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Abstract 
Technological developments have spawned a range of 
educational software that strives to enhance learning through 
personalized adaptation. The success of these systems depends 
on how accurate the knowledge state of individual learners is 
modeled over time. Computer scientists have been at the 
forefront of development for these kinds of distributed learning 
systems and have primarily relied on data-driven algorithms to 
trace knowledge acquisition in noisy and complex learning 
domains. Meanwhile, research psychologists have primarily 
relied on data collected in controlled laboratory settings to 
develop and validate theory-driven computational models, but 
have not devoted much exploration to learning in naturalistic 
environments. The two fields have largely operated in parallel 
despite considerable overlap in goals.  We argue that mutual 
benefits would result from identifying and implementing more 
accurate methods to model the temporal dynamics of learning 
and forgetting for individual learners. Here we discuss recent 
efforts in developing adaptive learning technologies to 
highlight the strengths and weaknesses inherent in the typical 
approaches of both fields. We argue that a closer collaboration 
between the educational machine learning/data mining and 
cognitive psychology communities would be a productive and 
exciting direction for adaptive learning system application to 
move in. 
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Introduction 
Imagine leading cognitive scientists came together for a 
conference—in Montreal, for example—and decided to build 
the best possible adaptive system to support student learning. 
A successful adaptive learning system would draw upon our 
theoretical understanding of human memory and its temporal 
dynamics: How does knowledge and skill develop with 
practice? How do memory traces decay over time? Which 
individual differences in these processes can be exploited to 
best adapt to individual learners? 

                                                        
1 https://www.duolingo.com/ 
2 Interestingly, Settles et al. describe the task as: “Given a history 

of errors made by learners of a second language, the task is to predict 

Taking this hypothetical endeavor seriously is a productive 
thought experiment because it makes explicit the gap 
between our theoretical understanding—based primarily on 
research conducted in psychology laboratories—and 
practical applications—worked on primarily by computer 
scientists.  

These two disciplines have largely operated in parallel, and 
both fields could benefit greatly from collaborating more 
closely.  Mutual benefits for coming together will likely 
include an enhanced theoretical understanding of learning 
and memory through access to big, naturalistic data; and 
improved practical applications achieved through 
exploitation of robust and well-studied psychological 
principles. 

Here, we will discuss a number of recent efforts to help 
bridge this interdisciplinary gap. We will present promising 
approaches to build adaptive learning systems from both the 
computer science and cognitive science/psychology fields, 
highlighting the strengths and weaknesses afforded by each 
type of approach. We will focus and structure the discussion 
around two recent reports stemming from real-world, 
educationally relevant use-cases: (1) the second language 
acquisition modeling (SLAM) challenge put forward by 
Duolingo, and (2) a comparison of the utility of different 
computational models to personalize review in a middle 
school classroom. 

Duolingo’s SLAM Challenge 
The well-known online language-learning platform 

Duolingo1 recently posed a challenge to the scientific 
community. They made data available from more than 6,000 
users who independently studied English, Spanish, or French 
at their own pace, across a duration of 30 days on their 
platform. Using a corpus of 7+ million annotated words, 
Duolingo invited research teams to submit computational 
models to predict users’ performance at a later point.2  In their 
report of the competing models, they frame this approach—

errors that they are likely to make at arbitrary points in the future” 
(2018, p. 56). 

 



second language acquisition modeling (SLAM)—as a new 
computational task (Settles, Brust, Gustafson, Hagiwara, & 
Madnani, 2018). Settles et al. elaborate that educational 
software has made advances in simpler domains but that less 
is known about how beginners acquire second languages in 
realistic settings. As such, their challenge is a special case of 
“building the best possible adaptive learning system.” 

Fifteen research teams responded to Duolingo’s challenge, 
encompassing a multitude of approaches used to submit 
predictions. Most competing teams came from the field of 
natural language processing due to the fact that Duolingo 
posed the challenge in the context of a large computational 
linguistics conference.3  An analysis of the types of 
algorithms used to power the predictions suggested that non-
linear algorithms—recurrent neural networks (RNNs)—were 
especially successful, while linear models—item response 
theory variants—were least successful (Settles et al., 2018; 
Table 3). In fact, the top models demonstrating the highest 
predictive validity were all considered non-linear, suggesting 
that SLAM was mainly approached as deep knowledge 
tracing (Piech, Bassen, Huang, & Ganguli, 2015) in which 
RNNs are used to trace student performance over time. 

It is interesting to note that none of the teams who 
submitted model predictions explicitly accounted for the 
cognitive processing mechanisms involved or how those 
processes unfold over time. These types of process models 
have been the focus of study in cognitive psychological 
research, but that research has remained largely in the realm 
of controlled, laboratory tasks.  

In the following two subsections, we will discuss RNNs 
and process models respectively, to highlight the strengths 
and weaknesses of both types of models. 

Recurrent neural networks (RNNs) 
The dominance of RNNs in the Duolingo challenge is not  

surprising, given their flexibility in discovering useful 
representations from large amounts of data (LeCun, Bengio, 
& Hinton, 2015), enabling these models to leverage the rich 
meta-data available for each instance in the corpus (see 
Figure 3 in Settles et al., 2018). What is surprising, however, 
is that these models do not have a clear representation of time, 
which is of course a crucial dimension of learning (Bloom, 
1974). Settles et al. state that none of the models explicitly 
considered that the passage of time affected acquisition 
and/or forgetting. This disregard for the temporal dynamics 
of learning and retention seems surprising given what is 
known about the spacing effect (e.g., Bahrick, Bahrick, 
Bahrick, & Bahrick, 1993).  It is further surprising to glean 
that Duolingo itself explicitly models time non-linearly, 
taking the shape of the forgetting curve into account (Settles 
& Meeder, 2016). 

An analysis of the features that the different models used 
(see Section 5.2 and Table 4 in Settles et al., 2018) suggests 

                                                        
3 Specifically, the “13th Workshop on Innovative Use of NLP for 

Building Educational Applications” held at NAACL-HLT 2018 
(http://naacl2018.org/). 

that only the response time and days in course features had 
marginally significant effects on the quality of predictions—
the modeling architecture (RNN or additive IRT) was the 
main driver of the differences between the teams. Notably, 
the days in course information for each entry could have been 
translated to the time that elapsed since the last encounter 
with an item (i.e., lag-time) in order to explicitly model 
forgetting as a non-linear function of lag-time. Instead, 
however, “forgetting was either modeled through engineered 
features (e.g., user/token histories), or opaquely handled by 
sequential RNN architectures” (Settles et al., 2018; Section 
4).  

Simply considering the sequence in which events occurred 
(rather than lag-time) is common in knowledge tracing 
models (Corbett & Anderson, 1995) and often works well 
because student behavior is usually modeled in a single 
session. Consequently, most Bayesian knowledge tracing 
models do not assume that forgetting takes place at all (see 
Khajah, Lindsey, & Mozer, 2016 for a BKT variant that does 
consider forgetting). The benefit of considering lag-time 
between (rather than the mere sequence of) events as input 
might only emerge if data are modeled on sufficiently long 
timescales, across which accurately modeling forgetting 
curves should be more important. 

In a recent effort, Mozer, Kazakov, and Lindsey (2017) 
introduced an explicit representation of continuous time (CT) 
in a  RNN that they trained on 11 different data sets. The 
hypothesis behind creating the CT-RNN variant was that 
including certain constraints might guide the model in its 
learning—essentially protecting it against its own flexibility 
(Mozer et al., 2017). Mozer et al. motivate their approach by 
drawing a helpful analogy with vision, in which models 
constrained to take known regularities into account 
outperform unconstrained models (in decyphering 
handwriting, for example: LeCun, Bottou, Bengio, & 
Haffner, 1998).To the surprise of the authors, their CT-RNN 
did not perform any better than the RNN that did not take CT 
into account, but was otherwise functionally identical. What 
is more: removing elapsed time from the input stream 
altogether did not impair the default RNN’s performance by 
more than 5% at most, suggesting that that it did not 
incorporate temporal information to the extent one might 
expect.  

Their null findings are surprising in light of earlier work 
that demonstrated the power of taking statistical regularities 
in the temporal dynamics of forgetting into account. For 
example, Khajah, Lindsey, and Mozer (2016) extended a 
Bayesian knowledge tracing model and showed that it 
performed as well as a RNN knowledge tracing model. Their 
extensions were based on psychological principles—such as 
exponential decay of knowledge over time, which is usually 
not assumed in Bayesian knowledge tracing—that 
constrained the potential patterns that their model could learn 
from the data relative to the deep knowledge tracing model. 



More importantly, they highlight the fact that the processes 
that are assumed to influence learning and forgetting are 
explicitly expressed in the model’s specification: The model 
parameters correspond to psychological concepts of 
theoretical relevance. For example, how quickly skill X 
decays for student Y, or how much students vary in their 
abilities.  

RNNs are currently the preferred choice of computer 
scientists because of their flexibility to learn arbitrary 
representations from copious amounts of data.  The very 
architecture guaranteeing this flexibility, however, poses a 
risk to overfitting the data and makes it extremely difficult to 
interrogate the model. For adaptive learning systems to be 
used in practice, systems powered by RNNs may preclude the 
ability of the system to understand what the learner may 
optimally require or why the learner is struggling.  For these 
reasons, researchers in psychology—whose main goal is to 
describe underlying cognitive processes—have not embraced 
RNNs. Instead, they have developed process models. 

Process models 
In process models, theoretical assumptions regarding 

underlying cognitive processes are hard-coded in the model 
itself. A prime example of an overarching architecture of 
process models is the Adaptive Control of Thought–Rational 
(ACT-R; Anderson, 2007) framework4, which implements 
testable theories of human memory processing, and supports 
the creation of cognitive models that are capable of predicting 
and explaining human behavior.  ACT-R has been used to 
successfully account for a depth and breadth of phenomena, 
including language comprehension, learning and memory, 
problem solving and decision, and even interpretation of 
fMRI data. 

With regards to adaptive learning systems, ACT-R has 
been leveraged by the intelligent tutoring community to 
minimize the distance between student and expert models.  In 
the case of algebra tutors, for example, ACT-R models each 
step for solving a problem explicitly, and functions by 
identifying the root cause for student errors.  It then provides 
the appropriate assistance and mentoring for the individual 
student to remediate the identified error.  These cognitive 
tutors are highly successful for helping students acquire 
knowledge (Anderson, Corbett, Koedinger, & Pelletier, 
1995). Practically speaking, however, they fail to include 
decay mechanisms, so they lack the ability to account for 
maintenance or sustainment needs long-term. 

A number of process models have focused on and extended 
ACT-R’s declarative memory module to model the temporal 
dynamics of learning and forgetting in greater detail. Pavlik 
and Anderson (2005) extended ACT-R to account for effects 
of spacing using an activation-based decay mechanism.  They 
applied this model iteratively and demonstrated success in 
making real-time predictions for a language learning task, 
nicely pushing the bounds of computational modeling 
application for real-world educational use. More recent 

                                                        
4 http://act-r.psy.cmu.edu/about/ 

extensions incorporated response latencies for each learning 
event to better trace memory strengths over time, showing 
promise in both laboratory (Sense, Behrens, Meijer, & van 
Rijn, 2016) and real-life learning tasks (Sense, van der Velde, 
& van Rijn, 2018; van Rijn, van Maanen, & van 
Woudenberg, 2009). In addition, this model fared well when 
evaluated against a range of theoretical criteria (see Walsh, 
Gluck, Gunzelmann, Jastrzembski, & Krusmark, 2018), 
however, gaps were noted in its ability to make out-of-sample 
predictions, particularly at long temporal horizons, or to 
account for the speeded benefit of relearning when initial 
practice was initially more spaced.  

The Predictive Performance Equation (PPE) is another 
model that explicitly captures the spacing effect, motivated 
in its development to remediate limitations of existing 
models. PPE leverages and combines elements of the General 
Performance Equation (Anderson & Schunn, 2000), ACT-R, 
and the New Theory of Disuse (Bjork & Bjork, 1992). This 
novel computational account of the spacing effect has 
demonstrated its theoretical and applied validity across a 
breadth of empirical data (see Walsh et al., 2018). PPE has 
built upon the shoulders of giants previously described and 
pushed into the prescriptive realm for real-world 
applications. This means that real-time predictions are 
iteratively made and successive, optimal training schedules 
are immediately delivered to the individual learner.  PPE has 
successfully been applied to the domain of cardiopulmonary 
resuscitation (CPR), demonstrating greater performance 
effectiveness and minimized training time to acquire and 
sustain proficiency through personalized, precision learning 
capability (Jastrzembski et al., 2017).  

PPE is unusual in its focus on prescribing training 
schedules in real-life tasks and conditions (but also see, e.g.: 
Mozer, Pashler, Cepeda, Lindsey, & Vul, 2009), as most 
process models are primarily developed and evaluated for 
theoretical purposes. PPE exemplifies the capabilities and 
limitations of process models more generally: When the 
relevant processes in a particular domain are mapped onto the 
mechanics of a model, those models can extrapolate from the 
available data to make cognitively-plausible prescriptions. 
Model parameters directly map onto concepts relevant to the 
modelled domain and can be interpreted and communicated 
meaningfully (e.g., “Your ability is very high, but this is an 
unusually difficult fact to learn. You should rehearse this item 
four hours sooner than the other facts in this set.”)  

The downside, however, is that process models do not 
readily translate to new domains or even similar tasks within 
the same domain. Model parameters that capture individual 
learning and forgetting signatures often vary across domains 
and tasks (e.g., Sense et al., 2016). Therefore, using the 
parameters estimated for a person in one domain, does not 
mean their performance profile can automatically be 
accurately predicted in another domain. However, recent 
work with PPE showed that prior data may be used to inform 
free parameters (Collins, Gluck, Walsh, & Krusmark, 2017; 
Collins, Gluck, Walsh, Krusmark, & Gunzelmann, 2016), 



indicating that the model does not have to start from scratch 
in every domain.   

Another issue is that most process models with potential 
for adaptive learning are based on very sparse inputs: lag-
time, sometimes response latency, and accuracy—which is 
often aggregated to reduce noise. Thus, the models are not 
inherently equipped to leverage the rich meta-data available 
in, for example, the Duolingo data in the way that RNNs are. 

In the final section, we will discuss potential ways of 
“moving forward” but before, we turn from an online 
learning platform to the classroom in order to discuss a recent 
effort to deploy adaptive learning software in realistic 
educational settings. 

Personalized Review in the Classroom 
Duolingo’s challenge to the scientific community is 

instructive because it reflects a clearly defined task that an 
adaptive learning system must perform: modeling second 
language acquisition (Settles et al., 2018), i.e., predicting 
future performance given a corpus of learning history. The 
preceding discussion of how well a number of computational 
models might be able to perform this task is a productive way 
to compare the models’ theoretical assumptions. If we take 
the goal of building the best possible adaptive learning 
system seriously, however, we must also keep the end users 
in mind: the learners.  

Today, learners increasingly engage with study materials 
in distributed learning environments and the culture of 
learning is changing. While lectures will be scheduled at 
fixed times, more and more aspects of learning are now self-
directed, self-paced, and available on demand in online 
learning environments. Traditional, structured classroom 
settings, which are different from Duolingo’s learning 
environment, progressively move towards incorporating 
distributed learning approaches to aid face-to-face 
interactions (e.g., Sense et al., 2018). The best adaptive 
learning system would function in realistic, modern 
educational settings, in which learners follow courses that 
expose them to materials in a prescribed sequence; in which 
there might be regular quizzes on subsets of the material; and 
in which the goal is to perform well on a (cumulative) exam 
at the end of the course. The ideal system would be able to 
inform each learner about their progress, the current state of 
their knowledge, which elements of the course they should 
focus on, and assist them in their self-regulated learning 
decisions (Bjork, Dunlosky, & Kornell, 2013). 

One elucidatory effort deployed retrieval-practice software 
as part of the curriculum in a middle school (Lindsey, 
Shroyer, Pashler, & Mozer, 2014). In a semester-long 
Spanish course, 179 students engaged with a flashcard 
tutoring system during class time. Each week, they completed 
three 20- to 30-minute sessions: In the first and second, the 
week’s new materials were studied to proficiency before 
reviewing old materials; in the third, a test of the week’s new 
materials was administered. The authors tested three different 
algorithms that scheduled items during review. The 
personalized spacing algorithm resulted in the highest 

performance on the cumulative end-of-semester exam, with 
especially high performance for items that were introduced 
early in the semester (Lindsey et al., 2014). The algorithm 
was dubbed DASH—because it incorporated information 
regarding item difficulty, student ability, and study history—
and the authors argue that their model is in principle agnostic 
with regards to the domain that is modeled as long as 
knowledge in that domain can be deconstructed into 
“primitive knowledge components” (Lindsey et al., 2014, p. 
643), which is comparable to the assumptions made by ACT-
R in general and PPE in particular (see above).  

Mozer and Lindsey (2016) discuss the DASH framework 
more generally in a recent book chapter—aptly subtitled 
“psychological theory matters in the big data era”— in which 
they argue that theory-inspired models such as ACT-R and 
the multiscale context model (Mozer et al., 2009) can inform 
theory-agnostic machine learning approaches, specifically 
collaborative filtering. In this framework, collaborative 
filtering is used to estimate difficulty and ability from the 
study history (again: DASH) to infer a student’s knowledge 
state. The generalized power-law of forgetting (Wixted & 
Carpenter, 2007) can then be used to project the decay of 
knowledge into the future. Mozer and Lindsey discuss 
variations of their DASH framework that vary with regards 
to the information that is considered when instantiating 
forgetting curves. Their simulation results suggest that for the 
tested scenarios, individual differences in both learning and 
forgetting should be considered and that models do much 
worse if they do not take forgetting into account at all. In two 
experiments, the authors provide strong empirical evidence 
that personalized review is more effective than other forms of 
spacing, which is in line with other research rejecting one-
size-fits-all approaches to spacing (Mettler, Massey, & 
Kellman, 2016). 

Conducting experiments of this kind in schools imposes 
additional administrative and logistic costs on a research 
project that are not required if large online learning platforms 
make their data available to researchers (e.g., Ridgeway, 
Mozer, & Bowles, 2017). A more accessible, educationally 
relevant context for most researchers might be provided by 
the classrooms of the universities they work at (e.g., Sense et 
al., 2018). Ultimately, the best possible adaptive learning 
system must be tested for effectiveness and usability by real 
learners, not on historical data. 

Moving Forward 
Moving forward, we believe it is crucial that cognitive 

scientists engage with the educational data mining 
community in order to test their process models with 
naturalistic data. This will allow cognitive scientists to 
demonstrate the usefulness of formulating relevant cognitive 
processes explicitly and to learn from approaches commonly 
used to model learning in computer science. A productive 
way forward might be to formally evaluate models of 
different types against each other to map out the boundary 
conditions for which the strengths and weaknesses of each 
class apply.  For example: In which domains does each type 



of model fare best?  What types of data does each type of 
model optimally function with? And perhaps most critically, 
can the strengths of one model alleviate the weaknesses of 
another through integration? 

One potential path towards leveraging the strengths of both 
process models and RNNs is to have the models collaborate 
when making predictions. The DASH model proposed by 
Lindsey et al (2014), for example, could be simultaneously 
fit with a RNN using gradient descent. Instead of making 
independent predictions, the models would sum the two 
model predictions to make a single prediction. With 
predictions thus combined, the RNN will learn the residual 
between the restricted but interpretable DASH and the actual 
data. This would maintain the interpretable parameters of 
DASH and exploit the flexibility of the RNN at the same 
time. The specific implementation of DASH proposed by 
Lindsey et al. could be replaced with any other process 
model, of course, and the collaborative predictions could be 
weighted to give preferential treatment to either the process 
model or the RNN. 

Although significant progress has been made to close the 
gap between computational models and educational or 
training practice application, it is important to realize that 
literature is sparse or nonexistent for timescales and contexts 
most keenly relevant to formal educational institutions where 
typical summer breaks invoke an inherent acceptance of 
knowledge decay each year (Cooper, Nye, Charlton, Lindsay, 
& Greathouse, 1996; McCombs, Augustine, & Schwartz, 
2011); or for military training, where irregular delays 
between training and use is common and maintenance of 
readiness for high-risk, low-volume skills is a significant 
challenge. Thus, additional research must be conducted to 
evaluate the applied utility of any computational model that 
could be of practical use.  

We argue that a multidisciplinary, collaborative approach 
bringing the power of neural network and process modeling 
approaches together, would be an exciting direction for 
adaptive learning system application to move in (also see 
Mozer, Wiseheart, & Novikoff, 2019). It would acknowledge 
the value of the human-in-the-loop by integrating our 
theoretical understanding of the human memory system with 
RNNs’ ability to make sense of large data; thereby pulling 
their affordances together in a unified task to build the best 
adaptive learning system possible. 
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