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Abstract

We introduce a family of classi�ers based on a physical analogy to
an electrostatic system of charged conductors. The family, called
Coulomb classi�ers, includes the two best-known support-vector
machines (SVMs), the �{SVM and the C{SVM. In the electrostat-
ics analogy, a training example corresponds to a charged conductor
at a given location in space, the classi�cation function corresponds
to the electrostatic potential function, and the training objective
function corresponds to the Coulomb energy. The electrostatic
framework provides not only a novel interpretation of existing algo-
rithms and their interrelationships, but it suggests a variety of new
methods for SVMs including kernels that bridge the gap between
polynomial and radial-basis functions, objective functions that do
not require positive-de�nite kernels, regularization techniques that
allow for the construction of an optimal classi�er in Minkowski
space. Based on the framework, we propose novel SVMs and per-
form simulation studies to show that they are comparable or su-
perior to standard SVMs. The experiments include classi�cation
tasks on data which are represented in terms of their pairwise prox-
imities, where a Coulomb Classi�er outperformed standard SVMs.

1 Introduction

Recently, Support Vector Machines (SVMs) [1, 12, 10] have attracted much interest
in the machine-learning community and are considered state of the art for classi-
�cation and regression problems. One appealing property of SVMs is that they
are based on a convex optimization problem, which means that a single minimum
exists and can be computed eÆciently. In this paper, we present a new deriva-
tion of SVMs by analogy to an electrostatic system of charged conductors. The
electrostatic framework not only provides a physical interpretation of SVMs, but it
also gives insight as to some of the seemingly arbitrary aspects of SVMs (e.g., the
diagonal of the quadratic form), and it allows us to derive novel SVM approaches.



In this paper, we focus on the classi�cation of an input vector x 2 X into one of
two categories, labeled \+" and \�". We assume a supervised learning paradigm
in which N training examples are available, each example i consisting of an input
xi and a label yi 2 f�1;+1g. We will introduce three electrostatic models that
are directly analogous to existing machine-learning (ML) classi�ers, each of which
builds on and generalizes the previous. For each model, we describe the physical
system upon which it is based and show its correspondence to an ML classi�er.

1.1 Electrostatic model 1: Uncoupled point charges

Consider an electrostatic system of point charges populating a space X 0 homologous
to X . Each point charge corresponds to a particular training example; point charge
i is �xed at location xi in X 0, and has a charge of sign yi. We de�ne two sets of
�xed charges: S+ =

�
xi j yi = +1

	
and S� =

�
xi j yi = �1

	
. The charge of point

i is Qi � yi �i, where �i � 0 is the amount of charge, to be discussed below.

We briey review some elementary physics. If a unit positive charge is at x in
X 0, it will be attracted to all charges in S� and repelled by all charges in S+. To
move the charge from x to some other location ~x, the attractive and repelling forces
must be overcome at every point along the trajectory; the path integral of the force
along the trajectory is called the work and does not depend on the trajectory. The
potential at x is the work that must be done to move a unit positive charge from a
reference point (usually in�nity) to x.

The potential at x is ' (x) =
PN

j=1Qj G
�
xj ;x

�
, where G is a distance measure.

In electrostatic systems with point charges, G (a; b) = 1= ka� bk
2
. From this

de�nition, one can see that the potential at x is negative (positive) if x is in a
neighborhood of many negative (positive) charges. Thus, the potential indicates
the sign and amount of charge in the local neighborhood.

Turning back to the ML classi�er, one might propose a classi�cation rule for some
input x that assigns the label \+" if '(x) > 0 or \�" otherwise. Abstracting from
the electrostatic system, if �i = 1 and G is a function that decreases suÆciently
steeply with distance, we obtain a nearest-neighbor classi�er.

2.1 Electrostatic model 2: Coupled point charges

Consider now an electrostatic model that extends the previous model in two re-
spects. First, the point charges are replaced by conductors, e.g., metal spheres.
Each conductor i has a self{potential coeÆcient, denoted Pii, which is a measure
of how much charge it can easily hold; for a metal sphere, Pii is related to sphere's
diameter. Second, the conductors in S+ are coupled, as are the conductors in S�.
\Coupling" means that charge is free to ow between the conductors. Technically,
S+ and S� can each be viewed as a single conductor.

In this model, we initially place the same charge �=N on each conductor, and allow
charges within S+ and S� to ow freely (we assume no resistance in the coupling
and no polarization of the conductors). After the charges redistribute, charge will
tend to end up on the periphery of a homogeneous neighborhood of conductors,
because like charges repel. Charge will also tend to end up along the S+{S�

boundary because opposite charges attract. See Figure 1 for a depiction of the
redistributed charges. The shading is proportional to the magnitude �i. An ML
classi�er can be built based on this model, once again using '(x) > 0 as the decision
rule for classifying an input x. In this model, however, the �i are not uniform; the
conductors with large �i will have the greatest inuence on the potential function.
Consequently, one can think of �i as the weight or importance of example i. As we
will show shortly, the examples with �i > 0 are exactly support vectors of an SVM.
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Figure 1: Coupled conductor system at the energy minimum. Shown are the zero
potential isocline and charge magnitude (shading).

The redistribution of charges in the electrostatic system is achieved via minimization
of the Coulomb energy. Imagine placing the same total charge magnitude, k, on
S+ and S� by dividing it uniformly among the conductors, i.e., �i = k= jSyi j. The
free charge ow in S+ and S� yields a distribution of charges, the �i, such that
Coulomb energy is minimized.

To introduce Coulomb energy, we begin with some preliminaries. The potential on
conductor i, '(xi), which we will denote more compactly as 'i, can be described

in terms of the coeÆcients of potential Pij [11]: 'i =
PN

j=1 Pij Qj , where Pij is the
potential induced on conductor i by charge Qj on conductor j; Pii � Pij � 0 and
Pij = Pji. If each conductor i is a metal sphere centered at xi and has radius ri,
the system can be modeled by a point charge Qi at x

i, and Pij = G
�
xi;xj

�
as in

the previous section [5, 11]. The self-potential, Pii, is de�ned as a function of ri.
The Coulomb energy is de�ned in terms of the potential on the conductors, 'i:

E =
1

2

NX
i=1

'i Qi =
1

2
QT P Q =

1

2

NX
i;j=1

Pij yi yj �i �j :

When the energy minimum is reached, the potential 'i will be the same for all con-
nected i 2 S+; we denote this potential 'S+ . Similarly, 'S� denotes the potential
which is the same for all connected i 2 S�.

Two additional constraints on the system of coupled conductors are necessary in
order to interpret the system in terms of existing machine learning models. First,
the positive and negative potentials must be balanced, i.e., 'S+ = �'S� . This
constraint is achieved by introducing a constant potential b, b = �0:5 ('S+ + 'S�),

into the potential function: ' (x) =
PN

i=1Qi G
�
xi;x

�
+ b. Second, the conductors

must be prevented from reversing the sign of their charge, i.e., �i � 0, and from
holding more than a quantity C of charge, i.e., �i � C. These requirements can be
satis�ed in the electrostatic model by disconnecting a conductor i from the charge
ow in S+ or S� when �i reaches the lower or upper bound, which will subsequently
freeze its charge. Mathematically, the requirements are satis�ed by treating energy
minimization as a constrained optimization problem with 0 � �i � C.



The electrostatic system corresponds to a �{support vector machine (�{SVM) [10],
with these two constraints and setting C = 1=N and

P
i2S+ �i =

P
i2S� �i = 0:5 �.

The identity holds because the Coulomb energy is exactly the �{SVM quadratic
objective function, and the thresholded electrostatic potential evaluated at a lo-
cation is exactly the SVM decision rule. The equalization of potentials in the
coupled conductors S+ and S� corresponds to the minimization of slack vari-
ables in the SVM. Mercer's condition [6], the essence of the nonlinear SVM the-
ory, is equivalent to the fact that continuous electrostatic energy is positive, i.e.,
E =

R
G (x; z) h (x) h (z) dx dz � 0. The self-potentials of the electrostatic

system provide an interpretation to the diagonal elements in the quadratic objec-
tive function of the SVM. This interpretation of the diagonal elements allows us to
introduce novel kernels and novel SVM methods, as we discuss later.

3.1 Electrostatic model 3: Coupled point charges with battery

In electrostatic model 2, we control the magnitude of charge applied to S+ and S�.
Although we apply the same charge magnitude to each, we do not have to control
the resulting potentials 'S+ and 'S+ , which may be imbalanced. We compensate
for this imbalance via the potential o�set b. In electrostatic model 3, we control the
potentials 'S+ and 'S+ directly by adding a battery to the system. We connect
S+ to the positive pole of the battery with potential +1 and S� to the negative
pole with potential �1. The battery ensures that 'S+ = +1 and 'S� = �1 because
charges ow from the battery into or out of the system until the systems take on
the potential of the battery poles. The battery can then be removed. The potential
'i = yi is forced by the battery on conductor i. The total Coulomb energy is the
energy from model 2 minus the work done by the battery. The work done by the
battery is

P
i�N yiQi =

P
i�N �i [5]. The Coulomb energy is

1

2
QT P Q �

NX
i=1

�i =
1

2

NX
i;j=1

Pij yi yj �i �j �

NX
i=1

�i :

This physical system corresponds to a C{support vector machine (C{SVM) [1, 12].
The C{SVM requires that

P
i yi�i = 0; although this constraint may not be ful�lled

in the system described here, it can be enforced by a slightly di�erent system [3].

2 Comparison of existing and novel models

2.1 Novel Kernels

The electrostatic perspective makes it easy to understand why SVM algorithms can
break down in high-dimensional spaces: Kernels with rapid fall-o� induce small po-
tentials and consequently, almost every conductor retains charge. Because a charged
conductor corresponds to a support vector, the number of support vectors is large,
which leads to two disadvantages: (1) the classi�cation procedure is slow, and (2) the
expected generalization error increases with the number of support vectors [12]. We
therefore should use kernels that do not drop o� exponentially. The self{potential
permits the use of kernels that would otherwise be invalid, such as a generalization

of the electric �eld: G
�
xi;xj

�
:=

xi � xj
�l
2

and G
�
xi;xi

�
:= r�li = Pii, where

ri the radius of the ith sphere. The ris are increased to their maximal values, i.e.
until they hit other conductors (ri = 0:5minj

xi � xj

2
). These kernels, called

\Coulomb kernels", are invariant to scaling of the input space in the sense that
scaling does not change the minimum of the objective function. Consequently, such
kernels are appropriate for input data with varying local densities. Figure 2 depicts



a classi�cation task with input regions of varying density. The optimal class bound-
ary is smooth in the low data density regions and has high curvature in regions,
where the data density is high. The classi�cation boundary was constructed using

a C-SVM with a Plummer kernel G
�
xi;xj

�
:=
�xi � xj

2
2
+ �2

��l=2
[8], which is

an approximation to our novel Coulomb kernel but lacks its weak singularities.

Figure 2: Two class data with a dense region and trained with a SVM using the
new kernel. Gray-scales indicate the weights | support vectors are dark. Boundary
curves are given for the novel kernel (solid), best RBF-kernel SVM which over�ts
in the high density region (dashed), and optimal boundary (dotted).

2.2 Novel SVM models

Our electrostatic framework can be used to derive novel SVM approaches [3], two
representative examples of which we illustrate here.

2.2.1 �{Support Vector Machine (�{SVM):
We can exploit the physical interpretation of Pii as conductor i's self{potential.
The Pii's determine the entropy of the charge distribution at the energy minimum.
We can introduce a parameter � to rescale the self potential { Pnew

ii = � P old
ii .

� controls the complexity of the corresponding SVM. With this modi�cation, and
with C =1, electrostatic model 3 becomes what we call the �{SVM.



2.2.2 p{Support Vector Machine (p{SVM):
At the minimum of the electrostatic energy 'i � yi = 0; 8i, where y is the
vector of labels, i.e. the electrostatic potentials equalize. This motivates the in-
troduction of another objective function, the potential di�erence, 1

2
kPQ + yk2

2
=

1

2
QTP TPQ + QTP Ty + 1

2
yTy instead of the Coulomb energy. We obtain the

optimization problem (cf. model 3):

min
�

1

2
�T Y P T P Y � � 1TY P Y � (1)

subject to 1T P Y � = 0 ; j�ij � C;

where 1 is the vector of ones and Y := diag(y). We call this variant of the
optimization problem the p-SVM. The constraint 1T P Y � = 0 ensures that the
summed potential for each class is the same.

By construction, P T P is positive de�nite; consequently, this formulation does not
require positive de�nite kernels. This characteristic is useful for problems in which
the properties of the objects to be classi�ed are described by their pairwise proxim-
ities. That is, suppose that instead of representing each input object by an explicit
feature vector, the objects are represented by a matrix which contains a real num-
ber indicating the similarity of each object to each other object. We can interpret
the entries of the matrix as being produced by an unknown kernel operating on
unknown feature vectors. In such a matrix, however, positive de�niteness cannot
be assured, and the optimal hyperplane must be constructed in Minkowski space.

3 Experiments

UCI Benchmark Repository. For the representative models we have in-
troduced, we perform simulations and make comparisons to standard SVM
variants. Most of the datasets are from the UCI Benchmark Reposi-
tory and preprocessed in [7]. The \banana" data set is taken from
(http://www.first.gmd.de/~raetsch/data). We did 100-fold validation on each
data set, restricting the training set to 200 examples, and using the remainder of
examples for testing. We compared two standard architectures, the C{SVM and
the �{SVM, to our novel architectures: to the �{SVM, to the p{SVM, and to a
combination of them, the �{p{SVM. The �{p{SVM is a p-SVM without the con-
straint j�ij � C but it is regularized through � by the diagonal elements � Pii. We
explored the use of radial basis function (RBF), polynomial (POL), and Plummer
(PLU) kernels. Hyperparameters were determined by 5{fold cross validation on the
�rst 5 training sets. The search for hyperparameter was not as intensive as in [7].

Table 1 shows the results of our comparisons on the UCI Benchmarks. Our two novel
architectures, the �{SVM and the p{SVM, performed well against the two existing
architectures. As anticipated, the p{SVM requires far fewer support vectors. Ad-
ditionally, the Plummer kernel appears to be more robust against hyperparameter
and SVM choices than the RBF or polynomial kernels.

Pairwise Proximity Data. We applied our p-SVM and the generalized SVM
(G-SVM) [2] to two pairwise-proximity data sets. The �rst data set, the \cat cor-
tex" data, is a matrix of connection strengths between 65 cat cortical areas and was
provided by [9], where the available anatomical literature was used to determine
proximity values between cortical areas. These areas belong to four di�erent coarse
brain regions: auditory (A), visual (V), somatosensory (SS), and frontolimbic (FL).
The goal was to classify a given cortical area as belonging to a given region or



C � � p �-p C � � p �-p
thyroid heart

RBF 6.4 9.4 7.7 5.4 8.6 21.4 19.1 17.9 22.4 17.8
POL 22.8 12.6 7.0 13.3 6.9 20.4 20.4 19.3 23.0 19.3
PLU 6.1 6.2 6.1 5.7 6.1 16.3 16.3 16.3 17.4 16.3

breast{cancer banana
RBF 33.6 31.6 33.8 32.4 33.7 13.2 36.7 13.2 11.6 13.4
POL 36.0 25.7 29.6 27.1 29.1 35.3 35.0 11.5 22.4 11.5
PLU 33.4 33.1 33.4 30.6 33.4 15.7 15.7 15.7 21.9 15.7

german
RBF 28.7 29.3 29.0 27.8 28.8
POL 33.7 29.6 26.2 31.8 26.2
PLU 28.8 28.5 33.3 27.1 33.3

Table 1: Mean % misclassi�cation on 5 UCI Repository data sets. Each cell in
the table is obtained via 100 replications splitting the data into training and test
sets. The comparison is among �ve SVMs (the table columns) using three kernel
functions (the table rows). Cells in bold face are the best result for a given data set
and italicized the second and third best.

not. The second data set, the \protein" data, is the evolutionary distance of 226 se-
quences of amino acids of proteins obtained by a structural comparison [4] (provided
by M. Vingron). Most of the proteins are from four classes of globins: hemoglobin-�
(H-�), hemoglobin-� (H-�), myoglobin (M), and heterogenous globins (GH). The
goal was to classify a protein as belonging to a given globin class or not. As Table 2
shows, our novel architecture, the p{SVM, beats out an existing architecture in the
literature, the G{SVM, on 5 of 8 classi�cation tasks, and ties the G{SVM on 2 of
8; it loses out on only 1 of 8.

cat cortex protein data
Reg. V A SS FL Reg. H-� H-� M GH

Size | 18 10 18 19 | 72 72 39 30
G-SVM 0.05 4.6 3.1 3.1 1.5 0.05 1.3 4.0 0.5 0.5
G-SVM 0.1 4.6 3.1 6.1 1.5 0.1 1.8 4.5 0.5 0.9
G-SVM 0.2 6.1 1.5 3.1 3.1 0.2 2.2 8.9 0.5 0.9
p-SVM 0.6 3.1 1.5 6.1 3.1 300 0.4 3.5 0.0 0.4
p-SVM 0.7 3.1 3.1 4.6 1.5 400 0.4 3.1 0.0 0.9
p-SVM 0.8 3.1 3.1 4.6 1.5 500 0.4 3.5 0.0 1.3

Table 2: Mean % misclassi�cations for the cat-cortex and protein data sets using
the p{SVM and the G{SVM and a range of regularization parameters (indicated in
the column labeled \Reg."). The result obtained for the cat-cortex data is via leave-
one-out cross validation, and for the protein data is via ten-fold cross validation.
The best result for a given classi�cation problem is printed in bold face.

4 Conclusion

The electrostatic framework and its analogy to SVMs has led to several important
ideas: (1) It suggests SVM methods that are valid for kernels that are not positive
de�nite. (2) It suggested novel approaches and kernels that perform at least as well
as standard methods. We demonstrated a new classi�cation technique working in



Minkowski space which can be used for data in form of pairwise proximities. The
novel approach treats proximity matrix as an SVM kernel (Gram) matrix what lead
to excellent experimental results.

We argued that the electrostatic framework not only characterizes a family of
support-vector machines, but it also characterizes other techniques such as nearest
neighbor classi�cation. Perhaps the most important contribution of the electro-
static framework is that, by interrelating and encompassing a variety of methods,
it lays out a broad space of possible algorithms. At present, the space is sparsely
populated and has barely been explored. But by making the dimensions of this
space explicit, the electrostatic framework allows one to easily explore the space
and discover novel algorithms. In the history of machine learning, such general
frameworks have led to important advances in the �eld.
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