem required the use
of a secondary error term to encourage binary hidden unit
activities and therefore allow accurate rule extraction as
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Table 3
Summary of extraction performance on random functions

Problem Network topology p* Extraction error

Mean Standard deviation Mean (%) Standard deviation (%)

Random n-of-m functions 10-0-10 5.20 0.19 0.01 0.01
Random augmented n-of-m
functions

10-0-1 4.54 0.32 0.01 0.01

Table 4
Summary of extraction performance on simple logic functions

Average p* Extraction error

Problem Network
topology

Hidden unit
penalty term

Hidden
unit(s)

Output
unit(s)

Hidden
unit(s) (%)

Output
unit(s) (%)

Patterns correctly
classified by rules (%)

Rule-plus-exception 4-2-1 2 2.72 6.15 0.8 1.3 100
xor-1 2-1-1 2 5.68 4.40 0.1 0.1 100
xor-2 2-2-1 2 4.34 5.68 0.4 1.0 100
Negation 4-3-4 Activation 5.40 5.17 0.2 2.2 100



follows:

Eact � hact

X
h

�12o2
h�:

This error penalizes non-Boolean hidden activations for
symmetric (21/11) units; h is an index over the set of
hidden units, and oh denotes the activation of hidden unit
h. For experiments utilizing Eact, the regularization para-
meter h act was initialized at 0 and gradually increased
throughout the course of the training using

hact � 0:2 12e2epoch=1000
� �

;

where ‘epoch’ denotes the current training epoch number.
Networks for these experiments were trained using the

cross-entropy function (Hinton, 1989). Other simulation
parameters were the same as those given in the previous
section. Networks were trained on the complete pattern
space of each function; rules were then extracted and tested
against all the patterns. Table 4 summarizes the results over
10 replications of each problem with different initial
weights. In addition to the perfect classification perfor-
mance of the rules, the high values of p* and low values
of extraction error provide evidence that the extraction
process is accurate.

Symbolic solutions for these problems often come in
forms that differ from the canonical form of the function.
For example, the extracted rules for the rule-plus-exception
problem show a level of negation within the network as
follows:

H1 � OR �A;B;C;D�

H2 � AND �A;B�

O � OR � �H1;H2�

In general the networks we tested make use of negation to
form equivalent solutions. The extraction process easily
captures these solutions, as long as the units conform the
assumption of approximately Boolean activation behavior.
The following three sets of rules are among some of the
equivalent forms extracted for the xor-2 problem:

H1 � AND ��I1;
�I2� H1 � OR ��I1; I2� H1 � AND �I1; I2�

H2 � OR ��I1;
�I2� H2 � OR �I1;

�I2� H2 � AND ��I1;
�I2�

O � AND � �H1;H2� O � OR � �H1;
�H2� O � AND � �H1;

�H2�

Shown later are the three equivalent rule sets extracted for
xor-1. Note that each solution demonstrates the use of an
augmented n-of-m expression.

H � AND ��I1; I2�

O � OR �AND �I1;
�I2�;H�

H � OR ��I1; I2�

O � OR �AND ��I1; I2�; �H�

H � OR ��I1;
�I2�

O � AND �OR �I1; I2�;H�

For the negation problem, we found that without the help
of Eact, the network for this problem would sometimes solve
the problem using hidden activations that were not comple-
tely Boolean, which causes the extraction process to fail.
Shown here is an example of a set of rules extracted in such
a case.

H1 � AND �I1;
�I2; I3� Extraction error � 8:4%

H2 � AND �OR ��I2;
�I3�; �I1� Extraction error � 8:4%

H3 � AND �I1;
�I4� Extraction error � 0:0%

O1 � OR �AND ��I2;
�I3; I4;H1;

�H2;H3�; I1� Extraction error � 6:7%

O2 � 2 of ��I1;H1;
�H2� Extraction error � 12:7%

O3 � AND �OR �I1;
�I2; I3�; �H1;

�H2� Extraction error � 6:7%

O4 � OR �AND ��I1; I4�;H3� Extraction error � 0:8%

The values for extraction error suggest that the rules do not
match the original weights exactly. Nevertheless, the rules
correctly account for 56 of the 64 output activities, much
better than one would expect by chance. However, the rules
correctly map only eight of the 16 total patterns. For
comparison, following is a set of correct rules extracted
from the negation network with the help of Eact:

H1 � OR �I1;
�I4� Extraction error � 0:0%

H2 � OR ��I1;
�I2� Extraction error � 0:4%

H3 � AND �I1;
�I3� Extraction error � 1:4%

O1 � �I1� Extraction error � 2:2%

O2 � AND �OR �I1; I2�;H2� Extraction error � 2:2%

O3 � OR �AND��I1; I3�;H3� Extraction error � 0:1%

O4 � OR�AND �I1;
�I4�; �H1� Extraction error � 0:1%

Given that the negation problem consists of three separate
xor problems, we can see that these rules describe a solution.
I1 is the inversion control bit, passing straight through to O1,
while O2, O3, and O4 implement xor functions between I1
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and I2, I1 and I3, and I1 and I4, respectively. The xor solutions
are like those for xor-1 mentioned earlier.

Taken together, these simulations demonstrate the
capabilities of our algorithm when applied to multilayer
networks trained on the complete pattern space of a func-
tion. We turn next to the issue of generalization perfor-
mance.

5.3. The MONK’s problems

We tested the generalization performance on the
MONK’s problem, a set of three problems used to compare
a variety of symbolic and connectionist learning algorithms
(Thrun et al., 1991). These problems require binary classi-
fication over a six-attribute input space shown as follows:

x1 : head_shape [ {round; square; octagon}

x2 : body_shape [ {round; square; octagon}

x3 : is_smiling [ {yes; no}

x4 : holding [ {sword; balloon; flag}

x5 : jacket_color [ {red; yellow; green; blue}

x6 : has_tie [ {yes; no}

These attributes are based on an artificial robot domain and
give rise to 432 possible robots. For each of the problems, a
subset of 432 possible robots was used to provide the train-
ing data, and the complete set was used to test the general-
ization performance. The three MONK’s problems are:

monks-1:
(head_shape � body_shape) or (jacket_color is red)
monks-2:
exactly 2 of the attributes have their first value
monks-3:
(jacket_color is green and holding is sword) or (jacket_co-
lor is not blue and body_shape is not octagon)

The monks-1 problem has 124 patterns in its training set,
monks-2 has 169, and monks-3 has 122. Training sets for
monks-1 and monks-2 contain no noise, but the training set
for monks-3 contains six patterns that are misclassified,
which amounts to approximately 5% training noise. In all
cases, the test sets are noise-free.

We tested the MONK’s problems using a 21/11 input

unit for each of the 17 possible attribute values. Training
continued until the outputs for all patterns were within 0.05
of their target 21/11 values. We made use of the grouped-
input variant of our extraction algorithm described in
Section 3.7.1. A group was associated with each of the six
input attributes, having 3, 3, 2, 3, 4, and 2 weights, respec-
tively. For monks-1 and monks-2, we also applied a selective
weight decay to hidden weights, implemented using the
additional error term

Edecay � hdecay

X
g

X
i±imax

g

w2
i ;

where g is an index over weight groups and i is an index
over all the weights within a group except the maximum
absolute value weight, denoted imax

g : For monks-1, we used
hdecay � 0:1: For monks-2, we used the following schedule:

hdecay � 50 12e2epoch=1000
� �

:

The results are summarized in Table 5. Our performance
was equal to or better than that of all of the systems tested by
Thrun et al. (1991) for the monks-1 and monks-2 problems.
Moreover, the rules extracted by our algorithm were very
concise and easy to understand, in contrast to those
produced by several other symbolic systems. (The two
connectionist systems reported in Thrun et al., 1991, were
opaque, i.e. no rules were extracted.) Consider the following
output of our extraction technique for the monks-1 problem:

H1 � 2 of �head_shape square; body_shape square;
jacket_color not red�

H2 � 2 of �head_shape not round; body_shape
not round; jacket_color red�

H3 � 2 of �head_shape octagon; body_shape octagon;
jacket_color not red�

O � 2 of � �H1; H2;
�H3�

Recall that the target concept for this problem is: (head
shape � body shape) or (jacket color is red). Given that
there are only three possible values for head shape and
body shape, the aforementioned rules can be seen to be a
correct expression of the concept. All the rules extracted for
this problem were simple variations on the set shown earlier.

Typical rules extracted for the monks-2 problem included
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Table 5
Summary of the MONK’s problems

Training set Test set
Problem Network topology Hidden unit penalty term No of patterns Performance of rules (%) No of patterns Performance of rules (%)

Monks-1 17-3-1 Decay 124 100 432 100
Monks-2 17-2-1 Decay 169 100 432 100
Monks-3 17-0-1 2 122 93.4 432 97.2



the following:

H1 � 2 of �head_shape round; body_shape round;
is_smiling yes; holding sword; jacket_color red;
has_tie yes�

H2 � 3 of �head_shape round; body_shape round;
s_smiling yes; holding sword; jacket_color red;
has_tie yes�

O � AND �H1;
�H2�

All the rules extracted for this problem were similar in form
to these. These rules demonstrate a rather elegant use of n-
of-m expressions to describe the target concept. The rules
express the idea of ‘‘exactly 2’’ by saying, in effect, ‘‘at
least 2 but not 3.’’ This is as much as a human might
describe the concept.

The monks-3 problem is difficult both because of the
training noise and the nature of the underlying function.
The function is a disjunction of two terms, but the terms
are such that 420 of the 432 total patterns can be account for
by the second disjunct: jacket_color is not blue and body_-
shape is not octagon. The other disjunct is required to map
the remaining 12 patterns. The overall function is therefore
similar in character to the rule-plus-exception problem
discussed earlier. The training set for monks-3 includes
only two of the 12 patterns mapped by the ‘exception’
disjunct. This makes for a difficult learning problem even
in the absence of noise. While our networks had no difficulty
learning the training patterns using hidden units, our gener-
alization performance on the test set was poor, because the
networks had learned the noise present in the training set. In
his own experiments applying the connectionist networks to
the monks-3 problem, Thrun et al. (1991) used weight decay
to improve generalization. However, this still did not lead to
interpretable weight configurations. Our solution was to use
a network with no hidden units. Our network did not
perfectly learn the training patterns, but it matched Thrun’s
generalization performance of 97.2%. It did this by picking
the dominant disjunct out of the training noise; the rule
extracted in every case was:

O � AND �jacket_color not blue; body_shape not octagon�:

The 12 patterns in the test set missed by this rule are
precisely those patterns covered by the other disjunct: jack-
et_color is green and holding is sword.

The MONK’s problems provide a good testing ground for
exploring the generalization performance of our algorithm.

The experiments in rule extraction described here are by no
means an exhaustive treatment of these problems, but they
do illustrate some of the general strengths and weaknesses
of our approach. Results on the monks-1 and monks-2
problems are noteworthy because they show the power of
n-of-m rules to capture equality of feature values and to
express complex concepts such as ‘‘exactly 2’’.

A weakness of our method illustrated by these problems
is the dependence on an extra error term for hidden units in
multilayer configurations. (A similar dependence was illu-
strated by the negation problem of the previous section.)
Weight decay was required for reliable rule extraction on
monks-1 and monks-2. When we removed the weight decay,
the network still learned the function, but the weights were
not interpretable using our procedure. Interpretation
problems also occurred when we used more hidden units.
This experience points up the main disadvantage of our
procedure: it is not effective when a network solves a
problem using weight configurations that do not match
those described by our weight templates. As demonstrated
here, judicious use of extra error terms can often steer a
network toward interpretable solutions, but in general the
effectiveness of our procedure will be problem dependent.

5.4. Promoter recognition

The remaining three simulations address extraction
performance on real-world databases from the University
of California at Irvine machine learning repository (Murphy
and Aha, 1994). The first of these is the promoter recogni-
tion task. This task was studied extensively by Towell and a
good explanation of the problem may be found in Towell
(1991). In brief, promoters are short DNA sequences that
mark the beginnings of genes. Identifying the locations of
genes (portions of DNA that are transcribed into proteins) is
an important goal of molecular biology research. DNA
sequences for which the promoter status is known make
up the data set for this problem. The data includes 53
promoters and 53 non-promoters, for a total of 106 patterns.
Each of the patterns represents a DNA sequence that is 57
elements long. Each element of the sequence may take on
one of the values A, C, G, or T. In this problem the elements
are indexed from 250 to 17, inclusive (An index of 0 is not
used.) This allows subsequences within the overall sequence
to be described using a convenient ‘@index’ notation. For
example, the description ‘‘@-10 ‘A-TTG’’’ specifies the
composition of the subsequence located between indices
210 and 214. (The ‘‘2’’ indicates an unspecified element.)

We coded each element of the sequences using a simple
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Table 6
Summary of performance on the promoter recognition task

Training set Test set
Network topology No of patterns Perf. of network Perf. of rules No of patterns Perf. of network Pref. of rules

228-0-1 105 100.0% 95.9% 1 94.2% 87.6%



1-of-4 local representation, so there were 228 input units in
our network for this task, divided into 57 natural groups of
four. We achieved the best results with no additional penalty
terms, no hidden units, and by restricting all weights to be
positive. Training continued until all outputs were within
0.05 of their target values. We followed a leave-one-out
cross-validation procedure: A total of 106 networks were
trained, each on 105 patterns, with the remaining pattern
in each case being used for generalization testing. Each
network was trained 10 times using different initial weights,
so a total of 1060 networks was tested.

Table 6 shows a summary of results, averaged across all
1060 simulations. It is interesting to note that a network with
no hidden units can learn all the patterns. As shown by the
table, such a network achieves 94.2% generalization perfor-
mance without rule extraction. Rule extraction reduces the
performance to 87.6%. This figure is less than the best
performance (96%) of Towell (1991), but is nonetheless
impressive when viewed in light of the simplicity and
comprehensibility of our extracted rules. While Towell’s
results for this task included five rules like the one shown
in Section 4.2, our single rule is quite simple:

promoter � 5 of (@245 ‘AA-------TTGA-A-----T------
T-----AAA----C’)

This rule was extracted in 515 of the 1060 simulations we
ran. A total of 28 unique rules was extracted over the course
of the 1060 simulations. Most rules possessed many terms in
common with the aforementioned 5-of-13 rule. For exam-
ple, the next most frequently occurring rule (337 times) was:

promoter � 5 of (@245 ‘AA-------TTGA-A--T-T------
T-----AA-----C’)

The results for this problem are a good illustration of the
complexity and expressiveness differences between our
method and Towell’s method. Although our rule is less
expressive, it is completely symbolic and very easy to
understand.

5.5. Congressional voting records

The next task we studied was the congressional voting-
record data base in the UCI machine learning repository.
This task involved predicting the political party affiliation
(Democrat or Republican) for members of the US House of
Representatives based on 16 key votes taken during 1984.
The votes are defined as follows:

V1 � Voted for handicapped-infants bill
V2 � Voted for water-project-cost-sharing bill

V3 � Voted for adoption-of-the budget bill
V4 � Voted for physician-fee-freeze bill
V5 � Voted for el-salvador-aid bill
V6 � Voted for religious-groups-in-schools bill
V7 � Voted for anti-satellite-test-ban bill
V8 � Voted for aid-to-nicaraguan-contras bill
V9 � Voted for mx-missile bill
V10 � Voted for immigration bill
V11 � Voted for synfuels-corporation-cutback bill
V12 � Voted for education-spending bill
V13 � Voted for superfund-right-to-sue bill
V14 � Voted for crime bill
V15 � Voted for duty-free-exports bill
V16 � Voted for export-admin-south-africa bill

The attributes of this problem map directly into a Boolean
input coding. As with the problem of the promoter, we
achieved best results with no hidden units; our network
was thus a 16-0-1 configuration. As a zero-hidden unit
network cannot quite learn all the training patterns, training
was stopped when error seemed to reach asymptote. Gener-
alization testing was carried out using 10-fold cross valida-
tion. In this method, the data set is divided into 10 groups,
with nine used for training and the remaining group for test-
ing. As the experiment is performed 10 times, each group is
used once as the test set. Additionally, the grouping itself is
repeated 10 times to eliminate dependencies on the initial
ordering of the patterns. Finally, in our case each network
was trained and tested 10 times with different initial random
weights. Thus 100 networks were trained and tested 10 times
each for this experiment. To make the calculation easier, a
subset of 430 of the 435 patterns in the database was used for
all the experiments here. This means that each training set
had 387 patterns and each test set had 43 patterns.

Table 7 summarizes the simulation results for this
problem. The table indicates that a very good performance
is achieved for this problem without the use of hidden units.
The average value of p* for these simulations was 1.105,
and the average value of the extraction error was 13.15%.
The rule most frequently extracted for this problem is:

Democrat � OR�5 of �V3; V7; V9; V10; V11; V12�; V4�:

This rule indicates a strong link between the party affiliation
and the vote on physician fee freezes. In fact, an inverse
dependence on V4 was exhibited in all of the 49 unique rules
extracted for this problem. This is not surprising, as the class
predictiveness values for this attribute – the probability that
the affiliation is Republican given a yes vote, and the prob-
ability that the affiliation is Democrat given a no vote – are
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Table 7
Summary of performance on the voting record task

Training set Test set
Network topology No of patterns Perf. of network Perf. of rules No of patterns Perf. of network Pref. of rules

16-0-1 387 97.3% 96.2% 43 95.7% 95.9%



0.92 and 0.99, respectively. The strength of the V4 link is
reflected by the fact that it stands alone as a term inside an
augmented n-of-m expression. According to the template
definitions for these expressions, it carries a weight five
times that carried by the items in the 5-of-6 term of the
augmented expression.

These results are noteworthy because the generalization
performance of the rules is virtually identical to that of the
raw network. This indicates that the extracted rules are
capturing a significant portion of the computation being
performed by the network.

5.6. Breast cancer diagnosis

Our final simulation involved the UCI repository breast
cancer (data base courtesy by Dr. William H. Wolberg; see
also Mangasarian and Wolberg, 1990). The goal of this task
is to determine if a tumor is benign or malignant based on
the following attributes: clump thickness, uniformity of cell
size, uniformity of cell shape, marginal adhesion, single
epithelial cell size, bare nuclei, bland chromatin, normal
nucleoli, and mitoses. In the UCI data base, each of these
attributes is nominally coded with integer values between 1
and 10 inclusive. Instead of using a standard local represen-
tation for each attribute, we used a thermometer coding
(Table 8). This coding is advantageous because it allows
less-than or greater-than conditions for an attribute to be
detected with a single weight in the attribute group. For
example, for the network to learn the condition
clump thickness . 6, it merely has to develop a positive
weight associated with input number 6. (Under a purely
local representation, this would require four weights, one
for each of inputs 6–9.) This property is consistent with the
template selection method based on input groupings.

Additionally, using an input representation which facilitates
less-than or greater-than conditions seems like an appropri-
ate bias for a diagnosis task such as this.

Applying the aforementioned encoding to each of the
nine attributes for this task results in 81 inputs. We obtained
the best results by using three hidden units and by restricting
the hidden weights to be positive. However, a penalty for
hidden unit activations or weight decay was not required.
Training continued until the training error appeared to
asymptote. Generalization testing consisted of 10-fold
cross validation as described for the voting-record task,
using 630 patterns for training and 70 patterns for testing.

A summary of our results on the breast-cancer diagnosis
task is given in Table 9. As an example of the rules extracted
for this task, consider the following:

H1 � 4 of (thickness . 3, size . 1, adhesion . 2,
epithelial . 5, nuclei . 3, chromatin . 1, normal . 2,
mitoses . 1)
H2 � 3 of (thickness . 6, size . 1, shape . 1,
epithelial . 1, nuclei . 8, normal . 9)
O � AND (H1, H2)

These rules were extracted with p* values of approxi-
mately 1.8, 3.6, and 2.8, respectively. They account for
674 (or 96%) of the 700 total patterns. In approximately
20% of the simulations, including this run, H3 did not figure
into the overall rule. No single set of rules dominated for
this problem, but many of the rules extracted over different
training sets differed only slightly in their use of terms
involving the various attributes. For example, instead of
specifying thickness . 3, a rule might specify thickness . 4.

As with the voting-record task, these results are signifi-
cant because the generalization performance of the rules is
very close to that of the raw network, indicating that the
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Table 8
Encoding of features for the breast-cancer problem

Attribute value Inputs
I1 I2 I3 I4 I5 I6 I7 I8 I9

1 21 21 21 21 21 21 21 21 21
2 1 21 21 21 21 21 21 21 21
3 1 1 21 21 21 21 21 21 21
4 1 1 1 21 21 21 21 21 21
5 1 1 1 1 21 21 21 21 21
6 1 1 1 1 1 21 21 21 21
7 1 1 1 1 1 1 21 21 21
8 1 1 1 1 1 1 1 21 21
9 1 1 1 1 1 1 1 1 21

10 1 1 1 1 1 1 1 1 1

Table 9
Summary of performance on the breast-cancer diagnosis task

Training set Test set
Network topology No of patterns Perf. of network Perf. of rules No of patterns Perf. of network Pref. of rules

81-3-1 630 98.5% 96.3% 70 95.8% 95.2%



rule-based description is capturing most of the computation
being performed by the network.

5.7. Discussion of simulation results

We have presented a collection of simulations performed
using our template-based rule extraction algorithms. The
domains included: randomly-generated n-of-m and augmen-
ted n-of-m functions, simple logic problems, a set of learn-
ing benchmarks known as the MONK’s problems, and three
problems from the UCI machine learning repository.
Together these problems represent a good range of learning
tasks. For each problem, we gave examples of the kinds of
rules extracted and discussed conditions under which the
extracted rules provided an accurate description of network
behavior.

Several conclusions can be reached from the results of
our simulations. The algorithms appear to be very effective
on single-layer networks. This is not surprising, as these
networks must make use of Boolean activations at the
outputs in order to solve the classification problems. The
algorithms also seem effective on highly constrained multi-
layer networks (e.g. networks that have an appropriate
number of hidden units and that make use of appropriate
secondary error terms). Our approach breaks down in multi-
layer networks when the hidden units do not take on
Boolean activations. This problem aside, the simulations
demonstrate the feasibility of our approach to connectionist
rule extraction, and provide compelling evidence that our
approach can be used to interpret and understand the beha-
vior of a neural network.

6. Conclusion and future directions

This article has presented a general approach for extract-
ing various types of n-of-m symbolic rules from trained
networks of sigmoidal units, assuming approximately
Boolean activation behavior. Our approach makes several
contributions to the study of neural network interpretation
and rule extraction. First, we have made a principled exten-
sion to the template-based approach of McMillan, giving it a
more rigorous mathematical treatment. Second, we have
demonstrated the flexibility of our general approach by
showing how the basic extraction algorithm may be adapted
to the particular needs of an application domain. Third, we
have compared our method of rule extraction to that
presented by Towell, concluding that the two methods
embody different choices in the trade off between complex-
ity and expressiveness. The symbolic rules produced by our
method are less expressive but also considerably less
complex than the mixed symbolic and numeric rules
produced by Towell’s method. Simulations conducted
with our algorithms demonstrated their overall usefulness
as well as the general strengths and weaknesses of our
approach.

The simulations reported in this work used rule extraction

after training error reached asymptote. One promising possi-
bility that we did not explore is the idea of extracting rules
during training, and then reinjecting them back into the
network for further training. McMillan (1992) reported the
use of such an iterative extraction technique and determined
that this method slightly improved the ultimate generaliza-
tion performance of his system. The appeal of extracting and
reinjecting rules during training is that the extraction opera-
tion provides a way of taking a step (through weight space)
not based on the gradient of the error function. It thus has the
potential of altering the network’s path through weight
space as well as its eventual destination. If extraction/rein-
jection is performed at the right times during training, it may
help constrain a network, biasing it toward solutions that are
for the most part symbolic. Determining exactly when to
perform the extractions in such a scheme would be a subject
for further investigation. One could extract at some uniform
interval during training based on epoch counts. Another
approach would be to extract based on how the value of
the error function was changing during training. Yet another
idea would be to perform an extraction fairly regularly, but
only reinject the extracted rules if criteria for p* and Eextraction

were met.
Jordan (1998) has suggested that the sigmoid belief

networks of Neal (1991) may offer a principal alternative
to introducing penalty terms when Boolean unit behavior is
desired. An interesting direction would be to apply
template-based extraction techniques to such belief
networks. Jordan has also pointed out that our weight
templates can be viewed as special cases of certain invar-
iances (syzygies) in the field of symbolic algebra. Exploring
this relationship in detail could provide a stronger theoreti-
cal basis for weight templates, and could lead to additional
insights on their uses and limitations in connectionist
systems.

We began this article with a discussion of opacity in the
connectionist networks. In all likelihood, no one solution
exists to this challenging problem, but template-based tech-
niques provide a broad set of tools that can be tailored to a
task domain. Advances are clearly being made in analyzing
the behavior of networks through rule extraction. An impor-
tant contribution of our work has been to show that rule-
extraction techniques are approaching a level of sophistica-
tion, where they will be useful in interpreting the behavior
of networks on challenging, real-world problems.
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Appendix A

This appendix presents the two theorems referred in the
body of the article. These theorems allow for large regions
of the search space of n-of-m expressions to be pruned from
further consideration based on simple attributes of the actual
weight vector being interpreted. The theorems are important
because they show that this pruning is mathematically justi-
fied rather than being based on a heuristic.

A.1. Theorem 1

This Theorem demonstrates how knowledge of the signs
of the actual weights may be applied to the extraction
process to reduce the number of templates that must gener-
ated.

Begin with an actual weight vector w and two generalized
n-of-m templates t and s:

w � w1 w2 … wkwk11;

t � t1 t2 … tk tk11;

s � s1 s2…sk sk11:

In this notation, items subscripted with ‘k11’ indicate bias
values. Let each of the weights in t be represented as ti �

uip, where p is by definition positive. For t to be a valid n-of-
m template, m of the ui values (i , k11) must be ^ 1 and
k2m of the ui values must be 0. In addition, uk11 must be
equal to m1122n. For each of the non-zero ui, let ui �

sign(wi).
Similarly, let each of the weights in s be represented by

si � vip, where each of the m non-zero vi values (including
the bias value vk11) are such that either vi � ui or vi � 2ui.
Let j be an index over the cases where vi � 2ui, and let these
cases number at least one. Then t and s are identical except
that some of the non-zero weights in s have the opposite sign
of their counterparts in t.

The conjecture is that once the templates t and s are
instantiated with values of p, t will always be closer to w
than s. In mathematical terms, this relationship is expressed
as

it2wi2
, is2wi2

:

To show that this is indeed the case, note that

it2wi2
� dt �

Xk 1 1

i�1

�uip2wi�
2
�
Xk 1 1

i�1

�sign�wi�uuiup2wi�
2
;

and

is2wi2
� ds �

Xk 1 1

i�1

�vip2wi�
2

�
Xk 1 1

i�1

�sign�wi�uviup2wi�
2
14p

X
j

uvjuuwju:

The distances dt and ds can be minimized by setting their
derivatives with respect to p to zero. This yields the
following optimal values of p:

pt �

P k11
i�1 uwiuuuiuPk11

i�1
u2

i

;

ps �

Pk11

i�1
uwiuuviu22

P
j

uwjuuvju

Pk11

i�1
v2

i

:

When these values of pt and ps are substituted into dt and ds,
respectively, the difference between dt and ds reduces to

ds2dt �

4
P
j

uwjuuvju

 ! Pk11

i�1
uwiuuviu2

P
j

uwjuuvju

 !

Pk11

i�1
u2

i

:

As the weights indexed by j always form a subset of the
complete set of k11 weights, the difference ds2dt is always
positive,2 meaning that t is always closer to w than is s. The
Theorem is complete. Note also that the aforementioned
equation for pt guarantees a positive value, as required by
the template definitions.

A.2. Theorem 2

This Theorem demonstrates how knowledge of the
magnitudes of the actual weights may be applied to the
extraction process to further reduce the number of candidate
templates.

Begin with an actual weight vector w and two generalized
n-of-m templates t and s:

w � w1 w2…wkwk11;

t � t1 t2…tk tk11;

s � s1 s2…sk sk11:

As in Theorem 1, items subscripted with ‘k11’ indicate bias
values. Let the weights in t and s be represented by tl � ulp
and sl � vlp, respectively. In accordance with Theorem 1,
the signs of any non-zero ul and vl are equal to the signs of
the corresponding wl. Let the m non-zero ul �l , k11� in t
correspond to the m highest absolute value actual weights in
w, and let the m non-zero vl in s correspond to any other set
of weights in w. Also in accordance with Theorem 1, let
uk11 � vk11 � m1122n for some value n such that
sign�uk11� � sign�vk11� � sign�wk11�. Templates t and s
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2 Note that when all the weights in s are inverted from their counterparts
in t (i.e. j spans the complete set of m11 weights), the difference ds2dt is
zero. This is not surprising, as in that case ps � 2pt, and when this value is
substituted into s the templates s and t become identical.



thus reflect the same values of n and m, and they are both
consistent with the results of Theorem 1. They differ in that
their m terms involve different sets of inputs.

For convenience in what follows, we use four subscripts
to index over subsets of the k11 elements in w,t, and s:

i indexes over the m11 non-zero weights in t;
j indexes over the m11 non-zero weights in s;
i* indexes over the k2m zero weights in t;
j* indexes over the k2m zero weights in s.

In this scheme i and i* together include all the k11
elements, as do j and j* together.

The claim we wish to prove is that once the templates t
and s are instantiated with the values of p, the following
relationship is guaranteed:

it2wi2
, is2wi2

:

To show that this relationship holds, we follow a similar
course of action as in Theorem 1. The distances dt and ds

are given as:

dt �
Xk 1 1

l�1

�ulp2wl�
2
�
Xk 1 1

l�1

�uulup2uwlu�
2
;

and

ds �
Xk 1 1

l�1

�vlp2wl�
2
�
Xk 1 1

l�1

�uvlup2uwlu�
2
:

Using the subscripts described earlier, optimal values of p
for t and s are:

pt �

P
i

uwiuuuiuP
i

u2
i

;

ps �

P
j

uwjuuvjuP
j

v2
j

:

As t and s reflect the same values of n and m, we can make
the following simplification:

D �
X

i

u2
i �

X
j

v2
j :

The values of dt and ds are then

dt �
X

i

�uuiup2uwiu�
2
1

X
i*

w2
i*;

ds �
X

j

�uvjup2uwju�
2
1

X
j*

w2
j* :

When pt and ps are substituted into dt and ds, respectively,

the difference between dt and ds reduces to

ds2dt �

P
i

uwiuuuiu

 !2

2
P
j

uwjuuvju

 !2

D
:

This difference is always positive, by the following reason-
ing: The subscripts i and j index the same number of non-
zero weights (m11 in each case). For each non-zero weight
indexed by i or j, uuiu � uvju. By definition the sum of the uwiu
values exceeds that of the uwju values. The difference of the
squares of these sums is then positive, and D is also positive.
Thus, ds is always greater than dt and the claim is proven.
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