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Superadditive Effects of Multiple Lesions in a Connectionist Architecture:
Implications for the Neuropsychology of Optic Aphasia
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Neuropsychological disorders have traditionally been understood in terms of a focal lesion to a single
component of a cognitive architecture. Optic aphasia (OA) defies explanation in this way. In OA, naming
of visual stimuli is impaired in the absence of general visual agnosia or anomia. OA has been explained
by positing multiple semantic systems or multiple functional pathways to visual naming. M. J. Farah
(1990) instead sketched a parsimonious account based on multiple lesions—to pathways mapping visual
input to semantics and semantics to naming responses—and the assumption that the effects of the lesions
are superadditive. The authors demonstrate superadditive effects of damage in a connectionist architec-
ture and model other phenomena associated with OA. Multiple lesions with superadditivity provide a
novel class of explanations for neuropsychelogical deficits that previously seemed to imply the existence

of highly specialized processing components.

The field of cognitive neurapsychology has been defined in
terms of two related goals: To develop and test theories of normal
cognition using behavioral data from brain-damaged patients and,
reciprocally, to understand and remediate the cognitive disorders
of brain-damaged patients using the theories and methods of
cognitive psychology (Coltheart, 1984). Both goals require bridg-
ing the realms of abstracl, information-processing theories of the
cognitive architecture and the behavioral abilities of people with
neurological damage. The required bridge is inferenrial in the case
of the first goal, in that one must infer the identity and organization
of information-processing components from the behavior of pa-
tients in particular tasks. Such inferences depend, perhaps not
surprisingly, on a number of assumptions about the cognitive
architecture and its response to damage (see Shallice, 1988, and
Farah, 1994, for further discussion).

Cognitive neuropsychologists typically make the assumption
that a seleclive impairment in patient behavior can be attributed to
the loss of a single component of the cognitive architecture and
that the normal function of this component can be understood quite
directly in terms of the scope of the patient’s impairment. In other
words, a selective impairment in ability X implies the existence of
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a component of the cognitive architecture dedicated to X. One
important and influential example of this form of inference comes
from research on memory. A selective impairment in explicit,
declarative memory, with preserved implicit and nondeclarative
memory, has been used to infer a distinct cognitive module for
explicit declarative memory (Squire, 1992). Similarly, Martha J.
Farah (e.g., Farah, 1996) has argued that a selective impairment in
face recognition, with relative preservation of nonface object rec-
ognition, can be used to infer a component of visual recognition
that is relatively specialized for faces,

This form of inference is straightforward, widely nsed, and often
successful. Nonetheless, it sometimes yields conclusions that seem
suspect. In some of these cases, simpler and more sensible con-
clusions regarding the cognitive architecture result from the appli-
cation of less straightforward inferences between behavioral im-
pairment and cognitive architecture. Neuropsychologists are
increasingly questioning the assumption that a focal behavioral
impairment emerges directly from a focal cognitive impairment
and instead are considering the possibility that the behavioral
impairment is the result of potentially complex interactions be-
tween the impaired cognitive component and intact components.
Connectionist modeling has played an important role in conceiving
and testing these alternative inferences based on interactivity (e.g.,
Hinton & Shallice, 1991; Mozer & Behrmann, 1990; see Farah,
1994, for a review and discussion).

In this article we exfend the interactive paradigm of neuropsy-
chological inference further, showing how a focal behavioral im-
pairment can be caused by interactions among multiple impaired
cognitive components. This new form of inference expands the set
of neuropsychological impairments that can be accounted for with
simple cognitive architectures. We focus on the syndrome of optic
aphasia, which has long puzzled neuropsychologists, and show
that the new type of inference explains not only the major defining
characteristics of the syndrome but also a number of associated
features. We then conclude with a review of other syndromes that
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Table 1

SITTON, MOZER, AND FARAH

Error Rates (in Percentages) of Optic Aphasia Patients on Three Tasks

V=N

{visual sdmulus,

V=G

(visual stimulus,

A=>N
{auditory stimulus,

Study naming response) nonverbal response) naming response)
Lhermitte & Beauvois (1973) 27 4} 4
Gil et al. (1985) 36 0 low
Riddoch & Humphreys (1987) 54 25 low
Manning & Campbell (1992} 58 25 0
Larrabee et al. (1985) 70 low low
Hillis & Caramazza (1995) 75 65 low
Ferro & Santos (1934) 77 low 10
Coslett & Saffran (1992) 79 0 32
Assal & Regli (1980) 97 75 low
Poeck (1984) 100 25 10
Coslett & Saffran (1989) 100 50 low

Note.

For table cells that contain the word [ow, no quantitative data were available, but the error rate was

presumably low or else the patient would not have been diagnosed with optic aphasia.

have heretofore seemed problematic for cognitive neuropsychol-
ogy and sketch out ways in which interactions among multiple
lesions provide explanations in terms of simple theories of the
cognitive architecture,

Optic Aphasia

Optic aphasia is a nenropsychological disorder in which the
naming of visually presented stimuli is impaired in the absence of
a general visual agnosia (visual recognition impairment) or a
general anomia (naming impairment).

Optic aphasia can be contrasted with agnosia in several respects.
First, unlike agnosic patients, optic aphasics can often nonverbally
demonstrate recognition of visually presented objects. These non-
verbal demonstrations include the ability to gesture or pantomime
the appropriate use of an object {e.g., Gil et al., 1985; Lhermitte &
Beauvois, 1973; Riddech & Humphreys, 1987) and to sort visual
items into their proper superordinate categories {e.g., Assal &
Regli, 1980; Coslett & Saffran, 1989; Riddoch & Humphreys,
1987). A second contrast to agnosic patients is that many of the
visual naming errors made by optic aphasics are semantically
related to the target (e.g., snake — “frog™) or are repetitions of
previous responses (response perseverations), whereas the visual
naming errors made by agnosics are typically visually related to
the target (e.g., snake — “rope”). Third, optic aphasics appear to
be relatively insensitive to the quality of visual stimuli, showing
roughly equal naming performance when presented with line
drawings, color pictures, or three-dimensional objects. Agnosics,
on the other hand, appear to be extremely sensitive to the quality
of the stimulus, showing better performance as the visual quality
increases (Davidoff & de Bleser, 1993, Farah, 1990). Finally, optic
aphasics are usuvally described as being unimpaired in everyday
life, whereas agnosics are often noticeably handicapped by their
inability to recognize vhjects, people, and locales.

Optic aphasia can also be contrasted with anomia. Unlike most
anomic patients, optic aphasics can name objects by definition as
well as objects presented in the tactile modality (Assal & Regli,
1980; Coslett & Saffran, 1989; Lamrabee, Levin, Huff, Kay, &
Guinto, 1985; Poeck, 1984; Riddoch & Humphreys, 1987; Spreen,

Benton, & Van Allen, 1966) and by the sounds they make (Assal
& Regli, 1980; Gil et al., 1985; Spreen et al., 1966).

Other characteristic symptoms shared by optic aphasics include
alexia and the ability to home in on the correct name of a visually
presented object if given sufficient time to respond. This
homing-in process is a kind of verbal bouncing around as the
patient converges on the correct name of an object. As an example,
in one of the most thoroughly decumented cases of optic aphasia,
the patient Jules F. produced the following response when pre-
sented with a picture of a bus (Lhermitte & Beauvois, 1973, p.
707): “a wagon . . . public transport since there is aback door . .. a
stage coach . .. it would be ... no...acity cab... not a cab but
a city bus.”

The neuropathology of optic aphasia shows a fair degree of
uniformity. All cases appear to have unilateral left posterior le-
sions. In cases where suofficient localizing evidence exists the
damage seems to include the occipital and temporal cortex and the
splenium of the corpus collosum (Schnider, Benson, & Scharre,
1994,

Specific Data to Be Explained

The defining feature of optic aphasia, as well as its most
remarkable characleristic, is the disproportionately large error rate
when naming visually presented stimuli (which we will ofien
abbreviate as V = N), relative to the error rate when naming
objects from aunditory or other nonvisual cues (A => N) or when
gesturing the appropriate use of an object or sorting objects by
semantic category to demonstrate recognition of visually presented
stimuli (V = G). Table 1 summarizes the experimental literature
on these three tasks. Any model of optic aphasia must account for
this pattern of data.

There are a number of other associated phenomena in addition
to this defining characteristic of optic aphasia. Although it is

"It should be noted that the structural lesion visible on computer
tmography or magnetic resonance imaging scan may underestimate the
extent of damaged and dysfunctional tissue.
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possible that these phenomena are functionally independent and
co-occur only because their critical lesion sites are located near
one another, a more unified explanation is also possible. In the
present article we attempt such a unified explanation. The associ-
ated phenomena in question include the tendency for errors to be
either perseverative or semantically related to the target response
but not visually related (aithough seme errors show a combination
of visual and semantic similarity to the target) and the “heming in”
process whereby optic aphasics give a sequence of responses to a
visual object and may eventually converge on the correct name. In
addition, there are two weak trends observable across cases, which
may or may not hold up as new cases are reported: Gesturing to
visual objects is generally worse than naming to auditory cues, and
the worse the naming of visual objects, the worse the gesturing to
visual objects.

Before presenting our model and testing its ability to account for
all of the foregoing characteristics of optic aphasia, we review
previous attempts to explain the defining characteristic of this
disorder: a relatively selective impairment in the naming of visual
objects.

Models of Optic Aphasia

The highly isolated nature of the visual naming deficit displayed
by optic aphasics seems to invite explanation in terms of a dis-
connection between intact visual centers and intact naming centers.
On closer examination, however, this explanation does not work.
A commonly accepted model of the functional architecture under-
lying visual naming, which we refer to as the canonical model,
consists of a visual processing system that feeds its output into a
semantic system, which in turn feeds its output into a naming
system (see Figure 1). The basic reasoning behind this model is
that one cannot name a visually presented cbject until one first
knows what the object is. If optic aphasia is a simple disconnection
syndrome, then the disconnection should occur somewhere in this
architecture. The difficulty arises in that every possible locus of
disconnection conflicts with at least one essential characteristic of
optic aphasia. One cannot place the lesion in vision, semantics, or
the pathway connecting them (Figure la), because patients can
nonverbally demonstrate their recognition of visually presented
objects. Neither can one place the lesion in naming or the pathway
between semantics and naming (Figure 1b), because patients are
unimpaired in their ability to name objects presented in the tactile
or auditory modalities, which also presumably feed their output
inte the semantic system. Five different models of optic aphasia
have been proposed to resolve this paradox.

(a)

Figure 1. Possible disconnections in a simple functional architecture for
visnal naming, In this and subsequent figures, the boxes denote levels of
representation, and the arrows dencte functional pathways mapping from
one level of representation te another. The X denctes hypothesized damage
to a pathway.

A Direct Visual Naming Pathway

To account for the characteristic naming deficit of optic aphasia,
Ratcliff and Newcombe (1982) proposed an alternative mode! of
visual naming that posits a direct, uninterrupted pathway between
vision and naming (see Figure 2). In this architecture specific
visual percepts can evoke their corresponding name directly. The
information emerging from the visual naming pathway that is
mediated by semantics combines with the information emerging
from this direct pathway to yield reliable naming of objects. Optic
aphasia results when the direct visual naming pathway becomes
disconnecled. This forces the system to rely solely on the
semantics-mediated pathway, which is not entirely reliable on its
own. Although Ratcliff and Newcombe admitted that this direct
visual naming pathway hypothesis is somewhat ad hoc, they
pointed out that there is some evidence from studies of dyslexia
that appear to support its existence. For example, Schwartz, Saf-
fran, and Marin (1987) described a dyslexic patient who was able
to pronounce written words, even irregular ones, despite appearing
to be unaware of what they meant. It should be pointed out,
however, that there have not been any documented cases of indi-
viduals who can name visual vbjects without any knowledge of
what the objects are.

Modality-Specific Semantic Systems

Beauvois (1982) presented a model of optic aphasia in which
semantics is a nonunitary entity. In this model each modality has
a corresponding semantic system to which it, alone, is directly
connected (see Figure 3). Visual semantics is composed of imag-
erylike visunal information about objects, whereas verbal semantics
consists of verbal associations and abstract properties of objects.
Optic aphasia arises when there is a disconnection between verbal
semantics and visual semantics. Because the naming system in this
model is assumed to be connected only to verbal semantics, the
proposed disconnection will result in impaired visual naming but
intact auditory naming. Evidence supporting the model comes
from a case described by Beauvois and Saillant {1983) in which
the patient, MP, was described as having “optic aphasia for col-
ors.” Although MP was unable to perform tasks that required
matching color names 1o color percepts (i.e., visual-verbal tasks),
she was able to perform tasks that required either verbal-verbal or
visual-visual associations of colors. Although the model does a
good job of explaining this case, it does not appear to account
for the ability of optic aphasics to sort visually dissimilar items
into the same superordinate category. Furthermore, the idea that
each input and output modality has a separate semantic represen-
tation of all our knowledge seems ad hoc, not to mention
unparsinmonious.

McGuire and Plaut (1997) recently described an interesting
variation of the modality-specific semantic systems account, in
which connectionist learning mechanisms give rise (o a semantic
system whose representational elements are softly tuned to a
specific input and output modality: The elements respond most
strongly to these input and output modalities, but they yield partial
responses (o others. In this model damage to visual semantics
spares gesturing to a greater degree because of systematicity in the
semantics-to-gesture mapping. Although this account is intriguing,
the systematicity assumption and its empirical consequences must



712 SITTON, MOZER, AND FARAH

name
14

semantic
* 24

L 1

visual auditory

Figure 2. A schematic depiction of Ratcliff and Newcombe’s (1982)
account of optic aphasia,

be carefully examined, and the account does not offer an expla-
nation of the preserved nonverbal sorting performance of optic
aphasics.

Impaired Access to Semantics From Vision

Riddoch and Humphreys (1987) and Hillis and Caramazza
(1995) have attempted to explain optic aphasia with a unified
semantic system, by hypothesizing an impairment in accessing that
semantic system from vision. The preservation of gesturing is
explained by these authors in slightly different ways. Riddoch and
Humphreys proposed a direct pathway from visual representation
to gesture, as shown in Figure 4. This pathway embodies the use
of gffordances (Gibson, 1979) in the appearance of an object that
constrain the ways in which it can be used. According to their
account, optic aphasics retain the ability to gesture appropriately to
visually presented objects because of a combination of object
affordances and the generally less precise and specific nature of
most gestures compared to verbal labels. Hillis and Caramazza
made a related point about the relation between visual information
and semantic information, specifically about the uses of objects.
The shape of a chair (a visual characteristic) and the possibility of
sitting in it (the type of semantic characteristic tested in gesturing
tasks) have a special relation, one that may survive damage that
disrupts the activation of a semantic representation from visual
input. Hillis and Caramazza argued that whereas nonverbal re-
sponses may be initiated by activation of isolated semantic fealures
from isolated visual features, naming requires access to a complete
semantic representation.

Although there is much truth to these observations conceriing
the relation between shape and gesture, the preserved gesturing of
optic aphasics may not he entirely explicable in this way. Many
similar-looking cbjects are associated with different movements—

name
visual verbal
semantics semantics
visual auditory

Figure 3. A schematic depiction of Beauvois’s (1982} account of optic
aphasia.

gesture name
L k- - i
semantic
e
visual auditory

Figure 4. A schematic depiction of Riddoch and Humphreys’s (1987)
account of optic aphasia.

for example, knitting needles and chopsticks, bowls and helmets.
Studies of some patients have found accurate performance even
when precise and distinctive gestures are required. For example,
Lhermitte and Beauvois (1973) reported that their patient made no
gesturing errors for a large set of stimuli, which were misnamed
27% of the time. However, studies of other patients have found
poor performance on difficult nonverbal tasks that involved sorting
objects into their proper superordinate categories—tasks that
would seem to require complete semantic access (e.g., Gil et al.,
1985, Hillis & Caramazza, 1995; Riddoch & Humphreys, 1987).
These findings might be viewed as ambiguous, because language
may play a role in mediating sorting performance (Luria, 1961).
However, even if taken at face value, studies indicating poor
performance on difficult nonverbal tasks may simply point to the
fact that some patients indeed have a greater semantic deficit than
othets, apart from their inability to name visually presented stimuli
(as suggested by patients represented in Table 1 who performed
poorly on both verbal and nonverbal tasks). A complete account of
optic aphasia should be able to accommeodate individuval differ-
ences in the degree of semantic deficit among patients.

Hemisphere-Specific Semantic Systems

Coslett and Saffran (1989) presented a model of optic aphasia
that is rooted more in functional neuroanatomy than in cognitive
psychology. Their model consists of independent, functionally
unique semantic systems for each hemisphere of the brain (see
Figure 5). The model also makes use of the fact that the left
hemisphere is more proficient at speech. According to this model,
optic aphasia arises when there is a disconnection between visual
input and left hemisphere semantics. Several independent sources
of evidence appear to support this explanation. First, the predom-
inance of semantic naming errors made by optic aphasics and their

name

left hemi right hemi

semantics "1 semantics
Gl
visual auditory

Figure 5. A schematic depiction of Coslett and Saffran’s (1989} account
of optic aphasia. hemi = hemisphere.
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ability to sort items into superordinate categories, as long as the
categories are broad enough, is consistent with the hypothesis that
right hemisphere semantics are relatively coarse grained (Zaidel,
1985). Second, Coslett and Saffran presented a detailed analysis of
their patient’s residual reading abilities, and these closely matched
the reading abilities of the right hemisphere. Third, Schnider et al.
(1994) presented comparative neuroanatomical evidence that optic
aphasia is highly correlated with damage to the left occipital cortex
and splenium. This seems to imply that optic aphasics process
visual stimuli almost exclusively by the right hemisphere and that
the results of this processing have limited access to the left hemi-
sphere and its language output mechanisms. Thus, the hemisphere-
specific semantic systems hypothesis accounts well for the defin-
ing behavioral characteristics of optic aphasia and is consistent
with the neuropathology. Its weakness lies in the uncertain status
of the major assumption behind the hypothesis, namely that the
two hemispheres have qualitatively distinct semantic systems. This
assurnption has been questioned (e.g., Plaut & Shallice, 1993b).

Superadditive Impairments in Vision and Naming

None of the models presented so far provide completely ade-
quate explanations of optic aphasia. In addition, most of them were
constructed primarily to account for the disproportionately large
number of visual raming errors made by optic aphasics and have
little to say about the associated characteristics accompanying the
disorder. Furthermore, each includes more pathways or processing
systems than the canonicat model of visual naming (Figure 1). The
impossibility of explaining optic aphasia by a simple disconnec-
tion in the canonical model seems naturally to imply that a more
complex cognitive architecture is needed. However, Farah (1990)
suggested a possible explanation of optic aphasia that requires no
additional complexity. Rather than hypothesizing muitiple sernan-
tic systems or multiple pathways to visual naming, she hypothe-
sized multiple lesions. According to her conjecture, lesions to two
pathways in the canonical model—the pathway that maps visual
input to semantics and the pathway that maps semantics to naming
responses—might give rise to optic aphasia (see Figure 6) if the
effect of these lesions were superadditive, meaning that a task
requiring both pathways (e.g.. naming a visvally presented object)
manifests a much higher error rate than expected on the basis of
the sum of error rates on two tasks involving one pathway or the
other {e.g., gesturing the appropriate nse of a visvally presented
object and naming from aunditory cues).

name

t %;ﬁ’!

gesture

1 I;

semantic

visual auditory

Figure 6. A schematic depiction of the superadditive-impairment account
of optic aphasia (Farah, 1990). This account involves partial damage 1o two
pathways: one that maps visual input to semantic representations and
another that maps semantics to naming responses.

Clinical case support for this superadditive-impairment hypoth-
esis comes from a study of anomic patients conducted by Bisiach
(1966). In one experiment, the patients were asked to name pic-
tures of objects or to indicate their identity by some other means
(e.g., by circumlocuting or gesturing) if the name could not be
produced. The pictures were either line drawings, line drawings
with stray marks superimposed, or full-color paintings. The pa-
tients’ naming performance was poorest for the marked-up draw-
ings, next poorest for the line drawings, and best for the full-color
paintings. In contrast, their recognition performance was relatively
insensitive to the quality of the stimulus. One way of interpreting
these results is that a kind of temporary optic aphasia was induced
when these patients were asked to respond to the marked-up
drawings. Because general anomia results from an impaired nam-
ing system, and the markings on the drawing resulted in impaired
visual perception, these findings support the idea that multiple
impairments can have superadditive effects on visual naming.

Although the occurrence of two anatomically distinct lesions in
optic aphasia would lend further support to the hypothesis, the
typical finding of one lesion should not be viewed as disconfir-
mation; a single lesion can, and generally does, affect multiple
functional areas. Furthermore, the left posterior inferior region
damaged in optic aphasia is known to house a multplicity of
functionally distinct areas.

Evidence for the range of distinct perceptual and cognitive
abilities that depend on the left tempore—occipital region comes
from the variety of impairments other than oplic aphasia that may
follow damage there in different cases. These include impairments
in reading (e.g., Coslett, 1997), visual object recognition (e.g.,
Feinberg, Schindler, Ochoa, Kwan, & Farah, 1994), visual image
generation (e.g., Farah, 1995), memory (e.g., Zola, 1997), seman-
tic knowledge (e.g., Hodges & Patterson, 1993), and lexical re-
trieval (e.g., Damasio, Grabowski, Tranel, Hichwa, & Damasio,
1996). Further support for a posterior temporo—occipital locus for
semantic knowledge, in particular, comes from a variety of func-
tional nenroimaging studies (Démonet et al., 1992; Howard et al.,
1992; Klein, Milner, Zatorre, Meyer, & Evans, 1995; Martin,
Haxby, Lalonde, Wiggs, & Ungerleider, 1995; Mummery, Patter-
son, Hodges, & Wise, 1996; Petersen, Fox, Posner, Mintun, &
Raichle, 1988, 1989; Raichle et al., 1994; Vandenberghe, Price,
Wise, Josephs, & Frackowiak, 1996; Wise et al.,, 1991), In sum,
although the precise mapping of the perceptual and cognitive
functions of the left temporo—occipital region has yet to be accom-
plished, and may possibly vary from individual to individual, there
is reason to believe that this region plays an important role in both
visual and semantic processes and certainly no reason to reject this
hypothesis. The known functional nevroanatomy is therefore con-
sistent with the superadditive-impairment hypothesis of optic
aphasia.

Superadditivity

Before exploring the superadditive-impairment hypothesis in
detail we discuss the notion of superadditivity in general terms.
Consider a cognitive architecture that has suffered damage to two
pathways, A and B. If a task is to be performed that requires
pathway A but not pathway B—call it task,—one would expect
poorer performance compared to the undamaged architecture; de-
note the increased error rate e¢,. Similarly, a task, task,, would
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result in error rate &, In task,p, which requires the use of both
damaged pathways, the effects of damage to pathways A and B
might contribute independently to performance, in which case the
error rate would be ¢, + ep. If, however, the two sources of
damage interact, one might obtain superadditivity, that is, the
condition in which

ey > eyt ey (48]
The ratio

exsle, + ep) 2)

might be used to quantify superadditivity. The optic aphasia pa-
tients we described earlier show ratios roughly between 2 and § if
task, is making a gesturing response to a visual cue, taskg is
naming from an auditory cue, and task, , is naming from a visual
cue.

At a descriptive level, the conditions under which superadditiv-
ity will be observed are straightforward to characterize: Superad-
ditivity occurs if the error rate for some task is determined by the
total amount of damage along ctitical pathways required for per-
forming the task, and the curve relating damage to error rate is
positively accelerated (see Figure 7). The purpose of the present
work is to move beyond the descriptive level and present a mech-
anistic explanation. It turns out that the sort of curve shown in
Figure 7 falls out naturally from nonlinear connectionist systems.

Superadditivity implies some type of interaction or dependence
between the two loci of damage. To argue this point, consider the
probabilistic notion of independence, p(X & Y) = pX)p(Y). If
1 — e, is the probability that pathway A operates successfully, and
1 — €g is the probability that Pathway B operates successfully,
then under independence, the probability that both operate suc-
cessfully is (1 — e,4)(1 — e,). Can superadditivity occur under this
assumption? That is, are there values of ¢, and ey for which
Equation 1 holds? Under independence, Equation 1 is equivalent to

1=(1 =—e)(1 —eg) >e,+ ep
which reduces to

0 > e ep.

error
rate
Bag [
84 and 8p {—mrrrrrr e
H
1asky taskaa total damage
and faskg

Figure 7. A hypothetical graph relating amount of damage along path-
ways required for performing some task and the error rate (¢) on the task.

This inequality is not satisfied for any positive error rates e, or
¢p. proving that superadditivity cannet occur with independent
pathways.

A Computational Model of Superadditive Impairments

In this section we instantiate the superadditive-impairment hy-
pothesis of optic aphasia in a computatienal model. We con-
structed this model for two primary reasons. First, the plausibility
of the hypothesis will be beolstered by a concrete simulation model
as an existence proof. Second, by embodying the hypothesis in a
computational model we can determine whether it can account for
some of the more subtle phenomena associated with optic aphasia
and can use the model to predict additional patterns of data.

Our modeling efforts are based on a connectionist framework.
Connectionist systems seem particularly well suited to embody the
superadditive-impairment hypothesis, because they have the abil-
ity to “clean up” mildly corrupted representations and therefore
show robustness to partial damage, and their behavior can be
highly nonlinear and therefore allows interactions of the sort
proposed by the hypothesis.

Basic Architecture of the Model

Figure 6 shows the model’s basic architecture. Following the
canonical model, visual and auditory inputs converge on a unified
semantic system, which in turn feeds naming and gesturing sys-
tems. Each arrow in the figure, along with the source and desti-
nation representations, is referred to as a pathway. The four path-
ways in the model are: visual input to semantics (V — 8), auditory
input to semantics (A — §), semantics to naming (S — N), and
semantics to gesturing (S — G). Pairing an input pathway with an
output pathway, four different tasks can be performed: visual
naming (V = N), auditory naming (A = N), visual gesturing
(V = G), and auditory gesturing (A => G).

Pathways

The notion of a pathway—a mapping from one level of repre-
sentation to another—is fundamental to any connectionist archi-
tecture. A feedforward pathway achieves the mapping by propa-
gating activity from the input representation to the output
representation using feedforward conmections, possibly through
layers of hidden units (see Figure 8a; e.g., Norris, 1993; Rumelhart
& McClelland, 1986; Seidenberg & McClelland, 1989; Sej-
nowski & Rosenberg, 1987). In comparison, an attractor pathway
includes recurrent connections, allowing cooperation and compe-
tition among the units to determine the eventual pathway output
(Figure 8b). McClelland and Rumelhart’s (1981) interactive-
activation model is a well-known example with two cascaded
attractor pathways, mapping to letter and word level representa-
tions; the Farah, O’Reilly, and Vecera (1993) model of overt and
covert tace recognition is another with cascaded attractor path-
ways, mapping between name and face representations by means
of a semantic representation. The term aitractor comes from the
fact that, under certain conditions on the connectivity, the pathway
ontput will be drawn to specific representations—the attractors.
Assuming that prior training has produced attractors that corre-
spond to meaningful states in the domain, one can think about the
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Figure 8. Connectionist architectures for implementing a pathway. Each rectangle with circles inside depicts
a layer of connectionist processing units, and the arrows depict connectivity from one layer to another (black =
teedforward connections, gray = recurrent connections). Panel (a): a feedforward pathway, in which activation
propagates upward from the input layer to the cutput layer: Panel (b): an attractor pathway, in which cooperation
and competition among units in the output representation (and the hidden layer drawn to the side) result in
attractor dynamics; Panel (c): a generalized pathway, which includes both multilayer feedforward connections
from the input to the cutput and recurrent connections among units in the output representation that results in

attractor dynamics.

attractor pathway as performing cleanup: the recurrent connections
force the pathway to eventually settle into an output representation
that has meaning in the domain. For example, in McClelland and
Rumelhart’s (1981) interactive-activation model, activities at the
word level tend to sextle into a localist representation wherein one
word unit is highly active and all others are mostly suppressed
because of inhibition between word units; Farah et al.’s (1993)
model settles into distributed representations that correspond to
previously learned names or faces.

Although our description suggests the mutual exclusivity of
feedforward and attractor pathways, quite the contrary is true. The
output produced by a feedforward pathway can be interpreted only
with reference to meaningful patterns in the domain. Conse-
quently, modelers often perform this interpretation as a postpro-
cessing step in which the distance from the output to each of the
meaningful patterns is computed, and the output is approximated
as the nearest meaningful pattern, or the response probability or
reaction time is assumed to be related to the distance to the correct
output. Hecause these readout assumptions essentially duplicate
the operation of an attractor net, one could argue that an attractor
net is implicit in the feedforward pathway.

Similarly, an attractor pathway requires a feedforward network,
because feedforward connections are necessary to map from one
representational space to another. Such feedforward connections
are present in Figure 8b, although they do not pass through a
hidden layer. In McClelland and Rumelhart’s (1981) interactive-
activation model, feedforward (and feedback) networks map be-
tween levels; for example, from the letter level to the word level.

Because a feedforward pathway is incomplete without an attrac-
tor net, and an attractor pathway is incomplete without a feedfor-
ward net, we suggest the generalized pathway architecture in
Figure 8c that includes both feedforward and attractor nets and
subsumes the architectures in Figures 8a and 8b. Many existing
models explicitly stack the two components as a basic computa-
tional module {e.g., Hinton & Shallice, 1991; Mathis & Mozer,
1996; Mozer & Behrmann, 1990; Plaut & Shallice, 1993a, 1993b).

Of course, Figure 8 does not exhaust the architectural possibil-
ities; for example, the output layer could pass activity back into the

hidden layers. However, all that is required for calling Figure 8¢ a
“generalized” pathway is that it is not restricted in its computa-
tional power or in the nature of mappings it can achieve relative to
other architectures. We have no a priori reason to believe this
conjecture to be false. In addition, the generalized pathway has the
advantage of having components with clearly defined functional
roles: The feedforward (black) connections implement a mapping
from the input space to the output space, and the recurrent {gray)
connections perform cleanup in the output space, by forcing the
output representation to one of a predefined set of meaningful
alternatives (the attractors). These two distinct stages are depicted
in Figure 9.

In a connectionist system, items are represented by a pattern of
activity over connectionist units. A pattern of activity over » units
can be depicted as a point in an n-dimensional space. In Figure 9
the rectangle on the left depicts a two-dimensional input space, and
the rectangle on the right depicts a two-dimensional output space.
Each attractor also corresponds to a point in the output space, as
defined by previous training.

The pathway architecture is premised on the assumption that not
all points in the output space correspond to meaningful entities in
the domain. This assumption is valid in any representational do-
main having discrete entities (e.g., phonological patterns). More
generally, the assumption is motivated on computational grounds:
It bestows on the architecture a degree of noise resistance. If the
input is noisy, or if the feedforward mapping is inaccurate because
of insufficient training, or if there is intrinsic noise in the system,
the attractor dynamics still force the output to a meaningful state.
Because the output of one pathway is input to another, the archi-
tecture prevents the accumulation of noise as information is trans-
mitted through multiple pathways and therefore leads to better
performance than an architecture such as Figure 8a without attrac-
tor dynamics (Mathis & Mozer, 1995).

Temporal Dynamics of Pathways

Consider the sitvation in which the feedforward network reli-
ably lands the output state in the right attractor basin for a given
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Figure 9. An intuitive depiction of the operation of a generalized pathway, adapted from *‘Lesioning an
Attractor Network: Investigations of Acquired Dyslexia,” by G. E. Hinton and T. Shallice, 1991, Psychological
Review, 98, p. 75. Copyright 1991 by the American Psychological Association. Adapted by permission of the
author. The rectangle on the left denotes the input space of the pathway, and the rectangle on the right denotes
the output space. The feedforward mapping performs a transformation from the input space to the output space.
The recurrent connections implement attractor dynamics in which the output is drawn to an attractor, denoted
by the small squares in the output space. The attractors correspond to the meaningful states in the output domain,
as defined by prior training. The lines carving up the output space into nonoverlapping regions indicate the
attractor basins. Any initial state that lies in one of these regions will be drawn to the attractor corresponding to

that region.

input but is not always able to produce exactly the right output for
every input. This situation is typical, because a feedforward net-
work will generally show some variation in its output when an
input is corrupted by noise or missing features, unless the network
has received a huge amount of training and has a very large
capacity (i.e., hidden units). Fortunately, moderate inaccuracies in
the feedforward network can be compensated for by the attractor
dynamics, with a cost in time. The feedforward network operates
in a single shot: Activity is propagated from the input representa-
tion to the output representation. In contrast, the attractor network
operates through repeated iterations: Each unit updates its activity
on the basis of the current activity of all other units; as this process
iterates, the state moves toward and eventually stabilizes on an
attractor. The gray curved line in Figure 9 reflects this gradual
convergence on the correct state over time—a speed-accuracy
tradeoff of sorts. Speed—accuracy tradeoffs are ubiquitous in in-
teractive networks that produce stable states. Convergence is at-
tained by means of an update rule that moves the state at iteration
i to a state at iteration { + 1 that better approximates some target
state, thereby guarantecing an improvement in the state over
time—or, equivalently, a speed—accuracy tradeoff.

The speed—accuracy tradeoff obtained in a single pathway has
important consequences when several pathways are placed in
cascade, as in the superadditive-effects model of Figure 6. If a
pathway A feeds into a pathway B, such as V — § feeding into
S — N, then the state unit activities of A serve as the input to B.
Because these activities change over time as the state approaches
an attractor, the dynamics of pathway B can be quite complex as
it is forced to deal with an unstable input. In our simulations, we
show that mild damage to A adds noise to the early output of the
pathway, and this noise can combine with mild damage to B to
produce superadditive effects.

When pathways are cascaded, the depiction of pathway opera-
tion in Figure 9 is misleading in suggesting that the two stages of
a pathway operate sequenlially. Sequential operalion is a sensible
way of thinking about the architecture when the pathway input is
fixed, because once the feedforward net has produced its vutput its
job is complete. However, when the pathway input changes over
time—as when the pathway is the second in a cascade—the output
of the feedforward net also changes over time, and if the attractor

net is to make effective use of the information it is provided it
needs to remain sensitive to the state output by the feedforward
net. Consequently, the attractor net is faced with a dilemma: To
what extent should it remain sensitive to its changing input, and to
what extent should it operate under its own dynamics to perform
cleanup? This dilemma is fundamental and implicit in any archi-
tecture containing cascaded attractor nets. One solution is to treat
the cascade as a single, large, undifferentiated attractor net, but
doing so discards any notion of modularity or functional special-
ization within the architecture (similar to treating the entire neo-
cortex as a homogeneous entity) and consequently limits our
ability to understand the operation of the system. Instead, we
present an alternative approach to addressing the dilemma in our
implementation of a pathway. Returning to Figure 9, perhaps a
better way of intuiting the operation of a pathway is to think of the
feedforward net output (the tip of the black arrow) not as the initial
state of the attractor net but as a force that continually draws the
attractor net state (the gray arrow), much as do the attractors.

Connectionist Implementation of a Generalized Pathway

In this section we describe the implementation of a generalized
pathway's two connectionist components: the feedforward net and
the attractor net.

The feedforward net is a standard multilayer perceptron with a
single hidden layer and symmetric sigmoidal activation functions
(i.e., activity of a unit ranges from —1 to 1). The input units are
fully connected to the hidden units, which in turn are fully con-
nected to the output units, as in Figure 8a with one hidden layer
removed.

The attractor net architecture commonly used in connectionist
cognitive models (e.g., Hinton & Shallice, 1991; Plant & Shallice,
1993a, 1993b) might be termed fully distributed in that the knowl-
edge about where attractors are located in the state space is spread
over connections in the network; consequently, one cannot hand
wire a network to have a certain set of attractors, and training
procedures to sculpt an attractor landscape are laborious, unreli-
able, and generally result in spurious attractors (i.e., attractors in
locations other than the ones where they are desired). For this
reason, Zemel and Mozer (2000} developed an alternative, termed
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a localisr attractor network, in which information pertaining to a
particular attractor is localized in the weights of the network.
Consequently, setting the connections in these networks to achieve
a particular set of attractors is a simple procedure; also, spurious
attractors are avoided. We emphasize that the difference between
distributed (standard) and localist attractor nets is at the imple-
mentation level; the qualitative dynamical properties of the two
architectures are the same.”

A localist attractor network consists of a set of srare units and a
set of attractor units. The pattern of activity over the state units is
the current state of the system—a point in the z-dimensional space
on the right side of Figure 9. For each attractor in state space, there
is one attractor unit. Intuitively, the attractor units draw the state
toward their corresponding attractor in inverse proportion to their
distance from the state. The update procedure involves two steps.
First, each atiractor unit i measures the distance (dist) from the
location of its attractor, denoted by the vector w;, to the state at the
current time 1, s(f):

dist{() = |s() — p B

where f3; is a strength parameter that influences the shape of the
attractor hasin—the region of state space over which an attractor
will exert its pull and the rate at which the state will converge to
the attractor. The attractor unit activities are then computed by
means of a normalized exponential transform:

e disrdr)

afr) = ok
i
This transform ensures that the attractor activities sum to 1 and that
attractors that are close to the current state will have an exponen-
tially stronger draw on the state than those farther away.

In the second step of the update procedure the state is pulled
toward each attractor in proportion to the attractor unit activity (the
proximity of the attractor). The vector representing the combined
influence of all attractor forces is:

influence(t + 1) = 3. a,(t)u,.

t

The state depends not only on the forces exerted by the attractors
but also on the external input, ext, which is the output of the
feedforward net. The new state is a weighted combination of the
influence and the external input, modulated by a parameter, w, in
the range [0, 1]:

s(1) = w ext(?) + (1 — w)influence(r).

As we alluded to earlier, this architecture poses the dilemma of
how to set @. Zemel and Mozer (2000) presented a2 mathematically
principled approach in which & as a function of time is derived
from a maximum likelihood formulation of the search task, as-
suming that the external input is fixed over time. Because we
cannot assume the external input is fixed—it may propagate from
another pathway whose output is changing over time—we adopted
a heuristic rule for setting w, based on the following argument.
Essentially, w determines the degree to which attention is paid
to the external input as opposed to the internal dynamics of the
attractor network. The net should remain responsive to the external

input as long as it is changing; that is, @ should be close to 1.0,
because the input is apt to be increasingly accurate as time passes.
Once the input has stopped changing, however, then the internal
dynarmnics of the attractor net should take over to interpret the input,
and @ should be reduced toward (1.0. Rather than waiting for the
entire input vector to stabilize, the model can increase its speed
without loss of accuracy by specifying ¢ independently for each
dimenston of the state space; the parameter for dimension i will be
denoted w,. The model automatically sets w, on the basis of a
comparison between the instantaneous input, ext,(f), and a recent-
time average of the input, zx_?,(t):

B [ ext{t — I)]
wl=Ah|1- et |’
where k[ ¢ ] is a linear saturation function that bounds activity
between 0 and 1. As the external input stops changing, ext(r — 1)
approaches exi,(2), and w; drops to 0.0. Figure 10 shows a graph of
w, as a function of time, when the input ext; changes instanta-
neously from 0 to 1 at Time 0. The exponential dropoff in the
figure is due 1o an exponentially weighted rule for computing the
average input:

ext{t) = @ ext (1) + (1 — a)ext,(t — 1),

where « is the averaging constant.

Simulation Methodology
Patrtern Generation

The simulation requires items to be represented in five spaces:
visual input, quditory input, Semantic, name responses, and gesture
responses. Items are encoded as patterns of activity over connec-
tionist units. One approach to pattern construction is to specify mean-
ingful features in each space—for example, the visual feature of
elongation or the semantic feature of “usefulness as a weapon”—
and then determine the appropriate feature values for a set of items.
Not only is this approach laborious but also, with a small set of
features and a small sample of objects, one cannot be certain that
the statistics of the patterns match the statistics of the knowledge
people have about objects. We thus took an alternative approach of
generating random patterns in these representational spaces subject
to certain constraints. With this approach we know exactly what
assumptions are being designed into the representations and what
the relation is between patterns in different representational spaces.

Each representational space was 200 dimensional, meaning that
the pattern of activity in each space was encoded over 200 units.
In each representational space we generated 200 different binary-
valued (— 1, 1} patterns, which were meant to correspond to known

% The spurious attractors in a distributed attractor network can be viswed
in a positive light in some cognitive models. The spurious attractors are not
random states but tend to be states that are a mixture of two or more
attractors on which the network has been trained. This type of composi-
tionality allows the network to generate novel responses thar share struc-
ture with the training examples. Although the ability to generate novel
responses can be important in some cognitive domains, it is not relevant for
the tasks we are modeling, and hence the use of a localist attractor network
is without a downside.
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Figure 10. The relative influence of the external input versus the internal attractors of the attractor network,
as a function of time. This curve assumes that the external input appears at Time Step 0 and does not change.
w(t) is the degree to which attention is paid to the external input as opposed to the internal dynarnics of the

attractor network.

entities of that representational domain.> The semantic patterns
served as the attractors for the V — S and the A — S pathways,
the name patterns served as the attractors for the S — N pathway,
and the gesture patterns served as the attractors for the $ — G
pathway.

For the visual, auditory, and semantic spaces patterns were
partitioned into 50 similarity clusters with four siblings per cluster.
Patierns were chosen randomly, subject to two constraints: (a)
Patterns in different clusters had to be at least 80° apart,* and (b)
siblings had to be between 25° and 50° apart. In connectionist
networks pattern vectors separated by a small angle will tend to
have similar effects in processing, pattern vectors that are orthog-
onal (i.e., 90°) will tend to have unrelated effects, and pattern
vectors that are separated by large angles (close to 180°) will tend
to have opposite effects. Thus, the constraints on the angle be-
tween patterns enforced a similarity structure on the representa-
tional space. This allows us to ascertain whether the model is more
likely to produce, say, semantically related items as error
responses.

Because similarity of patterns in the name and gesture spaces
was irrelevant to our modeling, we did not impose a similarity
structure on these spaces. Instead, we generated patterns in these
spaces at random subject to the constraint that every pattern had to
be at least 60° from every other.’

After generating patterns in each of the representational spaces,
we established arbitrary correspondences among the patterns such
that visual pattern », auditory pattern n, semantic pattern n, name
pattern n, and gesture pattern » all represented the same concept—
that is, the appropriate response in a visual naming task to visual
pattern n would be semantic pattern # and name pattem 2.

Training Procedure

Our goal is to model adult competence and the deficit in per-
formance that results from brain damage, not to model the course
of human learning and development. Nonetheless, before the
model can be tested each pathway in it must be trained to achieve
adult competence, that is, to map a given input to the pathway to
the corresponding output. The particular procedure used for train-
ing is not an essential aspect of the model, so long as the resulting
model exhibits adult competence. One approach to training the
generalized pathway architecture of Figure 8c is to use a super-

3 By selecting a dimensionality for the space that was on the same order
as the number of alternative patterns, we were assured that the patterns
would not be packed together too closely.

* The angle between two patterns can be computed from the identity

Pip:

c0s® = & Toal *

where p; and p, are the two pattern vectors, and @ is the angle between
them.

®The choices we made for the minimum angle between unrelated
patterns in the five representational spaces were not critical to the model’s
behavior. However, as the minimum angle is increased, the model becomes
more robust to damage. This makes sense because it is easier to ¢lean up
a corrupted pattern the farther apart the target patterns are. In addition, as
the minimum angle is increased, we found that superadditive effects of
damage increased. This is related to the noise robustness property of
dissimilar patterns, as will—we hope—become clear in the discussion of
superadditivity that follows.
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vised learning procedure such as back propagation to determine
connectivity within the entire architecture. However, because each
pathway consists of two distinct components—the feedforward net
and the attractor net—with distinct functional characteristics, it
seemed sensible to determine the connectivity within each com-
ponent by means of two distinct procedures. We emphasize that
this is simply a matter of convenience, not a central feature of the
theory, and that the model is neutral with regard to the develop-
mental processes that give rise to adult competence.

The feedforward networks in the four pathways (V — §,
A —38§,8 —N, and 8 — ) were independently trained on all 200
associations using the on-line back-propagation algorithm (Rume}-
hart, Hinton, & Williams, 1986). Each of these networks contained
a single hidden layer of 150 units, and all units in the network used
the symmetric activation function to give activities in the range
[—1L, 1]

The amount of training was limited to embody the architec-
tural assumption that the feedforward net does not have the
capacity to map every input to exactly the right output, and
hence the cleanup process is required. We could have embodied
this assumption just as well by using 2 smaller number of
hidden units. Following training, when the network does not
produce the correct output, it does produce an answer similar to
the correct output (vs., e.g., producing an output that would be
correct for a similar input). The proximity of the actual output
to the correct output is due to the training procedure, which
attempts to minimize the discrepancy between the actual and
correct output. Typically, 1 or 2 of the 200 units in the output
pattern would have the wrong sign, and the others would have
slight errors; for example, activity of .92 instead of 1.00, or of
—.85 instead of —1.00.

Because of the localist representation of attractors in the attrac-
tor network, it was straightforward te algorithmically wire up each
network with the 200 attractors for its domain, using 200 hidden
units. In addition, we included 1 resz-state attractor located at the
origin of the output. The rest state is the default state the attractor
net falls into when no input is present.

The averaging constant, ¢, was .02 in all simulations. All
attractor strengths, [, were initialized to the value 15.0 in all
simulations, except for the rest-state attractor, whose 8 was 5.0.
The rest-state attractor required a lower strength so that even a
weak external input would be sofficient to kick the attractor
network out of the rest state. The performance of the model was
not terribly sensitive to the choice of « and 8.

Priming Mechanism

Previous simulations of neuropsychological impairments
have accounted for perseveration using priming mechanisms
{e.g., Kimberg & Farah, 1993; Plaut & Shallice, 1993b). Prim-
ing, by which we mean the increased availability of recently
activated states of the system, has been found across a wide
variety of tasks in normal participants. This provides an inde-
pendent motivation for including it in neuropsychoelogical mod-
els, as a parsimonious way of explaining perseveration without
hypothesizing any new components or characteristics of the
cognitive architecture. In the present model we implement
priming as a strengthening of recently visited attractors. Mc-
Clelland and Rumelhart (1985) first proposed the idea of prim-

ing as a strengthening of weights in a network and were
followed by Becker, Behrmann, and Moscovitch (1993; Becker,
Behrmann, Moscovitch, & Joordens, 1997) and Mathis and
Mozer (1996). Priming as weight strengthening differs from the
more common approach of allowing residual activation car-
ryover from one trial to the next primarily in that priming
effects can persist over several intervening trials.

In a distributed attractor net, the strength of an attractor is
determined by connections throughout the network. In contrast,
a localist attractor net has the virtue that one particular param-
eter, B, controls the strength of an attractor. Fellowing an
earlier simulation of priming in a localist attractor network
(Mathis & Mozer, 1996), we implemented priming by increas-
ing the strength of attractor i, 3, in rough propertion to its
activity,

eligibility,

> eligibility; |’

JEATTR

AR, = k(B — B) + 7 3)

where k and m are constants, ATTR is the set of attractors, B, is the
initial attractor strength, and eligibifiry; is a quantitative measure of
how “eligible” an attractor is for modification, based on how active
it has been over the time course of processing:

eligibility, = 2, a(1).

t

The first term in Equation 3 attempts to pull the attractor strength
back to its original value, and the second term normalizes the
efigibility to prevent the strengths from increasing without bound
{because of long exposure of stimuli). Both eligibiliry and Af3 are
computed after the system has relaxed into a well-formed state and
before the presentation of the next stimulus. The rest-state attractor
was not included in this strength 'adjustment procedure, as any
increase to its strength would have made it difficult for the model
to escape the rest state. All attractor nets in the model were fitted
with this priming mechanism. In all simulations, k = 0.6, and
n=22

Damaging the Model

In principle, the model could be damaged by lesioning either the
feedforward or the attractor networks, or both. However, we chose
to lesion only the feedforward networks, for two reasons. First,
patients show no intrinsic deficit in semantics or in naming,
suggesting that the components that actually produce semantic and
name representations—the attractor nets—are intact. Second, le-
sioning an attractor net can cause the attractors to shift, making it
difficult to interpret the response of the model.

The model was damaged by removing a fraction, v, of the
connections in the ¥V — § and § — N feedforward networks. The
removed connections were chosen at random, and an equal fraction
was removed from the two pathways. We also explored a second
technique for damaging the model: adding Gaussian noise to
connections in the V — § and S — N pathways instead of
removing connections altogether. Because the two lesioning tech-
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niques yielded qualitatively similar results, we report only on the
first.®

Response Classification

Responses were determined after the model was allowed suffi-
cient time to relax into an attractor in either the name or gesture
space, depending on the task being performed. The asymptotic
attractor state was taken to be the response, Each response was
classified as one of the following mutually exclusive response
types.

1. Correct: Response (output attractor state) corresponds to the
presented input pattern.

2. No response: Response is the rest-state attractor,

3. Perseverarion: Response is the same as that produced on any
of the three immediately preceding trials.

4. Visual: The visnal pattern corresponding to the incorrect
response is a sibling of the visual pattern corresponding to the
correct response.

5. Semantic: The semantic pattemn corresponding to the incor-
rect response is a sibling of the semantic pattern corresponding to
the correct response.

6. Visual + semantic: An error response that is both visual and
semantic.

7. Other: all other errots.

If a response was both a ne response and a perseveration it was
classified as a ne response; however, if it was both a perseveration
and another type of error, it was classified as a perseveration.

Testing Procedure

After all pathways had been trained, the V — S and § — N
pathways were damaged as described earlier. The architecture was
damaged a total of 30 different times, creating 30 simulaied
patients who were tested on each of the four tasks. For each of
these simulated patients the following algorithm was performed:

Loop through all tasks (V=>N, V=G, A= N, A= G)
Loop through all 200 input patterns
Clamp input pattern
Run model until output has settled
Classify response
Update attractor strengths based on priming mechanism
Repeat
Repeat

The results that we report come from averaging the performance
across the simulated patients.

Results

Error Rate for Visual Naming as a Function of Severity
of Damage

Figure 11 presents the error rate for the ¥V =5 N task as a
function of the amount of damage. The amount of damage is
quantified by the parameter y. With no damage (y = 0), the model
performs perfectly. Even at 10% damage, the medel performs
without deficit, because of the ability of the attractor nets to
compensate for the small amounts of noise introduced by the
relatively minor damage. Up to about 50% damage, the error rate

curve is positively accelerated. Above 50% damage, the error rate
in Figure 11 approaches the ceiling, such that beyond about 70%
damage the connectivity of the model is sufficiently disrupted that
the model cannot perform the task at all.

On the basis of the theoretical curve in Figure 7 we argue that
any model that shows positively accelerated error as a function of
damage is a likely candidaie to produce superadditive effects.
Although positively accelerated, the nonsaturating region of the
curve in Figure 11 (i.e., up to about 50% damage) does not provide
definitive evidence of the sort of superadditivity we have conjec-
tured: Figure 11 provides evidence only of superadditivity of
errors on a single task across simulated patients or lesions. Our
goal is to show superadditivity of errors across tasks for a given
simulated patient or lesion. To expiore this issue we focus on
simulated patients having an intermediate amount of damage, y =
.30, because this level of damage yields no floor or ceiling effects
and produces error rates of 30%—40% for the V => N task, roughly
the median performance of patients in the literature.

Superadditivity of Errors Across Tasks

The second column of Table 2 presents the error rates of the
generalized-pathway model on four tasks, averaged over simulated
patients with a damage level of y = .30. No etrors were produced
on the A = G task, because the two component pathways (A —
S and § — G) were undamaged. Relatively few errors were made
on the A = N and V = G tasks, each of which involved one
damaged pathway, because the attractor nets were able to com-
pensate for the damage. However, the error rate for the V = N task
was quite large, because of damage on both of its component
pathways (V — S and S — N). The error rate for V => N cannot
be accounted for by summing the effects of the damage to the two
component pathways because the sum of the error rates for A =
N and V = G, each of which involves one of the two partially
damaged pathways, is nearly four times smaller. Rather, it appears
that the effects of damage on these pathways do in fact interact,
and their interaction leads to superadditive impairments.

What is the source of the interaction? One hypothesis is that the
interaction arises from the feedforward networks, because the
feedforward networks are nonlinear, and superadditivity is one
manifestation of nonlinearity. This hypothesis can be evaluated
by studying the feedforward-pathway model. The generalized-
pathway model can be triviaily transformed into a feedforward-
pathway model by removing the attractor networks of each path-
way. Because the output of the feedforward-pathway model has
not been cleaned up, we must assume the model’s response to be
the closest (in Euclidean distance) of the 200 meaningful output
patterns. (In other words, we assume a simple sort of cleanup on

®The Gaussian noise damage differed from the conmection removal
damage in only one significant respect. As we show in Figure 18, as more
connections are removed from the model, and errors on the visual naming
task rise above 80%, semantic errors decrease, and perseverations and
no-responses increase. With Gaussian noise damage semantic errors de-
creased, but perseverations and no-responses did not significantly increase.
This is because connection removal results in less overall bottom-up
activity, whereas Gaussian noise damage dees not. The less bottom-up
activation, the easier it is for a perseverative respouse or the rest attractor
ta commandeer the attractor net.
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Figure 11.

Error rate on the visual naming task as a function of the amount of damage to the V — § (visual

input to semantics) and S — N (semantics to naming) pathways.

the output to read out from the model.) Error rates on the four tasks
for the feedforward-pathway model are shown in the third column
of Table 2. Even without explicit cleanup, the V => N etror rate is
significantly larger than the sum of the V = G and A = N error
rates, indicating superadditivity. By the ratio measure (Equation
2), superadditivity is more pronounced in the generalized-pathway
model than in the feedforward-pathway model; this finding is
generally true regardless of the degree of damage (y).

The comparison between the feedforward-pathway and gener-
alized-pathway models suggests that the nonlinearity of the feed-
forward nets is only partially responsible for the observed superad-
ditivity in the generalized-pathway model. Superadditivity also

Table 2
Error (in Percentages) of Damaged Model on Four Tasks

Exror rate

Task Generalized pathway model Feedforward pathway model

A G 0.0 0.0
A= N 0.5 0.5
V=G 8.7 s
V=>N 36.8 67.5

Note. A = G = auditory stimulus, nonverbal response; A = N = audi-
tory stimulus, naming response; V=G = visual stimulus, nonverbal
response; V = N = visual stimulus, naming response.

arises from the temporal dynamics of cascaded attractor networks,
a point we explain further.

‘When a visual pattern is presented to the model, it is mapped by
the damaged V — S pathway into a corrupted semantic represen-
tation that is then cleaned up. Although the corruption is suffi-
ciently minor that cleanup will eventually succeed, cleanup is
slowed considerably by the corruption. While the semantic attrac-
tor network is searching for the correct attractor, the corrupted
semantic representation is being processed by the § — N pathway.
Although an undamaged pathway may be able to handle a cor-
rupted input, the damaged S —> N pathway is not. Thus, the
combination of slowed convergence of the semantic representation
and damage to the S — N pathway causes corruption of the
naming representation beyond the peint where it can be cleaned up
praperly.

An interaction between the two loci of damage in the model is
inevitable and is not merely a consequence of some arbitrary
assumption that is built into our model. To argue this point we
consider two medifications to the architecture that might eliminate
the ternporal interaction in the damaged model. First, if we allowed
the V — S pathway to relax into an attractor state before feeding
its output into the S — N pathway there would be no interaction;
the sequential operation of the pathways yields a correct response
only if each pathway independent of the other produces a correct
output. However, cortical pathways do not operate sequentially,
with one stage finishing its computation and then turning on the
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next stage. Moreover, in the undamaged brain such a processing
strategy is maladaptive, as cascading partial resnlts from one
pathway to the next can speed processing without the introduction
of errors (McClelland, 1979). Second, the interaction might be
eliminated by making the § — N pathway continually responsive
to changes in the output of the V — S pathway. Then, the rate of
convergence of the V. — § pathway would be irrelevant to deter-
mining the eventual output of the S —> N pathway. However,
because the output of the S — N pathway depends not only on its
input but also on its internal state (the state of the attractor net) one
cannot design a pathway that is continually responsive to changes
in the input and is also able to clean up noisy responses. Thus, the
two modifications one might consider to eliminate the interactions
in the damaged model seriously weaken the computational power
of the undamaged model. We therefore conclude that the frame-
work of the generalized-pathway model makes it difficult to avoid
a temporal interaction of damage between two pathways.

To summarize, two properties contribute to the observed su-
peradditvity: (a) nonlinearity of the feedforward networks and (b)
the temporal dynamics of cascaded attractor nets, in which the
second attractor net in a cascade begins processing the output of a
first attractor net before the first net has completed processing. The
first property is standard; the second property is true of any model
composed of cascaded attractor nets, such as McClelland and
Rumelhart’s (1981} and Farah et al.’s (1993).7 Because at least
one of these two properties comes into play in essentially every
architecture, and because the two models we explored—the
generalized-pathway and feedforward-pathway models—are typi-
cal of connectionist architectures in the cognitive modeling liter-
ature, we see superadditivity of multiple loci of damage as a
general property of connectionist models, not as a curious byprod-
uct of a specific modeling approach.

Why has superadditivity not been observed in earlier models?
The simple answer is that, although some researchers have exhaus-
tively explored the consequences of lesioning each set of units or
connections in a model {(e.g., Plaut & Shallice, 1993a), few if any
have explored multiple loci of damage to a model. Because many
models in the literature are narrow in scope, corresponding to what
we have termed a single parhway, it does not make a lot of sense
to explore multiple lesions. However, as models of greater com-
plexity and broader scope are developed—models that have mul-
tiple functional components or pathways—we expect that increas-
ingly the theoretical justification will emerge to investigate
multiple loci of damage.

Modeling the Performance of Individual Patients

Significant variability in performance is observed from one
optic-aphasia patient to another (Table 1). In 11 case studies we
reviewed, error rates on V = N range from 27% to 100%, error
rates on V => G range from 0% to 75% of the V = N error rate,
and error rates on A = N range from 0% to 40% of the V > N
error rate. One should not be surprised by this variability, consid-
ering that each patient has a distinctive lesion and that each study
used its own stimulus materials and testing procedure. What the
reported cases share in common are (a) a higher error rate on V =
N than on either V = G or A = N and (b) superadditivity (where
quantitative results are reported for all three tasks). These two

phenomena characterize optic aphasia and are accounted for by our
model by means of the simulations reported in the previous section.

One might sensibly ask whether our model can account for the
full range of variability among patients. However, modeling the
behavior of individual patients is of questionable value, for the
following reason. The simulation results reported thus far make
three key assumptions, First, concerning the nature of damage to
the patient, we assumed that the V — § and § — N pathways have
lesions of comparable severity. Second, concerning the nature of
the experimental tasks, we assumed that the naming (V = N and
A => N) and gesturing {V —> G and A => G) tasks are maitched in
difficulty and systematicity; our simulation embodies these as-
sumptions by virtue of the fact that the gesturing and naming
spaces each have 200 response alternatives, and the mapping from
semantics to names or gestures is arbitrary. Third, concerning the
scoring procedure, we assumed that the same criterion was applied
in scoring naming and gesturing responses; one can imagine that a
human observer might apply a less stringent criterion in scoring a
gesturing response to be correct.

To model the data collected from a specific patient with specific
stimulus materials and a specific scoring procedure we should be
allowed to adjust at least six parameters of the model: the degree
of damage to the V — S pathway and the possibly nonidentical
degree of damage to the S — N pathway, reflecting the lesion of
a particular patient; the number of response alternatives for the
naming and gesturing tasks, reflecting the relative degree of dif-
ficulty of each task; and the criteria for judging naming and
gesturing responses to be correct, reflecting the scoring procedure.

With these 6 degrees of freedom, and the fact that the model
shows robust superadditivity, accounting for the data from any
particular patient does not seem a great challenge. To illustrate the
flexibility that the model allows, we systematically varied 2 of
the 6 degrees of freedom: the degree of damage to the V — S
pathway, which we denote vy,,_, 5, and the degree of damage to the
S — N pathway, which we denote yg_,. Each parameter was
varied from 10% to 70% damage, resulting in 49 distinct patterns
of damage. For each pattern we computed the error rates on the
affected tasks, averaged over trials and 5 simulated patients
(Figure 12).® Where performance deficits are observed, the V> N
error rate is higher than either the V = G or the A = N error rates.
Superadditivity is most pronounced for y, .4 and ys .y in the
20%-50% range, where the damage is moderate and the extent of
damage to the two pathways is roughly equal. For patiemms of
severe damage, superadditivity is hindered becaunse of the ceiling
on the error rate. For patterns in which the damage to the two
pathways is unbalanced, the more severely damaged pathway has
the bulk of the effect on errors; consequently, the V = N error rate
does not stand out from the V 2 G error rate (when vy, 5 is large}

» " For example, in McClelland and Rumelhart's (1981) interactive-
activation model, activation continuously feeds through from the letter
level to the word level, even while the lefter level continues to “clean up” by
means of the mutually inhibitory connections among the letters in a given word
position.

g All other resuits in this article are based on an average over 30
simulated patients. However, because of the intense computation require-
ments of this simulation we ran only 5 simulated patients per pattern of
damage.
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Figure 12.  Error rates of the damaged model on the V = N (visual naming), V = G (visual gesturing), and
A = N (auditory naming) tasks based on the degree of damage to the V — § (visual input to semantics) and
S — N (semantics to naming) pathways (yy_.g and ys_.n, respectively).

or from the A = N error rate {when yq_, i5 large). Readers who
examine the spectrum of performance can understand why we
chose yy_.g = Ys—n = 30% for the buik of our simulations; this
pattern of damage yields a canonical profile of optic aphasia.
Given the diverse performance reflected in Figure 12, it should
not be difficult to account for the performance of individual
patients. Consider patient DHY of Hillis and Caramazza (1995),
who is interesting because Hillis and Caramazza assessed gestur-
ing performance using stimuli that required highly specific, dis-
ctiminable responses (Riddoch & Humphreys, 1987), thereby pro-
viding some assorance that naming and gesturing tasks were
matched for difficulty. DHY’s error rate was 75% on V o> N, 65%
on V = G, and “perfecily normal” on A => N. Qur model, with
Yv_s = 00% and yg_, = 20%, produces a similar pattern of
errors: 76% on V => N, 59% on V = @G, and 0% on A = N. Hillis
and Caramazza emphasized that DHY’s performance on nonverbal
tasks requiring semantic access (e.g., gesturing, card sorting,
word-picture verification) was normal when measured with con-
ventional tests but that significant deficits were observed on tests
that required more detailed semantic information. Thus, they ar-
gued that DHY had a problem in accessing semantics from visual

information. This analysis is consistent with the pattern of damage
our model proposes to account for DHY s data: a severe lesion to
the V — § pathway and a mild lesion to the S — N pathway.

Because of the degrees of freedom available to specify the
nature of damage, as well as the additional degrees of freedom
available to specify the relative task difficulty and scoring proce-
dure, we find it premature to quantitatively model the data from
individual patients; doing so will require additional tests of the
patient designed to evaluate specific aspects of the model, which
we describe later.

In the remainder of this discussion we focus on accounting for
qualitative features of optic aphasia that are robust across patients.
Our simulations use vy _,5 = ¥s_.n = 30%, although our discus-
sions concerning the model’s behavior apply more generally to
patterns of damage in which y,_g and yg_,, are roughly
comparable.

Relaftive Deficit in Performance on V= G and A = N Tasks

A subtle yet significant aspect of the model’s performance is
that the error rate on the V => G task is reliably higher than the
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error rate on the A => N task, despite the facts that each task makes
use of one damaged pathway and that the pathways are damaged
to the same degree. The difference in performance is due to the fact
that the damaged pathway for the V => G task is the first in a
cascade of two, whereas the damaged pathway for the A = N task
is the second. The initially noisy response from a damaged path-
way early in a cascade propagates to later pathways, and although
the damaged pathway will eventually produce the correct response
subsequent pathways may be unable to attenuate the noise.

The data in Table 1 suggest the same trend in the patient data.
Averaging across patients, and excluding cells in the table for
which no numerical values are given, one finds a striking differ-
ence in mean error rate: 25.0% on V = G, but only 11.2% on
A = N. As we discussed in the previous section, these error rates
reflect a range of patient lesions, stimulus materials, and scoring
procedures, and hence one cannot declare this a clear victory for a
model of a specific lesion based on specific experimental meth-
odology. However, because the model embodies the principle that
early lesions in a cascade are more detrimental than late lesions,
the predominance of V = G errors over A = N errors is a strong
prediction of the model, regardless of its specific instantiation.

Distribution of Errors for Visual Object Naming

Figure 13 presents the distribution of the types of errors made by
the model on visual naming. In accordance with the patient data,
the model produces many more semantic and perseveration errors
than would occur by chance. We computed the chance error
proportions by assuming that if the correct response were not

made, then all other responses had an equal probability of being
chosen. “No-response™ errors were included in the “other” cate-
gory because they were too infrequent (0.9%) to be represented
clearly in the figure. The proportion of no-response errors can be
made larger by increasing the strength of the rest-state atiractor,
and doing so does not appear to interact with any other qualitative
properties of the model.

To understand the predominance of semantic errors, consider
the effect of damage to the V — S pathway. Remember that the
damage involves removal of a fraction y of connections in the
feedforward network. When -y is small, the output of each unit will
be close to what it was originally, with small randem perturba-
tions. Consequently, the overall mapping produced will be close to
the correct mapping (see Figure 14). Most of the time, minor
perturbation of the mapping will be compensated for by the at-
tractor net. Occasionally, the perturbation will land the model in a
different attractor basin, and a different response will be made.
However, when the wrong attractor is selected it will be one
“close” to the correct attractor; that is, it will likely be a sibling in
the same pattern cluster as the correct attractor. In the case of the
V —> § pathway the siblings of the correct attractor are by defini-
tion semantically related. A semantic error will be produced by the
model when a sibling semantic attractor is chosen and then this
pattern is correctly mapped to a naming response in the § — N
pathway. From this account, one might predict that as the degree
of damage increases, the perturbations to the mapping become
larger, and semantic errors will no longer dominate. We verify this
prediction in a later simulation.

- actual
- chance

0.9

o o o
» ~N [e+]

Proportion of total errors
o
[$)]

0.4
0.3
0.2
0.1
0 —
semantic visual vis+sem perseverative other
Error type

Figure 13. Distribution of error types made by model on the V = N (visual naming) task (black bars) relative
to chance (gray bars). No-response errors were placed in the “other” response category. vis = visual; sem = semantic.
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sentation

Figure 14. A schematic depiction of the V — S (visual input to semantics) pathway. The gray arrow depicts
the feedforward mapping in the undamaged pathway. The black arrows depict perturbations to this mapping that
result from minor damage to the pathway. Two of the three perturbations land the model in the same attractor
basin; the third perturbation lands the model in the attractor basin for a semantic sibling of the correct attractor.

In addition to semantic errors, the other frequent error type in
visual naming is perseveration. The priming mechanism is respon-
sible for the significant number of perseveraitions. By increasing
the strength (B) of the most active attractors on one trial, those
attractors will be more effective in drawing in states on subsequent
trials (see Figure 15a). The combination of increasing the strength
of an attractor and inaccuracy in the feedforward mapping intro-
duced by damage can give rise to perseverations on subsequent
trials (Figure 15b). One cannot reasonably argue that the priming
mechanism is merely a “perseveration mechanism,” because nei-
ther the undamaged model nor the undamaged pathways in the
damaged model show perseveration as a result of priming. In fact,
in the undamaged model the priming mechanism facilitates per-
formance (Mathis & Mozer, 1996). Perseveration results from the
combination of normal priming and the weakened influence of the
current stimulus due to damage. When this influence is weakened,
the model tends to return to recently active states. Additional
simulations run without a priming mechanism showed that its only
effect on the model’s behavior was in producing perseverations;

none of the other features of the model’s behavior reported below
were changed in a qualitative manner.

Figure 16 shows the distribution of perseveration errors by trial.
As expected from the dynamics of the priming mechanism, the
model shows nonlocal perseverations, with more recent responses
having a stronger perseverative influence. Also consistent with the
patient data is that perseverations did not occur on the A= G
(undamaged) task, although the existence of the priming mecha-
nism did allow the output to settle more rapidly if the same input
was presented twice.

Just as important as the presence of perseverative and semantic
errors is the absence of visual errors, a feature of optic aphasia that
contrasts sharply with visual agnosia (Farah, 1990). The same
mechanisms explain why the rate of visual errors is close to its
chance value and why visual + semantic errors are above chance.
¥V = N errors occur becanse there is an error either in the V — 8§
or S — N mappings, or both. Because the erroneous outputs of
these pathways show a strong tendency to be similar to the correct
output, and because semantic and name similarity do not imply

(a)
semantic naming
repre- repre-
sentation Y sentation
(b)
sen::;:éc naming
- ) repre-
sentation et sentati
- damaged entation
mapping

Figure 15. A schematic depiction of the sequence giving rise to a perseveration error. Panel (a): On one trial,
the model produces a particular naming response. As a result of this experience, the priming mechanism
strengthens the selected atiractor in the naming space. The lightly shaded region boundary indicates the original
hasin of attraction for the attractor in the lower right; the solid region boundary indicates the basin that results
from the priming mechanism. Panel (b): On presentation of a second trial, the damaged pathway produces a
mapping that, in combination with the expanded attractor basin, causes the previously selected attracior to be

selected again.
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Figure 16.  Proportion of total errors on trial 2 that were perseverations from trials n~1, n=2, or 1-3. The fourth
bar shows the chance rate of errors that would be classitied as perseverations.

visual similarity (the patterns were paired randomly), visual errors
should occur only by chance. When a visual error does occur,
though, there is a high probability that the error is also semantic
because of the strong bias that already exists toward producing
semantic errors. Therefore, more visual + semantic errors occur
than by chance, and the proportion of these errors is only slightly
less than the proportion of visual errors.

Plaut and Shallice (1993b} also proposed a connectionist model
to account for the distribution of errors made by optic aphasia
patients. Although their model was not designed te account for any
of the other phenomena associated with the disorder, it has some
features in common with the model we are proposing. Like our
model, visual input patterns are fed through a feedforward network
to a set of semantic state units. The representations appearing on
the state units are then cleaned up by an iterative relaxation search
performed by a recurrent network. Unlike our model, however,
theirs does not include any kind of naming response system;
responses were determined solely from the semantic state. Al-
though the distribution of errors produced by their model was
similar to ours in many respects (i.c., more semantic than visual
errors and many perseverations), their model produced a larger
proportion of visual + semantic errors than any other error type.
The reason for this—as we elaborate below—is probably due to an
assumption that visually similar objects are likely to be semanti-
cally similar; we refer to this as the § ~ V assumprion. Plant and
Shallice constructed semantic patterns such that about one third of
each semantic pattern is devoted to describing the visnal charac-
teristics of the object to which it corresponds. Consequently,
visually similar patterns tend to be semantically similar as well,
which could explain the predominance of visual + semantic errors
and the consequent reduction in pure visual errors in their model.

Without the S ~ V assumption Plant and Shallice’s model would
not vield a low rate of pure visual errors. Evidence for this
statement comes from Hinton and Shallice’s (1991) model of deep
dyslexia, from which Plaut and Shallice’s model was adapted:
Hinton and Shallice’s model lacked the S ~ V assumption and
shows a visual error rate comparable to the semantic error rate
(Plaut & Shallice, 1993b).

Our moedel produces many semantic errors and few visual errors,
vet it does not require the S ~ V assumption. (Incorporating the
assumption would give rise to an even greater predominance of
semantic errors.) Given that our model has an architecture similar
to that of Plaut and Shallice’s (1993b) model, how can we explain
the discrepancy—that our model does not require the S ~ V
assumption to produce the dominance of semantic over visnal
errors whereas Plaul and Shallice’s model does? One possible
answer may lie in the different training procedures for the two
models. In connectionist networks, similar inputs tend to produce
similar outputs, and it usually requires a great deal of training to
get them to do otherwise. In Plaut and Shallice’s model both the
feedforward net and the attractor net were trained as a single
network using back propagation through time (Rumelhart, Hinton,
& Williams, 1986). With this training procedure the responsibility
for producing correct semantic stales is distributed between the
feedforward net and the attractor net. Consequently, if similar
inputs need to be made into dissimilar outputs, the feedforward
mapping can, for the most part, still get away with producing
similar outputs to similar inputs and rely on the attractor net to pull
them apart. Because the effects of inducing damage to the system
can be likened to changing the boundaries of the attractor basins,
damaged mappings will result not only in semantically similar
mappings being captured by the same attractor but also in purely



SUPERADDITIVE EFFECTS OF MULTIPLE LESIONS 727

visually similar patterns (Hinton & Shallice, 1991). However, if
the pattern spaces are constructed in such a way that visually
similar patterns have corresponding semantically similar patterns,
as in Plaut and Shallice’s model, then visual errors will usually be
accompanied by semantic errors and hence will be classified as
visual + semantic. In our model the feedforward and attractor nets
were trained separately—reflecting the distinct functions of the
two components. The feedforward net was required to pull the
visually similar patterns apart as best it could, minimizing the
effect of visnal similarity on subsequent processing.

Although we conjecture that the behavior of each model is a
consequence of its learning procedures, neither model has an edge
in terms of the developmental or biological plausibility of its
learning procedures.® What must we do to resolve which model is
the best account of the error distribution in optic aphasia? First, it
must be determined whether Plaut and Shallice’s (1993b) S ~ V
assumption is valid for visual semantics in the world. If it were
true, we could incorporate the S ~ V assumption into our model
with no qualitative change in performance; if it were not true,
removing the S ~ V assumption from Plaut and Shallice’s model
would impair its ability to account for data. Second, although each
model can explain certain qualitative aspects of the data, the
models appear to make opposite predictions on ancther aspect of
the data: Visual + semantic errors dominated over pure semantic
errors in Plaut and Shallice’s model, whereas pure semantic errors
dominate in our model. One might hope that these predictions
could be evaluated by means of a careful examination of the
patient data; however, for the absolute error rates produced by the
maodel to be meaningful the models must also produce the same
chance error rates as patients. Thus, evaluating the seemingly
contradictory predictions of the two models will require additional
refinement of the models.

Homing In

Another distinct characteristic of optic aphasia is the tendency
of a patient to “home in” on the correct name for a visnally
presented object when given sufficient time. OQur model provides
an interesting possible explanation for this phenomenon. The sim-
ulation resuits reported previously are obtained by allowing the
model to settle into an attractor before a response is initiated.
However, one could also force the model to respond earlier with its
best guess. Figure 17 shows the error rate for three tasks as a
function of the time at which the model is forced to respond. The
response at a particular time is the most active attractor, excluding
the rest state. As shown in the figure, the V = N task shows a
speed—accuracy tradeoff. This tradeoff is extended several orders
of magnitude of processing time over that of the undamaged
model; for example, the A => G task, which involves no damaged
pathways, gives the correct response after just a couple of pro-
cessing cycles. The temporally extended performance on the
V = N task is due in large part to the fact that the § — N pathway
remains partially sensitive to the changing output of the V— 5§
pathway as it converges on an attractor in semantic state.

Because guesses of the model improve with increased process-
ing time, this behavior might be viewed as homing in on the
correct response. However, this is not homing in in the strict sense
that one guess helps improve accuracy on the next guess. Instead,
this account suggests that patients are simply reporting their cur-

rent mental states, and homing in is a reflection of the greatly
slowed time course of processing in these brain-damaged patients.

This account of homing in requires that we reexamine the
simulation results we reported earlier in which the model settles
into an attractor before it initiates a response. It tums out that
regardless of the point in time at which processing is terminated—
whether the model is allowed to settle to an attractor or is stopped
after only a small number of processing steps—the model’s be-
havior is qualitatively the same (e.g., magnitude of the superaddi-
tive impairment, distribution of errors, etc.).

Qur explanation of the homing-in effect may not be the entire
story. It also seems plausible that, given relatively intact auditory
comprehension, patients hear their own responses and use the
auditory feedback to verify or refine the responses. The use of
auditory feedback seems unlikely to be the entire explanation for
the homing-in effect, because patients occasionally pass throngh
but do not stop at the correct name during their circumlocutions. In
the next section we propose an experimental test that distinguishes
the two accounts of homing in, based on a test in which patients are
asked to provide responses following a variable delay.

Novel Predictions of the Model

During the course of this simulation study we noticed several
robust behaviors displayed by the model that have not previously
been associated with optic aphasia. In this section we mention
these novel behaviors, which lend themselves to experimental
testing. Many of the behaviors are conditional on lesions of
roughly equal magnitude to the the V — S and S — N pathways.
Of course, selecting patients on the basis of the relative severity of
multiple functional lesions is impossible. Nonetheless, useful pre-
dictions can be extracted from the model, because the behavior of
the model with lesions of equal severity is similar to the mean
behavior of the model with random variation in the relative sever-
ity of lesions. (For example, performance of the model with
Yvns = Ysn = 30% is comparable to the average performance
of two models, one with y,,_.g = 40% and yg_,y = 20% and the
other with y,_ ¢ = 20% and yq_, = 40%.) Thus, predictions
arising from the model with equal damage to the two pathways can
be evaluated by means of the mean performance across multiple
patients, even though the predictions might not hold true for every
patient who is classified as an optic aphasic by somewhat onprin-
cipled and nonquantitative neuropsychological criteria.

1. Our model shows a high error rate on the V=N task
because of a synergy between the two lesion sites. This synergy,
and therefore the high error rate, is eliminated if the two damaged
pathways operate sequentially rather than in cascade. With sequen-
tial operation the error rate of our moderately damaged model
drops from 36.8% to approximately 1%. Patients might be encour-
aged to use such a sequential operation strategy if shown a visual
object and prevented from immediate naming or gesturing by a

? The critical difference in learning procedures is that Plaot and Shal-
lice’s (1993b) model uses supervised learning for training both the feed-
forward and attractor nets, whereas our model uses a supervised procedure
for training the feedforward net and—as an altemative to predetermined
wiring—might use an unsupervised procedure for training the attractor net
(1o reflect the statistics of the environment). Such broad assumptions about
learning are unlikely to be validated or invalidated.
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Figure 17. Probability of an error response for V = N (visual naming), V = G (visual gesturing), and A > N
(auditory naming) tasks as a function of the number of cycles the model is allowed to process an input stimulus.
If the attractor net in the response pathway has not settled on an output by a given point in time, the response
assumed is the attractor closest to the current state of the system. The V => N and V = G tasks show homing-in
behavior, in that the model is more likely to produce the correct response given increased processing time.

distractor task. After a delay, they would then receive a cue as to
which task—naming or gestoring—to perform. Although we were
somewhat skeptical about this prediction at first, there is evidence
that is at least consistent with this prediction. It turns cut that-some
patients have difficulty with the V = G task because they cannot
help but to oy naming the object before producing the gesture,
which causes them to gesture in accordance with the names they
produce, which are usually incorrect. However, Schnider et al.
(1994) discovered a method to suppress naming during the V= G
task. Using this technique, their patient made no errors on the
V = G task. Moreover, if they asked the patient to name the object
after gesturing, he always produced the correct name. Although
this evidence is consistent with our prediction, an alternative
interpretation is that the name was accessed by means of kines-
thetic feedback during gesturing.

2. Given compatable lesions to the V — 8 and § — N path-
ways, and controlling for the difficulty of the naming and gesturing
tasks, our model shows a higher error rate for V => (3 tasks than for
A = N tasks. The V = G task taps a damaged pathway early in
the processing stream, whereas the A 0> N task taps a damaged
pathway late in the processing stream. The effects of damage early
in the processing stream propagate to later pathways and hence
have a greater impact. The trend in the literature supports the

proposition that the V = G error rate is higher than the A = N
error rate (see Table 1), which is all the more impressive consid-
ering that without controls on the relative difficulty of naming and
gesturing tasks gesturing is probably a coarser response than
naming, and hence experimental tests are likely to have provided
a lower bound for the error rate on the V = G task when equated
for difficulty with the A = N task.

3. Our model shows a positive correlation between the V = N
and V 2> G error rates. The correlation in the model is premised on
equating naming and gesturing for difficulty and on roughly equal
damage to the two lesioned pathways. For the patients listed in
Table 1 the relationship does seem to hold (correlation coefficient
is .65), but more cases are required.

4. As the amount of damage increases, the V= N error rate
rises, but the model shows less superadditivity, as quantified by
Equation 2—the ratio of the V = N error rate to the sum of the
V = G and A => N error rates. Table 3 shows superadditivity as a
function of amount of damage in the model. From this table it is
clear that there are limits as to how strong the interaction can be
between the two damaged pathways. Unfortunately, this prediction
cannot be evaluated, even tentatively, by the patient data in
Table 1.

5. As shown in Figure 17, the model produces homing in on the
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Table 3
Superadditivity as a Function of Amount of Damage
(in Percentages) to the Model

Amount of damage (y) Superadditivity
10 25.00
20 4.73
30 3.99
40 2.52
50 1.68
60 0.86
70 0.61

V = G task as well as on the V => N task. In both tasks this is due
to the fact that the output pathways maintain sensitivity to the
changing cutput of the damaged V — § pathway as it attempts to
clean up its corrupted representations. However, because gestures
are not produced instantaneously, and take variable amounts of
time to be recognized, this phenomenon may be difficult to ob-
serve in patients. Nonetheless, it might be possible to bring out
heming in with the V => G task using deadline procedures.

6. As shown in Figure 17, the accuracy of the model's re-
sponses increases with processing time. This improvement could
be responsible at least in part for the homing-in effect; that is, even
when patients are asked not to verbalize guesses and formulate
hypotheses about a visual stimulus, the medel predicts that the
dependence of response accuracy on processing time should still

0.9

be observed. Patients could be asked to give a single response at
various delays following stimulus presentation, and the accuracy-
versus-delay function could be compared with that of Figure 17
and that of the standard homing-in behavior.

7. As the amount of damage increases, our simulations show
that the distribution of error types changes in the V = N task. In
particular, the errors contain a lower proportion of semantic errors
and greater proportion of no-response and perseveration errers (see
Figure 18). Furthermore, as the amount of damage approaches full
disconnection (100% damage), no-response errors dominate the
distribution. The reason the proporticn of semantic errors begins to
fall away with increased damage has to do with the fact that whea
the V — S pathway is severely damaged, visual patterns have a
smaller probability of being mapped to a semantic sibling. Perse-
veration and no-response errors become more prominent because,
with increased damage, feedforward nets produce less overall
distinctive activation. This reduction in activity amplifies the bias
toward previous states (leading to perseverations) and the rest-state
attractor (leading to no response).

8. A final prediction suggested by the model is that partial
damage to cascading pathways other than V — 8§ and S — N could
result in superadditive impairments. According to the model, it is
possible, at least in principle, that partial damage to, say, the
V —8 and S — G pathways could result in an optic apraxia,
wherein patients would show an isolated deficit in gesturing the
use of a visually presented object. Similar possibilities exist for
partial damage to the A — S and S — G pathways or the A — §
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Figure 18. Distribution of errors produced by the model as a function of the amount of damage to the model.
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and 8-> N pathways. Have there been any reported cases of
individuals with such isolated deficits on any of these tasks? The
answer appears to be yes for at least two of them. Facial apraxia,
a rather common clinical phenomenon, is marked by a deficit in
carrying out facial movements op verbal command, despite rela-
tively intact comprehension of such commands and the ability to
produce the correct facial movement if the stimulus is presented
visually. For example, 4 patient may not produce the correct facial
movements for blowing out a match or sucking through a straw
when asked to do so but can readily do so when a match or straw
is shown to them (Geschwind, 1974). An analogous case of audi-
tory aphasia was described by Denes and Semenza (1975), in
which the patient showed an isolated deficit on auditory naming.
Also, if we assume that there is a pathway from somatosensory
input to semantics, it appears that a case of bilateral lactile aphasia,
described by Beauvois, Saillant, Meininger, and Lhermitte (1978),
could also be accounted for by superadditive effects of damage.
There does not appear to be any case displaying the type of optic
apraxia described above, but the possibility of such cases is a
prediction of the model. Actually finding such cases may be
another matter; their apparent rarity may simply be due 1w ana-
tomical considerations. Because the model does not make direct
claims about the neuroanatomical placement of its components, it
could be that the A — S and § — G pathways do not lie next to
each other in the brain and are therefore unlikely to be affected by
a single locus of damage.

Discussion

By lesioning a connectionist model we have verified the suffi-
ciency of Farah’s (1990) hypothesis that partial damage te two
processing pathways may result in close-to-normal performance
on tasks involving one pathway or the other while yielding a
severe performance deficit on tasks involving both damaged path-
ways. In demonstrating superadditive effects of damage we have
offered an account that explains the primary phenomenen of optic
aphasia: severe impairments in visual naming in conjunction with
relatively spared performance on naming from verbal description
or gesturing the appropriate use of a visually presented object. In
addition, several unanticipated features of the medel’s perfor-
mance paralleled patient data, further supporting the superadditiv-
ity hypothesis. Finally, our model makes predictions about optic
aphasia that can be experimentally evaluated in the future.

In the remainder of this discussion we elaborate the implications
of the model for optic aphasia in particular and for cognitive
neuropsychology more generally.

Implications for Optic Aphasia

The superadditive-impairment hypothesis joins a small number
of other hypotheses, reviewed earlier, in providing an explanation
of the core, defining features of optic aphasia. Although further
development and testing of these hypotheses are needed to decide
which, if any, is the correct explanation in any given case, the
superadditive-impairment hypothesis has some additional points in
its favor, beyond merely accounting for the disproportionate im-
pairment of visual naming that is the defining feature of the
disorder.

One point in its favor is theoretical parsimony, specifically, the
parsimonions view of the normal cognitive architecture entailed by
this account of optic aphasia. We need hypothesize only a single
semantic memory system, interposed in a straightforward way
between perceptual input modalities and output response systems
such as language and gesture, as illustrated in Figure 6. In contrast,
the other accounts require that the normal cognitive architecture
contain specialized subdivisions of semantic memory or special-
ized pathways, as shown in Figures 2-5.

The superadditive-impairment hypothesis does, of course, re-
quire two functional lesious rather than onec and in this sense is less
parsimonious. The loss of parsimony resulting from two hypoth-
esized lesicns is minimal, however, because of two further con-
siderations: the independent evidence of multiple functions asso-
ciated with the left occipito—-iemporal region and the rarily of optic
aphasia. The first consideration implies that a single anatomical
lesion is iikely to cause multiple functional lesions and therefore
eliminates the need for multiple independent neurological events.
All that is required is a particular correspondence between the
premorbid organization of this brain area with respect to visual and
semantic processes and the location and extent of a single lesion.
Although such a correspondence would not necessarily be ex-
pected to occur routinely with lesions in this area, the second
consideration eliminates the need to assume that it does.

In addition to preserving the parsimonious canonical model of
the cognitive architecture underlying naming, the superadditive-
impairment hypothesis has a further advantage over competing
hypotheses in that it accounts naturally for five associated features
of optic aphasia: (a) the semantic nature of the naming errors made
by optic aphasics, (b) the absence of visual errors, (c} the tendency
o perseverate responses from one trial to the next, (d) the
homing-in process whereby a correct response is often preceded by
semantically related incorrect responses, and (e) the trend for
naming verbally defined objects to be more accurate than identi-
fication by gesture of visually presented objects. These features are
not simply accommodated by the model; the model cannot help but
produce them. They can therefore be viewed as a series of oppor-
tunities to disconfirm the model, which by surviving them gains
further credibility.

A long-standing issue concerning optic aphasia is its relation to
visual agnosia, specifically, whether they are distinct syndromes or
on a continuum of some sort (e.g., Bauer & Rubens, 1985; Dav-
idoff & de Bleser, 1993; Farah, 199%0; Geschwind, 1965; Hum-
phreys & Riddoch, 1987; Kertesz, 1987; Schnider ct al.,, 1994).
The present account offers an answer to this question, which
reconciles many of the distinctive features of optic aphasia (its
dependence on output modality, its semantic errors, and its ab-
sence of visual errors) with its similarities to visual agnosia
(visual-modality specificity) and the tendency for some cases of
visual agnosia to evolve longitudinally into optic aphasia. Our
account also addresses the rclation between optic aphasia and
anomia, evidenl in the work of Bisiach (1966) described earlier.

Figure 19 shows the relation between optic aphasia, visnal
agnosia, and anomia according to the model. The horizontal axis
corresponds to ¥, _,g, the degree of damage to the pathway that
maps visual information to semantic representations, and the ver-
tical axis corresponds to yg_... the degree of damage to the
pathway that maps semantic representations to naming responses.
Figure 19 is intended to capture the general pattern that emerges
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Figure 19. A two-dimensional space representing the possible combina-
tions of damage to the V —> 8 (visual input to semantics) pathway (vy_.g)
and damage to the 8 — N (semantics to naming) pathway (vs_.,). Optic
aphasia results from roughly equal and moderate damage to the two
pathways, whereas visual agnosia and ancmia result from other patterns of
damage. This sketch is an abstraction from Figure 12, in which vy,,_., and
Yg_,n Were manipulated independently in simulations.

from the simulation results in Figure 12, in which optic aphasia
results from roughly equal and moderate damage te the two
pathways. If v, _,q is large, the model performs poorly on all
visual tasks and therefore behaves as a visual agnosic. If yg_,, is
large, the model performs pootly on all naming tasks and therefore
behaves as an anomic. Thus, optic aphasia can be placed on a
continuum with other disorders, but the continuum lies in a two-
dimensional space.

1t should be noted that the current implementation of the model
fails to capture one key property of visual agnosia, namely, the
high incidence of visual errors. This failure is not due to the model
being wrong; rather, the model is neutral because we have focused
on only those pathways directly relevant to explaining optic apha-
sia. Visual errors could arise from damage to early visual process-
ing, which is not part of the present model. To simulate the high
incidence of visual errors in agnosic performance the model would
have to be expanded to include earlier visual pathways, feeding
into the ¥V — 8§ pathway, and visual errors would result from
damage encompassing this input. The evolution of visual agnosia
into optic aphasia, which is the prime evidence favoring the idea of
a continuum, can then be understood in terms of the recovery of
the V — § pathway and its inputs.

More generally, this account suggests a continuum of disruption
to visual and naming processes. Rather than labeling patients as
“optic aphasics,” “visunal agnosics,” or “anomics,” one might use
this continuum to place each patient more precisely in the two-
dimensional space.

Implications for Cognitive Neuropsychology

Beyond the explanation of optic aphasia, the present model also
has broader implications for neuropsychology. As noted earlier, a
selective impairment in a specific ability need not result from
damage to a module specialized for that ability in the normal
cognitive archilecture; rather, the manifest behavioral impairment
may result from a complex interaction between the damaged
component and the intact components.

Our model of optic aphasia illustrates yet another way in which
‘behavioral deficits to a damaged cognitive system can be attributed
to nonlocal effects of local lesions. In this case, a lesion violates
locality not by altering the functioning of intact components but by
altering the functioning of a second lesioned component: Whereas
the effects of the S — N lesion in isolation are minimal, this lesion
results in erroneous mappings of semantics to names when there is
also a V — S lesion (which, in isolation, is also benign).

It may well be possible to understand other highly selective
cognitive impairments in this way, in terms of the superadditive
effects of multiple lesions. Candidate syndromes for explanation in
terms of superadditive lesion effects are all those in which an
impairment appears selective along two dimensions that are asso-
ciated with different components or levels of processing within the
cognitive architecture. Optic aphasia fits this description because
the impairment is selective for both the dimension of input mo-
dality (visual as opposed to auditory or tactile) and the dimension
of response mode (verbal as opposed to gesture or sorling action),
and these dimensions are associated with blatantly different com-
ponents, namely, perceptual input components and response output
components. A variety of other neuropsychological impairments
present similarly puzzling combinations of selectivity,

In the domain of spatial attention some cases of hemispatial
neglect have been found to be highly selective for certain stimulus
categories. For example, neglect may be manifest only for the left
sides of faces and not other kinds of objects (Young, de Haan,
Newcombe, & Hay, 1990). This is puzzling when considered
within the framework of single-lesion hypotheses, for the follow-
ing reason: Although there is considerable evidence that visual
recognition mechanisms can be subdivided along the dimension of
face versus nonface processing, and that the left-right axis is an
important organizing dimension for the spatial attention system,
there is no known component of the cognitive architecture that is
associated with both the face—nonface dimension and the left-right
dimension. Face-specific recognition processes are part of the
high-level visual processing of ventral visual areas, whose visual
representations are abstracted from the spatial topography of car-
lier visual areas (Desimone & Ungerleider, 1989). Visuospatial
altention processes are part of the dorsal visual system, whose
representations of spatial location are neutral with respect to the
type of stimulus (Desimone & Ungerleider, 1989).

One interpretation of facial neglect is that it provides the first
evidence of a face-specific spatial attentional mechanism, and this
is indeed the interpretation favored by Young et al. (1990). How-
ever. a simpler alternative is suggested by the phenomencn of
superadditive lesion effects. Perhaps facial neglect is the result of
subclinical impairments of both face perception and visuospatial
attention, whose effects are synergistic and manifest only when
faces are the focus of attention. The appeal of this account is that
it requires only the two components already known to exist,
namely, general-purpose spalial attention and face-specific percep-
tual mechanisms, and does not require us to hypothesize a new
component dedicated to facial attention.

Similar considerations arise with findings of neglect specific to
representations of the human body (Guariglia & Antonucci, 1992),
to number (Cohen & Dechaene, 1991), and even separately to
reading (Costello & Warrington, 1987) and writing (Baxter &
Warrington, 1983). Application of the standard pattern of infer-
ence in cognitive neuropsychology leads to a profusion of
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stimulus-specific attentional systems, and this has been the con-
clusion endorsed by the authors just cited as well as by Umilta
(1995} in a general review of selective forms of neglect. Alterna-
tively, it may be possible in each case to avoid hypothesizing new
attentional systems by instead hypothesizing superadditive effects
of lesions to a general-purpose spatial attentional mechanism and
to other systems for which we already have independent evidence,
including systems for representing the body schema, numbers,
visnal word recognition, and writing,.

Among the stimulus-specific forms of neglect the most chal-
lenging cases to explain without recourse to stimulus-specific
attentional systems are those in which a single patient has neglect
for one side of words and for the opposite side of nonword stimuli.
However, a single general-purpose spatial attention mechanism
can be maintained, in principle, by a different (but not superaddi-
tive) dual-lesion mechanism, in this case involving bilateral lesions
to the spatial attention system. Reading is known to activate the
left hemisphere and thereby exacerbate left neglect (Bowers &
Heilman, 1980). Consider the distribution of attention resulting
from bilateral lesions, in which the left hemisphere lesion is
slightly larger than the right. Under default conditions, attention
will be biased to the left, producing right neglect. Presentation of
verbal materials and consequent activation of the left hemisphere
will counteract this imbalance and could in some cases result in
neglect of the left. This account makes a strong prediction: The
neglect for words must always be for the left side, and the neglect
for nonwords must always be for the right side. In all published
cases this prediction is confirmed.

In the demain of language, similarly perplexing impairments
have been reported, combining selectivity along dimensions nor-
mally associated with different components of the cognitive archi-
tecture. For example, Caramazza and Hillis (1991} described two
patients, HW and SJD, with strikingly restricted language impair-
ments, HW made errors in oral reading and picture naming, in
which 2 spoken response was required, but made no errors when
writing to dictation or writing the name of an object. In contrast,
SJD was good at oral reading and naming but made errors when
responses had to be written. These patterns of performance are
consistent with damage to phonological and orthographic output
lexicons, respectively. However, the patients’ patterns of perfor-
mance showed an additional dimension of selectivity that cannot
be accounted for in this way. HW was substantially more impaired
with verbs than with nouns, and SJD showed the reverse pattern.
Thus, the impairments were selective along both grammatical and
output-modality dimensions.

Caramazza and Hillis (1991) conclude that each output lexicon,
phonological and orthographic, is subdivided into separate com-
ponents representing nouns and verbs. However, these patterns of
behavior can be explained within a simpler cognitive architecture
by dispensing with the assumption that only a single cognitive
component has been damaged in each case and invoking the
superadditive effects of dual lesions. Specifically, HW can be
hypothesized to have lesions in the phonological outpnt lexicon
(organized along purely phonological dimensions) and in some
syntactic component specialized for verbs (and unrelated to a
particular input or output modality), and SID can be hypothesized
to have lesions in the orthographic output lexicon (organized along
purely orthographic dimensions) and in some syntactic compoenent

specialized for nouns (and unrelated to a particular input or output
modality).
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