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Abstract

Supervised deep-embedding methods project inputs of a domain to a representa-
tional space where same-class instances lie near one another and different-class
instances lie far apart. We propose a probabilistic method that treats embeddings
as random variables. Based on a state-of-the-art deterministic method, Prototypical
Networks (Snell et al., 2017), our approach supposes the existence of a class proto-
type around which class instances are Gaussian distributed. The prototype posterior
is a product distribution over labeled instances, and query instances are classified
by marginalizing relative prototype proximity over embedding uncertainty. We
describe an efficient sampler for approximate inference that allows us to train the
model at roughly the same space and time cost as its deterministic sibling. Incor-
porating uncertainty improves performance on few-shot learning and gracefully
handles label noise and out-of-distribution inputs. Compared to a recent stochastic
alternative, Hedged Instance Embeddings (Oh et al., 2019), we achieve superior
large- and open-set classification accuracy.

1 Introduction

Supervised deep-embedding methods map instances from an input space to a latent embedding space
in which same-label pairs are near and different-label pairs are far. The embedding thus captures
semantic relationships without discarding inter-class structure. In contrast, consider a standard
neural network classifier with a softmax output layer trained with a cross-entropy loss. Although its
penultimate layer might be treated as an embedding, the classifier’s training objective attempts to
orthogonalize all classes and thereby eliminate any information about inter-class structure.

Embedding methods are popular in the few-shot learning literature [4} 5, [10} 14} 16, [19] 20} 23} 125]
where the goal is to classify query instances based on one or a small number of labeled exemplars of
novel classes. These methods operate by embedding the queries and exemplars using a pre-trained
network, and classifying each query according to its proximity to the exemplars. Embedding methods
are also critical in open-set recognition domains such as face recognition and person re-identification
(3012} 131118, 22}, 124} [26128]].

Loss functions used to obtain embeddings can be characterized according to the number of instances
used to specify a loss. To describe these losses, we will use the notation z, for an embedding of class
. Pairwise losses attempt to minimize within-class distances, ||z, — 27, ||, and maximize between-
class distances, ||z, — 2| [BL[7L27]. Triplet losses attempt to ensure within-class instances are closer
than between-class instances, ||z — 2, || < ||za — 2| [18L122L 26]. Quadruplet losses attempt to
ensure every within-class pair is closer than every between-class pair, ||z, — 2, || < ||z0 — z]| [24].
Finally, cluster-based losses attempt to use all instances of a class [[16} 17, 20, [21]]; for example,
Prototypical Networks (PN) compute the mean of a set of instances of a class, Z,, and ensure that
additional instances of that class, z,, satisfy a proximity constraint such as ||z, — Za|| < ||2a — Z3]|-
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Nearly all methods previously proposed for deep embeddings are deterministic: an instance projects
to a single point in the embedding space. Deterministic embeddings fail to capture uncertainty due
either to out-of-distribution inputs (e.g., data corruption) or label ambiguity (e.g., overlapping classes).
Representing uncertainty is important for many reasons, including robust classification and decision
making, informing downstream models, interpreting representations, and detecting out-of-distribution
samples.

In this article, we propose a method for discovering stochastic embeddings, where z, is a random
variable whose distribution reflects the uncertainty in the embedding space. We are aware of two
prior methods to obtain stochastic embeddings for few-shot and open-set classification: the Hedged
Instance Embedding (HIB) [[15] and the Oracle-Prioritized Belief Network (OPBN) [8]. The HIB
and OPBN are trained using pairwise and triplet losses, respectively. Cluster-based methods have
proven to be superior to pairwise and triplet methods for deterministic embeddings [[19]. This ranking
motivated us to explore a cluster-based method for stochastic embeddings.

Our proposed method, the Stochastic Prototype Embedding (SPE), is a variant of the PN [20],
described above. PNs have yet to receive a proper probabilistic treatment, although authors have
begun to consider small steps in this direction. For example, Fort [6] incorporated a Mahalanobis
distance with covariance specified by the distribution of instances forming the prototype. As in
the PN, our SPE assumes each class can be characterized by a prototype in the embedding space
and an instance is classified based on its proximity to a prototype. In the case of the SPE, the
embeddings and prototypes are Gaussian random variables, each class instance is assumed to be a
Gaussian perturbation of the prototype, and a query instance is classified by marginalizing out over
the embedding uncertainty.

Using a synthetic data set, we demonstrate that the embedding uncertainty is related to both input
and label noise. On a few-shot learning task, we show that the SPE outperforms its state-of-the-
art deterministic sibling, the PN. And on a challenging classification task, we find that the SPE
outperforms HIB, the state-of-the-art stochastic embedding method.

2 The Model

The SPE assumes that the latent representation, z, is a Gaussian conditioned on the input, x:
p(zlx) = N (2; o, 021) (1)

with mean, p,, and variance, o2, computed by a deep neural network, similar to a Variational
Autoencoder [9]. (We discuss the possibility of using a full covariance matrix in Appendix [D]) The
classification, y, in turn is conditioned on z, with p(y|z) taking the same form as in the original PN
[20], to be described shortly. Given an input, a class prediction is made by marginalizing over the
embedding uncertainty:

p(ylz) = / p(y]2)p(z]z)dz, @

Figure [T] depicts the relationship between the input, latent, and class representations. We train the
SPE using the standard few-shot learning paradigm, consisting of a sequence of episodes, each with
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Figure 1: Illustration of the stochastic prototype embedding. The model learns a mapping from input
space, x, to embedding space, z, in which same-class instances are near and different-class instances
are far. Embeddings are represented as Gaussian random variables. Prototypes, noted as + symbols
in the embedding, are formed via a confidence-weighted average of the embeddings of instances
known to belong to a class (support instances). Prototype uncertainty is depicted with the dotted
ovals. Given the prototypes, a prediction of class y is made for a query instance by marginalizing a
softmax prediction over the embedding space.



m instances of n classes. We split the m X n instances into k x n support examples, defining a
set S, and (m — k) X n query examples. The support instances for each class ¢, S. € S, are used
to determine the class prototype, ., and the query instances are evaluated to predict class label
(Equation2)).

2.1 Forming class prototypes

In the SPE, each class y has an associated prototype, v, in the embedding space, and each instance ¢
of class y, denoted x;, projects to an embedding, z;, in the neighborhood of v,:

vy = 2; + €, where € ~ N(0,21). 3)

We assume that the prototype is consistent with all support instances, allowing us to express the
likelihood of v, as a product distribution:

. Hiesy p(vylz:)
f,, Hiesy p(vylzi)dv
Because p(vy|x;) is Gaussian, the resulting product is too:

vyl Sy ~ N (py, o1) with
-1
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where &ii = oﬁi + o2 and o denotes the Hadamard product. Essentially, the prototype is a

confidence-weighted average of the support instances.

2.2 Prediction and approximate inference

We assume a softmax prediction for a query embedding, z:
p(Ylz,S) o< N (2; py, 3T) 5)
with 67 = o2 4 o2 as before, yielding the class posterior for query z:
N (z; py, 6’51)
2o N (2 e, 621)

The class distribution is equivalent to that produced by the deterministic PN as 2 — 0 when
2

o, = 0'5, for all class pairs (y,y’). However, in the general case, the integral has no closed form

solution; thus, we must sample to approximate p(y|z, S), both for training and evaluation. We employ
two samplers, which we refer to as naive and intersection.

dz. (6)

p(ylz, ) = / N (2 1, 021)

2.2.1 Naive sampling

A direct approach to approximating the class posterior is to express Equation [2]as an expectation,
E.p(z|z) [P(¥|2,5)], and to replace the expectation with the average over a set of samples. We
utilize the reparameterization trick of Kingma and Welling [9] to train the model. Although this is
the simplest approach, it is sample-inefficient during training, and when the number of samples is
reduced, performance is impacted.

2.2.2 Intersection sampling

In Equation|[6] the product of Gaussian densities in the numerator can be rewritten:
N (Z; Mz, 0'3:1) N (Z; Ky, &51) =N (Z; Hay, Uin) N (UI; Hy; (0'925 + &5)1) ) (7

where
2

Oy = (0,2 + &;2)_1 and
2

szzamyo(o';zouer&;Qouy).



Substituting Equation [7]into Equation [6]
-1

p(le, S) = N (i iy, (02 + GO E. (0, 02,1) | N (Fpe 6D (®)

Approximating the expectation with samples from N ( Koy, o'ﬁyI) , we obtain a sampler that focuses
on the intersection of the input distribution and a given class distribution. During training with a
cross entropy loss, we need only sample for the known (target) class y. Compared to naive sampling,
we found this scheme to be more robust and significantly more sample efficient, requiring only a
single sample to train effectively.

3 Experimental Results

We assess the SPE when trained on either the naive or intersection sampler; in both cases, we
evaluate using the naive sampler with 200 samples. For details regarding network architectures and
hyperparameters, see Appendix[A] and for simulation details, including the choice of initialization
for o2, see Appendix

3.1 Synthetic color-orientation data set

Using a synthetic image data set, we demonstrate that the SPE can capture the generative structure
of a domain and provide sensible estimates of uncertainty. The data set consists of 64 x 64 pixel
images with a well-defined class structure. The four classes in our domain are distinguished by
orientation, color, or both (Figure [2). Class-conditional generative parameters—orientation and
color—are sampled from an isotropic Gaussian distribution. (The isotropy of these qualitatively
different dimensions comes from the fact that both can be mapped as directional quantities.) Class
overlap on color and orientation dimensions is symmetric. We tuned the variance such that there
would be significant overlap between classes in order to elicit embeddings with increased uncertainty
in overlapping regions. Full details of the synthetic data set can be found in Appendix[A.2]

We trained a two-dimensional, intersection-sampling SPE on samples from this domain, using two
instances per class to form prototypes. Classification accuracy of held-out samples is approximately
86%. Accounting for class overlap, a Bayes optimal classifier has an accuracy of approximately 87%.
For visualization, we selected 25 examples by interpolating between the class means. The examples
and their embeddings are shown in the left and right panels of Figure[3] The network has captured
the structure of the domain by disentangling the two factors of variation. To identify the input array
and the embedding space, the input array must be mirrored along the horizontal axis. The embedding
variance encodes label ambiguity. Instances half way between two classes on one dimension have
maximal variance along that dimension. Label ambiguity is one type of uncertainty. An equally
important source of uncertainty comes from noisy or out-of-distribution (OOD) inputs. We examined
OOD inputs generated in two different ways. In the left panel of Figure [d] we show the consequence
of adding pixel hue noise to the four class centroids. Only one of these centroids is shown along the
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Figure 3: Synthetic data set: (left) A
set of examples, with the four class cen-
troids located in the corners and exam-
ples between formed via linear inter-
polation in the generative space. (right)
The 2D stochastic prototype embedding
for the examples. The shape is plotted
at the mean of p(z|x), and the outlines
of the ovals represent equi-probability
contours at 0.4 standard deviations.

Figure 4: Synthetic data
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3 o1 - on the two embedding
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abscissa, but all four are used to make the graph, with many samples per noise level. The grey and
black bars in the graph indicate variance on the vertical and horizontal dimensions of the embedding
space, respectively. As pixel hue noise increases, uncertainty in the color grows but uncertainty in the
orientation does not. In the right panel of Figure 4] we show the consequence of shortening the length
of the legs of the shape. Shortening the legs removes cues that can be used both for determining both
color and orientation. As a result, the uncertainty grows on both dimensions.

3.2 Quantitative evaluation

We evaluate the SPE on two tasks: few-shot learning classification using Omniglot [11] and a
many-classes problem with multi-digit MNIST images [[15]].

3.2.1 Omniglot

The Omniglot data set contains images of labeled, handwritten characters from diverse alphabets.
Omniglot is one of the standard data sets for comparing methods in the few-shot learning literature.
The data set contains 1623 unique characters, each with 20 instances. Following Snell et al. [20], we
augment the original classes with all 90° rotations, resulting in 6492 total classes, and we use the same
train, validation, and test splits. Each grayscale image is resized from 32 x 32 to 28 x 28. We trained
and evaluated deterministic Prototypical Networks, naive-sampling SPEs, and intersection-sampling
SPEs. Each is trained episodically, where a training episode contains 60 randomly sampled classes
and 5 query instances per class, and test episodes contain 15 query instances per class.

We first compare the effectiveness of using naive and intersection samplers during SPE training of
Omniglot. We vary both the sampler and the number of samples drawn per training query, denoted
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Table 1: Test classification accuracy (%) on Omniglot with both 2D and 64D embeddings comparing
the PN and the SPE with intersection sampling (1 sample per trial). Performance for PN and SPE is a
mean over 1000 random test episodes, showing +1 standard error of the mean.

2D 1-SHOT, 5-CLASS  5-SHOT, 5-CLASS 1-SHOT, 20-CLASS  5-SHOT, 20-CLASS

PN 75.7+£0.4 82.6 £ 0.3 45.0+0.2 55.9 £ 0.2
SPE 76.9 + 0.4 82.3+0.3 49.7 £ 0.2 55.3£0.2
64D 1-SHOT, 5-CLASS  5-SHOT, 5-CLASS 1-SHOT, 20-CLASS  5-SHOT, 20-CLASS
PN 98.46 £ 0.09 99.55 £0.03 94.87 £ 0.08 98.63 £0.03
SPE 98.53 £0.08 99.52 £ 0.03 94.93 +0.08 98.56 £0.02

by s. We evaluate in a 1-shot 20-class setting, where shot refers to the number of support examples
used to compute a prototype, and class refers to the number of candidate test classes per episode.
Figure [5] shows test classification accuracy as the number of samples drawn per training trial (s)
increases. As we previously claimed, the intersection-sampling SPE is much more sample-efficient
and systematically outperforms the naive-sampling SPE. Furthermore, the intersection-sampling SPE
is more robust and less susceptible to poor initialization or uninformative samples. The trend in
Figure 5]is consistent across simulations; thus, we present only intersection-sampling SPE results
henceforth, and all SPEs are trained with a single sample (s = 1) per query. This decision causes the
SPE to be on par with the PN in time and space requirements, even though using more samples may
have boosted classification accuracy.

Table[I] presents results for simulations with Omniglot comparing the deterministic PN to the SPE.
For both 2- and 64-dimension embeddings, the SPE either matches or outperforms the PN, a state-
of-the-art algorithm in few-shot learning. In the 64D embedding, both methods are close to ceiling.
In the 2D embedding, the SPE particularly shines in the 1-shot tests, perhaps because, relative to
the 5-shot tests, performance is further from ceiling. However, another possibility is that the role
of uncertainty is greater when only one instance is used to form the prototype. When 5 instances
are used, the uncertainty shrinks significantly, causing the SPE to behave more like its deterministic
sibling. To emphasize, the improved performance of the SPE does not incur much of a computational
cost in training. And by providing an estimate of uncertainty associated with embedded instances,
the SPE offers the possibility of detecting OOD samples and informing downstream systems that
operate on the embedding.

3.2.2 N-digit MNIST

The N-digit MNIST data set was proposed to evaluate HIB [15]; it is formed by horizontal concatena-
tion of NV MNIST digit images. The resulting images are 28 x 28 N. To compare with HIB, we study
2- and 3-digit MNIST, and use a network architecture identical to that in [[15] (see Appendix @)
Oh et al. [[13] split the data into a training set with 70% of the total classes, a seen test set, and an
unseen test set. For 2-digit MNIST, the seen test set has the same 70 of 100 classes as the training
set and the unseen test set has the remaining 30 classes. For 3-digit MNIST, the training set has 700
classes, the seen and unseen test sets each have a sample of 100 of the 700 seen or 300 unseen classes,
respectively. We use the same train and test data splits as [15]], but we further divide the training split
to include a validation set for early stopping. Following [[15]], each digit in each of the training and
validation images is randomly occluded, independently, with a probability of 0.2. In evaluating the
model, two versions of the test data are used: clean images, which contain no occlusions, and corrupt
images, which contain random occlusions in every digit of the image. Appendix [C]describes the
procedure for synthesizing occlusions, and Figure [ shows sample images in which each digit has an
occlusion.

Figure[7]is a 2D embedding learned by the SPE on the 2-digit MNIST test set. Each number in the
embedding represents the class label, for example, 71, located in the lower left of the embedding, is
the class in which the first of the two MNIST digits is a 7 and the second is a 1. The location of a
class in the space corresponds to the mean of its prototype. The SPE learned an incredibly robust

[ Figure 6: Examples of occluded 2-digit se-

quences. Occlusion is based on random rectan-

- - gles that black out portions of each digit.



70 920 30 00 2o 70 20 30 00
40 Ij 50 D 40 50 80
7% [ag) % 14se| ° [zg [BF 26 (a8l 56| 3° [z¢] [cB]
75 as [B3I28 55 55 o5 25 75 45 55 35 °° 25
13
73 43 93 53 33 G303 23 73 43 93 53 33 8303 23
78 4550 o Gehe [d (58l ss og) o)
72, [92] 52 32[32] [o3] 22 72 4,21 52 320 [BF 22
79, 99[19]59 39 09 29 79 4o 99[1959 39 - 09 29
59
74 9 ﬁ 34|:’ o 24 74 a2 1@ 34 o 24
57 WG
77 a7 37 27 77 a7 17 37 ol 27
L o 6 &
21
a1

Figure 7: Two-dimensional embedding learned by the SPE on the 2-digit MNIST test set. A class is
specified by a two-digit number. In both figures, the location of the class corresponds to the mean of
the prototype in the test set using 140 support instances. The digits surrounded by a black border are
classes that were not seen during training. (left) The prototypes are colored according to the first digit
of the class. (right) The prototypes are colored according to the second digit of the class.

factorial representation, in which the horizontal dimension represents the first digit of a class and
the vertical dimension represents the second digit. In the left plot, each class is colored according
to the first digit. In the right plot is the same embedding, but each prototype is colored according
to the second digit. A black bounding box indicates the unseen test classes, classes not presented
during training. Impressively, the unseen test classes are embedded in exactly the positions where
they belong, indicating that the SPE is able to discover inter-class structure that generalizes to classes
it has never seen during training. Furthermore, the embedding has captured inter-class similarity
structure by placing visually similar digits close to one another. For example, on both the vertical and
horizontal bands, nines (teal) and fours (purple) are adjacent, and fives (brown) and threes (red) are
adjacent. The adjacency relationships vary a bit from one dimension of the mapping to the other;
for example, sixes (pink) are adjacent to eights (yellow) and zeros (blue) in the vertical bands, but
adjacent to fives (brown) and zeros in the horizontal bands. Although the HIB is able to discover a
similar structure along one dimension, the second dimension is more entangled, providing qualitative
evidence that the SPE learns a more robust representation. Additionally, embeddings for the unseen
class are not shown for HIB. The ability to sensibly embed novel classes is essential for any model
that will be used for open-set recognition or few-shot learning.

Table 2] compares 2- and 3-digit MNIST classification performance for the contrastive-pair loss (the
deterministic form of HIB), HIB, PN (the deterministic form of SPE), and the SPE. Following Oh
et al., we tested on clean query instances but considered support sets made either entirely of clean
or corrupted digits, and on either seen or unseen classes. The contrastive-pair and HIB results are
from [15]]. (Results on unseen classes were not published, but a spreadsheet provided by the authors
includes results for HIB on unseen classes.)

Clean data results. Comparing the two deterministic models, PN outperforms contrastive-pairs (mean
across conditions 87.1% versus 79.1%, with PN best on 4 of 4 conditions), consistent with prior work
suggesting that cluster-based losses yield superior embeddings to those based on pairwise constraints.
Turning to the stochastic models, SPE reliably outperforms HIB (mean 89.1% vs. 79.8% on seen
classes, 87.0% vs. 74.9% on unseen classes) and also PN (89.1% vs. 87.1% on seen, 87.0% vs. 82.8%
on unseen). Whereas SPE is a discriminative model with a specified classification procedure, Oh et al.
[15] had freedom to design one. They use all available data—roughly 140 examples per class—and
perform leave-one-out 5-nearest-neighbor classification. To be consistent with our episodic testing
procedure, the SPE uses only 50 support instances per class to form prototypes for 2-digit MNIST
and 20 support instances for 3-digit MNIST. It is therefore impressive that the SPE, based on a single
stored prototype and less than 1/3 the labeled data, can outperform a memory-based nonparametric
method that is able to model arbitrary distributions in latent space.

Corrupted data results. For experiments with corrupted test data, Oh et al. [15] focus on the case
where the support set contains only occluded imagery and the query set contains only clean. (The



Table 2: Test classification accuracy (%) on clean 2- and 3-digit MNIST for clean (top) and corrupted
(bottom) support sets. N: number of digits in each image; D: dimensionality of the embedding.
Boldface indicates best result in a column. HIB and Contrastive-Pairs results from [[15]. PN is our
implementation of Prototypical Networks [20]. SPE is our model.

CLEAN SEEN TEST CLASSES UNSEEN TEST CLASSES

N=2 N=3 N=2 N=3
D=2 D=3 D=2 D=3 MEAN D=2 D=3 D=2 D=3 MEAN

CONTRASTIVE | 88.2 95.0 65.8 87.3 84.1 85.5 84.8 59.0 855 78.7
HIB 87.9 952 650 873 83.8 87.3 91.0 644 88.2 82.7

PN 91.3 95.1 71.8 90.4 87.1 83.1 89.2 70.8 88.2 82.8

SPE (OURS) 92.4 938 81.7 88.5 89.1 88.7 90.2 81.0 88.2 87.0

CORRUPT SEEN TEST CLASSES UNSEEN TEST CLASSES

N=2 N=3 N=2 N=3
D=2 D=3 D=2 D=3 MEAN D=2 D=3 D=2 D=3 MEAN

CONTRASTIVE | 76.2 92.2 49.5 77.6 73.9 76.5 73.3 42.6 732 66.4
HIB 81.6 943 54.0 812 77.8 80.8 86.7 539 81.2 75.7

PN 75.2 93.8 46.2 79.7 73.7 72.0 86.3 432 77.3 69.7

SPE (OURS) 91.1 939 77.5 875 87.5 86.4 87.1 76.0 85.5 83.8

experiments are described in their article as having a clean support and a corrupt query, but this
description is incorrect, as we verified from code provided by the authors.) In this situation, SPE will
attempt to infer prototypes from widely dispersed instances due to occlusions. Assuming successful
prototype reconstruction in the embedding space, clean query instances should be classified with high
accuracy. The SPE outperforms contrastive-pairs, HIB, and PN across all experimental configurations,
for both the seen and unseen test classes. The mean improvements are substantive: 35% and 36%
reductions in error rate for SPE vs. HIB on seen and unseen classes, respectively. We attribute
SPE’s exceptional performance to formation of class prototypes via a confidence-weighted average,
expressed as a product distribution on the densities. As a result, corrupted instance will have a smaller
influence on the prototype.

4 Discussion and Conclusions

Our Stochastic Prototype Embedding (SPE) method outperforms a state-of-the-art deterministic
method, the Prototypical Net (PN), as well as a recent state-of-the-art stochastic method, the Hedged
Instance Embedding (HIB). Beyond its performance, SPE has no hand tuned parameters, whereas
HIB has constant 3 that determines characteristics of an information bottleneck (i.e., how much of the
input entropy is retained in the embedding). Although one could simply set 5 = 0, doing so would
encourage the net to perform like a softmax classifier and discard all information about inter-class
similarity. Such similarities are essential in order to obtain beautiful embeddings like Figures [3|and

We proposed an intersection sampler to train the SPE efficiently, which makes the SPE as time and
space efficient for training as its deterministic sibling, and more efficient for training than HIB which
relies on about 8 samples per item. (Our evaluation method for SPE presently involves drawing 200
samples from the naive sampler, though this conservative decision was arbitrary and not tuned.) An
unexpected virtue of our method, as well as other methods with uncertainty represented as a diagonal
covariance matrix, is that it has a bias toward disentangling, i.e., forcing dimensions of variation to
align with the principle axes in latent space.

Stochastic embedding methods are an active field of research. In recent months, several new articles
have appeared that make tangential contact with our work. Infinite Mixture Prototypes [1]] use
Bayesian nonparametric methods to determine a mixture distribution for the prototype, though they
do not examine uncertainty in embedding space or leverage the embedding to handle noisy inputs
and noisy labels. Deep Variational Transfer [2] is a generative form of our discriminative model,
which has the drawback that it needs to model the input distribution. Authors of this work used their
approach for covariate shift, a somewhat different problem than SPE and HIB have tackled.
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A Network Architectures and Hyperparameters

A.1 Omniglot

For all Omniglot experiments, the network consisted of four convolutional blocks. The first three
blocks had a convolutional layer with 64 filters, a 3 x 3 kernel, zero-padding of length 1, and a
stride of 1, followed by a batch normalization layer, ReL.U activation, and 2 X 2 max-pooling. The
fourth and final block had a convolutional layer with 2d filters, a 3 x 3 kernel, zero-padding of length
1, and a stride of 1, followed by 2 x 2 max-pooling, where d represents the dimensionality of the
embedding space. The flattened output of the network is a vector of length 2d, where the first d
elements were considered the mean of the Gaussian distribution and the remaining d elements were
the diagonal covariance entries. The weights were initialized using He initialization and the biases
with the following uniform distribution: U/ (— \/f'jniin’ \/ﬁ)

All Omniglot models were trained with an initial learning rate of 0.001 which was cut in half every
50 epochs. The models were stopped early using a patience parameter when performance on the
validation set no longer increased.

A.2 Synthetic data

The images in the synthetic data set are 64 x 64 pixels in size. For orientation, we chose class
centers at 90° and 180°, with a standard deviation of 30°. For color, we manipulated the hue and
kept value and saturation constant. Like orientation, hue is a circular quantity. If hue ranges from 0
to 360 degrees, we chose color class centers and standard deviation in the same way as orientation.
Additionally, we add noise to a minority (15%) of the images used to train the model. For these, we
add Gaussian noise to the hue of each pixel inside the shape. The standard deviation of the hue noise
was chosen uniformly between 18° and 54°. We also added noise to the leg lengths of the L shapes.
The leg length was chosen uniformly between 10% and 98% of its original length. See Figure [4|for
some examples.

The network followed an architecture similar to the one we used for Omniglot, except that we added
two additional blocks of convolution, batch normalization, ReLLU, and max-pooling because the
images are larger. We used 2 instances per class to form prototypes and 8 samples per query instance
during training. We used a learning rate of 0.0001 and the models were stopped early using a patience
parameter when performance on the validation set no longer increased.

A.3 N-Digit MNIST

For all N-digit MNIST experiments, we constructed an architecture which we believe to be identical
to that used for HIB MNIST experiments [15]], based on code provided by the authors of [15].
The network consisted of two convolutional blocks followed by two fully-connected layers. The
convolutional blocks each contained a convolutional layer, followed by an ReL U activation, and 2 x 2
max-pooling. The first convolutional layer had 6 filters, a 5 x 5 kernel, zero-padding of length 2,
and a stride of 1. The second convolutional layer was identical to the first, but had 16 filters instead
of 6. The output of the second convolutional block was flattened, passed through a fully-connected
layer with 120 units, an ReL.U activation, and a final fully-connected layer with 2d units, where d
represents the dimensionality of the embedding space. Like the Omniglot architectures, the first d
entries in the output vector are treated as the mean and the remaining d elements as the diagonal
covariance entries. The weights were initialized using a Xavier uniform initialization and biases were
initialized to zero.

The PN and SPE are trained episodically with all performance results in the main article measured as
the mean over 1000 random test episodes.

All N-digit MNIST models were trained with an initial learning rate of 0.001 which was cut in half
every 50 epochs. The models were stopped early using a patience parameter when performance on
the validation set no longer increased. For 2-digit MNIST, each episode in training and evaluation
contained all 70 classes and 50 support instances per class. For 3-digit MNIST, each episode in
training and evaluation contained 100 classes and 20 support instances per class.
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B Simulation Details

For all SPE models,
2

o = softplus (€) ,

where € is a trainable parameter. We initialize € using the following prescription:

e=|Sle’",
where | S| is the number of support examples per episode during training and d is the dimensionality
of the embedding. We chose this prescription for two reasons: (1) as the number of support examples
increases, the variance of the prototype distribution approaches zero, so scaling linearly by |.S| tends
to provide a stronger training signal early on, and (2) the amount of noise in the projection of an
embedding should scale with the dimensionality of the embedding space as to maintain unit-volume.
All models used €y = 0.01.

It should also be noted that there is no constraint for o2 > 0, since o2 is a direct output of a deep
network. To ensure a positive value, o2 < softplus(o2).

C N-Digit MNIST Corruption

The algorithm for applying corruption was identical to the scheme used in [[15]. A random rectangular-
sized occlusion of black pixels was determined by first sampling a patch width, L, and patch height,
L, from a uniform distribution, L, L, ~ U (0,28), and then sampling the top-left corner coordinates,
TL, ~U(0,28—L,), TL, ~U(0,28 — L,). This resulted in an occlusion of area L, x L,.. Note
thatif L, = 0 or L, = 0, the image was left unoccluded. The training and validation sets for /N-digit
MNIST corrupted each digit of each image independently with a probability of 0.2. The test sets
(both seen and unseen) were either clean, in which all digits were unoccluded, or corrupted, in which
all digits were randomly occluded. During training and validation of the model, both the support and
query sets drawn in an episode could contain corrupted images. During testing, the query set always
contained clean imagery.

D SPE Variants

We assumed only diagonal covariance matrices in this work. Switching to a full covariance matrix
would require matrix inversion, which is ordinarily infeasible, but because one purpose of deep
embeddings is visualization, there may be interesting cases involving 2D embeddings where the cost
of inversion is trivial.
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