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Abstract

We introduce a family of classi�ers based on a physical analogy to
an electrostatic system of charged conductors. The family, called
Coulomb classi�ers, includes the two best-known support-vector
machines (SVMs), the �{SVM and the C{SVM. In the electrostat-
ics analogy, a training example corresponds to a charged conductor
at a given location in space, the classi�cation function corresponds
to the electrostatic potential function, and the training objective
function corresponds to the Coulomb energy. The electrostatic
framework not only provides a novel interpretation of existing algo-
rithms and their interrelationships, but it suggests a variety of new
methods for SVMs including kernels that bridge the gap between
polynomial and radial-basis functions, objective functions that do
not require positive-de�nite kernels, regularization techniques that
are not cast in terms of violation of margin constraints, and speed-
up techniques using either approximate or restricted-but-exact al-
gorithms. Based on the framework, we propose novel SVMs and
perform simulation studies to show that they are comparable or su-
perior to standard SVMs. The electrostatic framework subsumes
not only SVMs but also nearest neighbor, density estimation, vec-
tor quantization, and clustering techniques.

1 Introduction

Recently, Support Vector Machines (SVMs) [1, 8, 5] have attracted much interest in
the machine-learning community and are considered state of the art for classi�cation
and regression problems. One appealing property of SVMs is that they are based
on a convex optimization problem, which means that a single minimum exists and
can be computed eÆciently. In this paper, we present a new derivation of SVMs
by analogy to an electrostatic system of charged conductors. The electrostatic
framework not only provides a physical interpretation of SVMs, but it also gives



insight as to some of the seemingly arbitrary aspects of SVMs (e.g., the diagonal
elements in the quadratic form), and it allows us to derive novel SVM approaches.

We will discuss the classi�cation of an input vector x 2 X into one of two categories,
\+" or \�". We assume a supervised learning problem in which N training exam-
ples are available, each example i consisting of an input xi and a label yi 2 f�1;+1g.

We will introduce three electrostatic models that have direct analogy to machine-
learning (ML) classi�ers, starting with a relatively limited electrostatic model and
the following two building on and generalizing from the previous. For each model,
we describe the physical system and show its correspondence to an ML classi�er.

1.1 Electrostatic model 1: Uncoupled point charges

Consider an electrostatic system of point charges populating a space X 0 homologous
to X . Each point charge corresponds to a particular training example; point charge
i is �xed at location xi in X

0, and has a charge of sign yi. We de�ne two sets of
�xed charges: S+ = fxi j yi = +1g and S� = fxi j yi = �1g. The charge of point i
is denoted Qi � yi �i, where �i � 0 is the amount of charge, to be discussed below.

We briey review some elementary physics. If a unit positive charge is at x in X 0, it
will be attracted to all charges in S+ and repelled by all charges in S�. To move the
charge from x to ~x, the force must be overcome at every point along the trajectory;
the path integral of the force along the trajectory is called the work and does not
depend on the trajectory. The potential at x is the work that must be done to move
a unit positive charge from a reference point (usually in�nity) to x.

The potential at x is ' (x) =
PN

i=1Qi G (xi; x), where G is a kernel measuring the
distance between x and xi (in electrostatic systems, G (a; b) = 1= ka� bk2). From
this de�nition, one can see that the potential at x is negative (positive) if x is in
a neighborhood of relatively many negative (positive) charges. Thus, the potential
indicates the sign and amount of charge in the local neighborhood.

Turning back to the ML classi�er, one might propose a classi�cation rule for some
input x that assigns the label \+" if '(x) > 0 or \�" otherwise. Abstracting from
the electrostatic system, if �i = 1 and G is a function that decreases suÆciently
steeply with distance, we obtain a nearest-neighbor classi�er. (By \suÆciently
steeply," we mean that if xi is the closest point to x thenG (xi; x) > N G (xj ; x)8j 6=
i.) The potential can also be viewed as the di�erence between a kernel density
estimator for the \+" class and a kernel density estimator for the \�" class if
�i = jSyi j

�1
(S+1 � S+ and S�1 � S�) and 8a :

R
G (a; x) dx = 1.

1.2 Electrostatic model 2: Coupled point charges

Consider now an electrostatic model that extends the previous model in two re-
spects. First, the point charges are replaced by conductors, e.g., metal spheres.
Each conductor i has a self{potential coeÆcient, denoted Pii, which is a measure
of how much charge it can easily hold; for a metal sphere, Pii is related to sphere's
diameter. Second, the conductors in S+ are coupled, as are the conductors in S�.
\Coupling" means that charge is free to ow between the conductors. (Techni-
cally, S+ and S� can each be viewed as a single conductor, but we will still use
\conductor" in correspondence with i 2 f1 : : :Ng.)



In this model, we initially place the same charge on each conductor, and allow
charges within S+ and S� to ow freely (we assume no resistance in the coupling and
no polarization of the conductors). Af-
ter the charges redistribute, charge will
tend to end up on the periphery of a
homogeneous neighborhood of conduc-
tors, because like charges repel. Charge
will also tend to end up along the S+{
S� boundary because opposite charges
attract. See Figure 1 for a depiction of
the redistributed charges. The shading
is proportional to the magnitude �i.
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Figure 1: Coupled conductor system at the
energy minimum. Shading indicates the
charge magnitude. The zero potential isoline
is shown.

An ML classi�er can be built based on this model, once again using '(x) > 0 as the
decision rule for classi�cation. In this model, however, the �i are not uniform; the
conductors with large �i will have the greatest inuence on the potential function.
Consequently, one can think of �i as the weight or importance of example i. As we
will show shortly, the examples with �i > 0 are exactly support vectors of an SVM.

Formal Presentation

The potential on conductor i, 'i � '(xi) can be described by the coeÆcients of

potential Pij [6]: 'i =
PN

j=1 Pij Qj , where Pii � Pij � 0 and Pij = Pji. Pij speci�es
the potential induced on conductor i by chargeQj on conductor j. To use a concrete
physical example, if each conductor i is a metal sphere centered at xi and has radius
ri, the system can be modeled by a point charge Qi at xi, Pii = G (xi; �xi), where
�xi is an arbitrary point on the sphere surface, and Pij = G (xi; xj) [2, 6]. G (a; b)
must be isotropic, i.e., depend only on ka� bk2. The free charge ow in S+ and
S� corresponds to minimizing the Coulomb energy,

E =
1

2

NX

i=1

'i Qi =
1

2
QT P Q =

1

2

NX

i;j=1

Pij yi yj �i �j :

Initially, we set �i = K= jSyi j to assign the same total charge magnitude K to S+

and S� and to make the charge uniform for each conductor in each set. Coulomb
energy minimization redistributes the charges.

In order for this electrostatic model to serve as a classi�er, we must enforce the
constraint �i � 0 to ensure that an example does not change its class label. We
do this by treating energy minimization as a constrained optimization problem
with 0 � �i � C, where C is an optional upper bound (which can be set to 1
to eliminate the constraint). In the physical model, the constraint on �i can be
satis�ed by disconnecting a conductor i from the charge ow in S+ or S� when �i
reaches the lower or upper bound, which will freeze its value.

After the energy minimum is reached, the potential will be the same for all i 2 S+

which are still connected; we denote this potential 'S+ . Similarly, 'S� denotes the
potential which is the same for all i 2 S� which are still connected. To use the
potential, '(x), to classify an input x, we must ensure that 'S+ = 'S� to eliminate
any bias toward classi�cation as \+" or \�". We can do so by introducing a
constant potential b (something like ionized air in the physical system), i.e., ' (x) =PN

i=1Qi G (xi; x) + b, where b = �0:5 ('S+ + 'S�).



We have described a system of coupled conductors with two additional constraints:
(1) that the charge on a conductor is bounded, and (2) that positive and neg-
ative potentials are balanced. This physical system corresponds to a �{support
vector machine (�{SVM) [5] if C = 1=N and

P
i2S+ �i =

P
i2S� �i = 0:5 �.

The identity holds because the energy function is exactly the �{SVM quadratic
objective function, and in both the physical system and the SVM the function is
minimized. We know from optimization theory that at the minimum, the Karush{
Kuhn{Tucker conditions (KKTs) [1] must hold. The KKTs for �{SVMs use the
variables �, �i, and �i which have a physical interpretation in our model. � is the
potential di�erence between S+ and S�: � = 0:5 ('S+ � 'S�), or with b, we obtain
� = �'S� . Slack variable �i gives the potential di�erence between 'i and 'Syi :
�i = � � yi 'i � 0. Removing conductors with �i = 0 from the system makes
�i > 0 only for �i = C = 1=N . Variable �i measures the charge di�erence
to the upper bound �i = 1=N � �i � 0 on i. The diagonal elements in the
quadratic form have a physical interpretation as self{potential. As we discuss later,
this interpretation will allow us to introduce novel kernels and novel SVM methods.

1.3 Electrostatic model 3: Coupled point charges with batteries

In electrostatic model 2, the same total charge is applied to S+ and S� and the
potentials 'S� are balanced by b. However, we cannot control the magnitude of the
potentials, j'S� j. We can achieve this control by adding batteries to the system.
We do this in two ways. In model 3.1, we connect S+ to the positive pole of a
battery with potential �+ and S� to the negative pole with potential �� = ��+.
The battery forces 'S+ = �+ and 'S� = ��. The battery can then be removed
and the potential remains. In model 3.2, we treat each conductor not as a (solid)
sphere but as a spherical shell. We also connect each connect each conductor shell
i to its own battery, Bi, but not by direct contact. Rather, each
shell has a small sphere at its center metal shells. Each shell i
has a small sphere at its center which is connected to the positive
pole of Bi if yi = �1 and the negative pole if yi = +1 (Figure 2).
Consequently, the induced constant potential, �i, has polarity
opposite that of the conductor (�yi). To add charges to S+

and S� we ground both. Charges ow into the system until the

B
attery

Figure 2: Conductor
with battery.

potentials equalize. Therefore, after removing the batteries and �xing the charges
we have 'i = ��i (unless a conductor is disconnected).

Formal Presentation

If �i = � �i yi with �i � 0 is the potential induced by the battery, the total
potential on i is �i = 'i + �i, and the Coulomb energy is:

E =
1

2

NX

i=1

�i Qi =
1

2
QT P Q + �T Q =

1

2

NX

i;j=1

Pij yi yj �i �j �

NX

i=1

�i �i :

This physical system corresponds to a C{support vector machine (C{SVM) [1, 8]
if 8i : �i = 1 (that is, model 3.1 with j��j = 1). The Coulomb energy is the
C{SVM objective function. Our model yields 'S+ = �'S� ; consequently, we do
not require b from model 2 and the C{SVM constraint

P
i yi�i = 0 is not necessary.



The KKT-condition variables receive a physical interpretation analogous to that in
the �{SVM.

2 Comparison of existing and novel models

(2.1) Novel Kernels

E =
R
G (x; y) h (x) h (y) dxdy � 0 must hold in a continuous physical system

for the energy E. Here h+ (h�) is the density of positive (negative) charges and
h = h+ � h�. This is exactly Mercer's condition in the context of SVM which
ensures positive de�nite kernels [1]. To keep the physical model properties (e.g.,
b = 0 in model 3) we ful�ll Mercer's condition by using isotropic kernels G (xi; xj) =

g(kxi � xjk
2
2) with a completely monotonic g, i.e. (�1)k g(k) (x) � 0, 8x � 0 [7].

The electrostatic perspective makes apparent that SVM algorithms can break down
in high dimensions. The reason is that fast decreasing kernels induce small poten-
tials and, therefore, almost every conductor retains charge. We want to use kernels
which do not decrease exponentially. The self{potential allows the use of kernels
that would otherwise be invalid, such as a generalization of the electric �eld to d
dimensions: G (xi; xi) = Pii = g

�
r2i
�
, where g (z) = z1�0:5d. Smoothing this kernel

by � and using an exponent n leads to the Plummer potential g (z) =
�
z + �2

��0:5n

with ri = minj kxi; xjk2. For c � maxf0:5 z j z = kxi � xjk
2
2 _ z = r2i g (we

used \=") is g (z) = (c� 0:5z)
n
a polynomial and for n = 1 the conventional linear

kernel.

(2.2) Novel SVM models

Our electrostatic framework can help to derive many distinct SVM approaches,
several representative examples we now illustrate.

(2.2.1) �{Support Vector Machine (�{SVM):
We can exploit the physical interpretation of Pii as conductor i's self{potential,
(i.e., how easy it is to put charges on i). The Pii's determine the entropy of the
charge distribution at the energy minimum. We can rescale the self potential|
Pnew
ii = � P old

ii |and use � to control the complexity of the SVM in electrostatic
model 3 with C =1.

(2.2.2) p{Support Vector Machine (p{SVM):
Without constraints, PQ + � = 0 at the energy minimum, which is equivalent
to 'i + �i = 0. In physical terms this means that potentials equalize. However,
the solution Q = �P�1� su�ers from violating the constraint that �i � 0. We can
instead minimize the potential di�erence, 1

2 kPQ + �k
2
2 =

1
2Q

TP TPQ+QTP T�+
1
2�

T�, where the last term is constant. Without constraints, the minimum is Q =�
P TP

��1
P T�, where

�
P TP

��1
P T is P 's pseudo inverse. Using physical model

3.1, we get with �i �
PN

j=1 yiyjPij :

min�
1
2�

TK�� �T� s.t. yT� = 0 ^ 0 � �i � C, where Kij := yiyj
�
P TP

�
ij
.

K is by construction positive de�nite so that this formulation does not demand
positive de�nite kernels. If we set �i = 1=�i then we obtain the generalized SVM in
[3] excluding the p{SVM property that it automatically removes outliers. Outliers
gets a negative or small �i, which results in a small �i.



(2.3) Experiments

For the representative models we've introduced, we perform simulations and make
comparisons to the standard SVM models. The datasets are from the UCI Bench-
mark Repository and preprocessed in [4], where the \banana" data set stems from
(http://www.first.gmd.de/~raetsch/data). Each dataset consists of 100 pairs
of training and test set. We restricted the training sets to 200 examples. We com-
pared C{SVM, �{SVM, �{SVM, and p{SVM. Additionally we combined the later
to �{p{SVM allowing � values which lead to not positive de�nite kernels. We used
radial basis function (RBF), polynomial (POL), and Plummer (PLU) kernels. Hy-
perparameters are determined by 5{fold cross validation on the �rst 5 training sets.
The search for hyperparameter was not as intensive as in [4].

C � � p �-p C � � p �-p
thyroid heart

RBF 6.4 9.4 7.7 5.4 8.6 21.4 19.1 17.9 22.4 17.8
POL 22.8 12.6 7.0 13.3 6.9 20.4 20.4 19.3 23.0 19.3
PLU 6.1 6.2 6.1 5.7 6.1 16.3 16.3 16.3 17.4 16.3

breast{cancer banana
RBF 33.6 31.6 33.8 32.4 33.7 13.2 36.7 13.2 11.6 13.4
POL 36.0 25.7 29.6 27.1 29.1 35.3 35.0 11.5 22.4 11.5
PLU 33.4 33.1 33.4 30.6 33.4 15.7 15.7 15.7 21.9 15.7

german
RBF 28.7 29.3 29.0 27.8 28.8
POL 33.7 29.6 26.2 31.8 26.2
PLU 28.8 28.5 33.3 27.1 33.3

Table 1: Misclassi�cation rates in % averaged over 100 trial. The columns give
SVMs and lines kernels. The p{SVM used much less support vectors.

The Plummer potential is more robust against hyperparameter and SVM choices.
The proposed novel methods performed well compared to known approaches.

(2.4) Other SVM approaches

This work leads to many models that could be explored. For example, the variables
�i in model 3.1 were not further investigated. With �xed charge, �i determines how
conductor i retains its charge. Here, however, we will present SVM speed ups.

(2.4.1) Support Vector Machine By Linear Programming:

We minimize kP Q + �k1 by minimizing
PN

i=1 si with constraints �i � si �
yi [P Q]i � �i + si,

P
i yi �i = 0, and �i � 0. Maximizing the �i as well re-

sults in the linear SVM formulation, e.g., [3].

(2.4.2) Support Vector Machine By Solving One Equation:
We will adjust the Pii so that Q = �P�1� does not violate �i � 0. We divide
P = ~P +D into diagonal matrix D (Dii = �i) and zero diagonal matrix ~P .
Fast, iterative algorithm. �i �

P
j;j 6=i Pij ensures �i � 0. This means that P is

diagonal dominant and the fast Jacobi iteration is possible.
Standard equation solving algorithms. We set 8i : �i = �0 and perform a k{step
bisection to �nd a minimal �0 which does not violate �i � 0.



(2.4.3) Support Vector Machine By A Quick and Dirty Approximation:

We solve yi
PN

j=1 yjPij�j = �i with the assumption that conductors are surrounded
by conductors with the same charge magnitude, i.e. �j = �i. We get �i = �i=�i,
where we keep �i � �.



(2.5) Vector quantization and clustering

SVMs focus on the boundaries whereas vector quantization and clustering algo-
rithms are looking for high density regions in order to obtain prototype vectors or
cluster centers. This corresponds to energy maximization in our physical systems
with �i � �. We get a dual between SVM and vector quantization/clustering. For
example, constraints can determine the number of clusters or prototypes.

3 Conclusion

The electrostatic framework and its analogy to SVMs has led to several important
ideas: (1) It suggests SVM methods that are valid for kernels that are not positive
de�nite. (2) It allowed us to derive fast SVM methods based on linear programming
and linear equations. (3) It suggested novel approaches and kernels that perform
at least as well as standard methods.

We argued that the electrostatic framework not only characterizes a family of
support-vector machines, but it also characterizes other techniques such as near-
est neighbor classi�cation, classi�cation by density estimation, vector quantization,
and clustering. Perhaps the most important contribution of the electrostatic frame-
work is that, by interrelating and encompassing a variety of methods, it lays out a
broad space of possible algorithms. At present, the space is sparsely populated and
has barely been explored. But by making the dimensions of this space explicit, the
electrostatic framework allows one to easily explore the space and discover novel
algorithms. In the history of machine learning, such general frameworks have led
to important advances in the �eld.
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