Neural net Architectures in Modeling Compositional Syntax:
Prediction and Perception of Continuity in
Minimalist Works by Phillip Glass & Louis Andriessen

Yayoi Uno, College of Music, and Michael C. Mozer, Department of
Computer Science, University of Colorado, Boulder CO 80309.

email address: uno@spot.colorado.edu; mozer @neuron.cs.colorado.edu.
Acknowledgment is made to Georg Wenzel, Department of Computer
Science, CU-Boulder, for programming and computational assistance.

Abstract: This paper explores the application of neural net architectures in modeling
the compositional syntax, prediction, continuity, and perception in two contrasting
minimalist works by Phillip Glass and Louis Andriessen. The neural net architecture
is trained by back propagation, involving various sizes of hidden units and windows.
In this preliminary investigation, we demonstrate how the “peaks” in prediction error
model syntactical changes in the music and explore how the patterns of change in the
prediction errors correlate with one’s perception of continuity and discontinuity.

I. Introduction. Recent studies in music theory
offer diverse approaches toward the assessment of
formal continuity and segmentation of contemporary
art musics (Hanninen, 1996; Taavola & Lefkowitz,
1993). Algorithms have been developed, based on
Gestalt principles, to measure the strength of various
musical parameters in creating disjunction at local
and global levels of musical structure (Tenney &
Polansky, 1981; Uno & Hiibscher, 1994).

Neural networks have been generally used to predict
outcomes based on previous samples. In this paper,
prediction errors generated by neural-net architectures
are used to model the syntactical changes that occur
in the temporal unfolding of a musical work: to what
extent can we correlate the change in prediction errorr
with the change in compositional syntax and our
perception of continuity in the music? As a
preliminary investigation, we apply this procedure to
two contrasting minimalist works by Phillip Glass
and Louis Andriessen.

II. Neural-net Architecture.

A) Architecture.  Neural networks are pattern
recognition devices modeled loosely after the
architecture of the brain. A neural network consists
of a large number of simple neuron-like processing
units, massively interconnected. Neural networks
come in several different varieties, called
architectures. A feedforward architecture acts as an
associative memory, when given an input, it
produces the associated output. From a statistical
perspective, feedforward architectures can be viewed
as nonlinear regression or classification models
(Bishop, 1995; Ripley, 1996). Neural networks have
been used in the past for temporal sequence prediction
(Elman, 1990; Mozer, 1994).

For the moment, think of the neural network as a
black box whose input is a sequence of notes from
the piece, comprising of given parameters, pitch and
articulation (art) as illustrated under Fig. 1. The

output is a prediction of what note comes next in the
piece. For example, we might present an input
“window” of five consecutive notes, and ask the
neural network to predict the sixth note; the window
could then be shifted to include note six, allowing
note seven to be predicted from notes two through
six, and so forth.

Each processing unit in a neural network has an
activity level, a scalar value from O to 1. Inputs and
outputs are represented as patterns of activity over
processing units. In a feedforward architecture, units
are arranged in layers, and activity is propagated from
the input layer to the output layer through a hidden
unit. The architecture we used is a standard three-
layer network with sigmoidal units and direct input-
output connections trained by back propagation
(Rumelhart, Hinton, & Williams, 1986).
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B) Representation. In representing musical data for
these excerpts, each note is characterized by a pitch
and a type of articulation. Since both Glass’ and
Andriessen’s works maintain an eighth-note duration
as a constant, duration was omitted as a variable. To
present a sequence of notes to the network, each note
needs to be encoded as a pattern of activity over
processing units. We used one unit for each
alternative value of the articulation. In the case of



Glass’ “Strung Out,” articulation is determined by
the phrase grouping; the note that begins each slur
requires a heavier attack, therefore, it was given the
accentual value of 1, and all other notes the value of
0. In the case of Andriessen’s work, three types of
articulation, i.e., accent with marcato, accent alone,
and no accent, are assigned the diminishing values of
2, 1, 0, respectively.

We used one unit for each possible pitch, and
represented a particular pitch by activating its
corresponding unit plus one neighbor on either side.
This builds some of the linear structure of the pitch
continuum into the network, essentially telling the
network that an E, is similar to Eb, and F,.

Rather than having to be programmed by hand,
neural networks are trained from a set of examples.
Each example consists of an input-output pair.
Following training, when the neural net is given the
input, it produces the associated output. Beyond
reproducing the training outputs, neural networks can
generalize to novel inputs that they have never
previously been exposed to. This happens because
the network learns about statistical regularities in the
training examples, and it can use these regularities to
make appropriate responses to novel inputs.

Ordinarily, a network would be trained on, say,
three-fourth of a sequence (the fraining set) and asked
to predict the remaining one-fourth (called the rest
set). However, to use a neural network in this
manner requires an assumption of stationarity, i.e.,
that the structure of the test set is the same as the
structure of the training set. This was not true of the
pieces we studied.  Therefore, we followed a
somewhat non-standard procedure: We trained the
network on an entire excerpt given, and then used the
training set as a test set. This is valid because we do
not care about the network's generalization
performance as much as we are focusing on aspects
of compositional syntax of each piece that the
network can and can't learn.

After training the network, we can examine its
predictions for each note of the piece, and compute a
prediction error (PDE)--a measure of how far off the
prediction is from the actual note. Although one
might expect the PDE to be zero, since the network
was shown the entire piece during training, the
network does not have the capacity to memorize the
entire piece. What happens instead is that it picks up
on the strongest regularities in the piece, and then
produces a small error when the actual note could be
generated from the previous notes based on the
underlying rules of the piece, and a large error when
the actual note violates the underlying rules and is,
therefore, unexpected or "surprising.” For example,
at the start of a new musical phrase, one would
expect the PDE to be high, because there is a break
in the continuity of the piece; however, in an
ascending scale, one would expect the error to be low
since a simple rule describes the progression of
notes.

From the point of view of perception, the procedure
we followed is roughly analogous to having a person

listen to a piece of music repeatedly, with sufficient
replays that the he/she becomes familiar with the
music, but not so familiar that the piece has been
memorized. Even with great familiarity, some
points in the piece will be unexpected, while others
will seem entirely routine and uninteresting.

Two decisions we had to make in building the
network were: (1) the number of hidden units, i.e.,
processing units interspersed between the input and
output layer, and (2) the size of the input window,
i.e., the number of notes used to predict the next
note. Rather than arbitrarily choosing a value for
these two parameters, we trained twelve networks,
specified by the Cartesian product of five, ten,
twenty, or forty hidden units, and a context of five,
ten, or twenty notes. We then averaged the
predictions of the twelve networks and compared to
the actual note to compute a prediction error. The
idea of using an ensemble of networks corresponds
roughly to having a collection of experts, some of
whom are are making predictions based on only
simple rules and local bits of structure while others
are making predictions based on more complex rules
and broader musical context.

III. Application to two minimalist works
by Phillip Glass and Louis Andriessen.

The two works under comparison, “Strung Out”
(1976) by Phillip Glass and “Hoketus” (1992) by
Louis Andriessen, differ radically in their syntactical
organization that to categorize both under the
common rubric of minimalism seems highly
reductive. These two works were chosen, for our
preliminary investigation, due to the monothematic,
steady eighth-note pulse--characteristics that allowed
us to focus exclusively on pitch and articulation as
the variables in assessing the syntactical changes that
take place in the music.

For each work, the neural network generated the
PDEs based on pitch, articulation, and the
combination of pitch and articulation; in determining
the latter, we controlled the weighting of pitch and
articulation at the ratio of 3:1. Fig. 3 & 4 display
the combined PDEs of pitch and articulation: the
upper graph display the oscillation in contours (low
to high) of pitch based on the input. The horizontal
axis shows the index of notes from the beginning to
the end of the sampled excerpts. The lower graph
displays the combined PDEs of pitch and articulation
generated by the neural networks; the twenty highest
“peaks” in the prediction errors are highlighted by a
cross (“x7).

a) “Strung Out” (1976) by Phillip Glass. This
work for solo amplified violin illustrates Glass’
minimalist syntax based on an additive and
subtractive techniques involving a diatonic pattern in
C (Ex. 3). Notice how the initial melodic pattern,
E,;-G,, Es-Ds-Cs is transformed through elongation,
truncation, and change in the slurring of notes.
Rests appear briefly in the middle passage, between
note entries #704 to #950.



Andriessen’s “Hoketus” (reh. E)

Fig. 4

Fig. 3: Glass’ “Strung Out”
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Ex. 3: musical excerpts from Glass” “Strung Out”
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musical excerpts from Andriessen’s “Hoketus”

.
H

Ex. 4

group one
group two

upper stem

lower stem

#33

j
e A
b
Pa
ur
ey
|
1iig
A=
.nua A
rummuﬂ
A
SN
‘n.,Hw
[ YNy
Ya<a
--Mmu«
“ TD
TS
8, TD
X
am, 7D
1%
| Ca N
ind
.nuw
o= B
Py
(SN
nuk
X
., TD
P
i -
py
A
N
n
o

#224

#183 #187 #188 #190

#182




The overall contour of the PDEs for “Strung Out”
(Fig. 3) displays a relatively dense concentration of
“peaks” in PDEs in the opening passage (#1-#400).
In general, PDEs peak at points where there is a
sudden disruption or deviation from a pattern based
on: 1) an additive/subtractive process or 2) static
repetition. For instance, the initial peaks occur when
the repetition of Es-D-Cs-Ds becomes disrupted (see
#23) by the reappearance of the initial motive or
when the additive process becomes disrupted (see
#36) by a contraction in the pitch range to E,-G,.
The following region, note entries #401 and #600,
maintains relatively low PDEs, as the melodic
pattern “locks” in to a narrower pitch range govemed
by predictable processes of change. The next
passsage, #704-#1017, is framed by the two highest
peaks in PDEs. Note entry #704 corresponds to the
beginning of the passage where rests and a triplet
subdivision of the pulse appear for the first time (see
Ex. 3). The “peak” at #704 correlates with the high
degree of surprise experienced perceptually by the
sudden intervention of rests (which were not heard
before in the context of this work). As this new
pattern is established and the pitch range is reduced to
the alternating notes B,-A,, PDEs dip down, only to
peak again at #955 where an ascending pattern
emerges without rests (see Ex. 3). The highest
peak at #1014 corresponds to the point where a
descending pattern emerges that picks up G,, a note
which had been left out of the melodic range for the
previous eight-hundred note entries.

b) “Hoketus” (1992) by Louis Andriessen. This
work is scored for a set of two pan flutes, pianos,
electric piano, bass guitars, congas, and alto
saxophones. Ex. 4 shows the composite melodic
pattern formed by the two groups in two different
passages. In contrast to Glass, Andriessen’s syntax
is defined by greater melodic range, angularity in
pitch contour, and by his strategic use of accents and
rests; the syntactical changes are less predictable, as
they do not follow a systematic process of elongation
and truncation. Accents and rests demarcate the
melodic patterns with greater articulative force in
“Hoketus” than the slurring that demarcates the
melodic grouping in Glass’ work.

The graphic contours of pitch and combined effect
of PDEs (Fig. 4), indeed, show a much greater
oscillation and range than the PDEs displayed for
Glass’ work. Here the peaks are located in the
opening third of the piece, where the maximum PDE
occurs at #224. In the opening passage (Ex. 4), the
initial peaks are formed where the pattern breaks out
of the alternating dyad, B,-C#,, and lands on an
accented E, (#22), and where a rest appears for the
first time (#33). The highest concentration of peaks
arc found between #182-190, where Andriessen
disrupts that dyadic oscillation between F;-G,, with
frequent rests--a gesture that had not been exploited
previously. The PDEs dip down to a low region in
the passage between #262-347, where the pattern
stabilizes to a dyadic interchange between the two

groups. For the remaining portion of this work,
peaks in PDEs occur sporadically, corresponding
generally to points in the work where an accent or
rest ocassionally disrupts the continuity.

I1V. Summary and Future Considerations.

Based on our preliminary investigation, we
summarize that: 1) passages defined by predictable
processes and/or repetition correlate with relatively
low degrees of PDEs, while disruption in the
exisitng pattern or an introduction of new pattern
generates a sudden peak in PDE; 2) there is a direct
correlation between one’s perception of continuity
and PDEs: high measure of PDE corresponds with a
disruption in the continuity, and vice versa; 3)
articulation in Andriessen’s work exerts a strong
force in controlling the PDEs, while rests play a
strong force in controlling the PDEs for both.

Future considerations for refinement include, but are
not limited to: 1) comparing PDEs based on different
representation of input data, i.e., symbolic vs.
numerical; 2) adjusting the weighting of variables in
normalizing the combined output of PDEs; 3)
examine the variance measure--numerical measure of
how much the PDE varies from one note to another--
as an evaluative criterion. In addition, we will extend
the application to works that are based on stochastic,
random, and/or chance-based procedures, to further
explore the correlation between PDEs, syntactical
changes, and issues pertaining to perception.
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