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Abstract

The focus in machine learning has branched beyond training classifiers on a single
task to investigating how previously acquired knowledge in a source domain can
be leveraged to facilitate learning in a related target domain, known as inductive
transfer learning. Three active lines of research have independently explored
transfer learning using neural networks. In weight transfer, a model trained on the
source domain is used as an initialization point for a network to be trained on the
target domain. In deep metric learning, the source domain is used to construct an
embedding that captures class structure in both the source and target domains. In
few-shot learning, the focus is on generalizing well in the target domain based on a
limited number of labeled examples. We compare state-of-the-art methods from
these three paradigms and also explore hybrid adapted-embedding methods that
use limited target-domain data to fine tune embeddings constructed from source-
domain data. We conduct a systematic comparison of methods in a variety of
domains, varying the number of labeled instances available in the target domain
(k), as well as the number of target-domain classes. We reach three principle
conclusions: (1) Deep embeddings are far superior, compared to weight transfer, as
a starting point for inter-domain transfer or model re-use (2) Our hybrid methods
robustly outperform every few-shot learning and every deep metric learning method
previously proposed, with a mean error reduction of 30% over state-of-the-art. (3)
Among loss functions for discovering embeddings, the histogram loss (Ustinova &
Lempitsky, 2016) is most robust. We hope our results will motivate a unification of
research in weight transfer, deep metric learning, and few-shot learning.

1 Introduction

Since the introduction of backpropagation, researchers in neural networks have investigated inductive
transfer learning [2, 22]. Inductive transfer learning refers to the use of labeled data from a source
domain to improve generalization accuracy on a related target domain with limited labeled data
[21]. The notion of ‘related’ is not formally defined, though the existence of shared features across
domains is presumed. With the deep learning movement, there has been a resurgence of interest in
inductive transfer learning (ITL) for classification, which we will refer to as k-ITL, where k denotes
the number of labeled examples available for each class in the target domain. Of particular interest
has been the case with small k, due to the fact that deep learning is typically data hungry, in contrast
to human learners who often generalize well from a single example [15].

Three independent lines of research have tackled the k-ITL problem, either explicitly or implicitly.
First, the deep metric learning literature [1, 3, 17, 19, 24, 26, 28, 31, 33, 34, 37] uses the source
domain to construct a nonlinear embedding in which instances of the same class are clustered together
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and well separated from instances of different classes. The quality of an embedding is evaluated by
examining inter-class separation in the target domain. Because the target domain is just a means
of evaluation, deep-metric learning is agnostic as to k. Second, the few-shot learning literature
[7, 9, 11, 13, 23, 27, 30, 32] addresses the case when k is small, typically k ≤ 20. Many of these
methods construct embeddings, just as in the metric-learning literature, though other methods have
been explored, e.g., meta-learning. Third, there has long been an intuitive appeal to the weight
transfer framework [18, 22, 35, 36], which involves using the hidden representations obtained by
training on the source domain as an initialization point for a second network to be trained on the
target domain. The weight transfer framework has typically chosen significantly larger k than in
few-shot learning.

Despite their distinctive foci on k, all three lines of research utilize essentially the same deep network
architectures. They differ in two aspects of training: (1) the proposed loss function, and (2) whether
or not weights are fine tuned on the target domain (which we refer to as adaptation). In this work,
we compare state-of-the-art methods from each paradigm on a range of data sets, varying both the
number of examples provided for each class in the target domain, k, and the number of classes in the
target domain, n. We also formulate and test hybrid methods that combine ideas across paradigms.
We reach three strong conclusions:

• Weight transfer is the least effective method for k-ITL. For small k, the other methods
yield vastly superior results; for large k, transferring weights from source to target domains
yields little or no improvement over training from scratch on the target domain. This result
has strong implications for the field: many researchers use weight transfer as a means of
bootstrapping training in a novel domain, e.g., by starting with a state-of-the-art model such
as VGG or AlexNet. Indeed, the TensorFlow development team has released a library of
pretrained models, called TensorFlow Hub [29], specifically for this purpose. Our results
indicate that this hub would better serve the community by providing pretrained embeddings.

• Across existing methods in few-shot learning and deep metric learning that discover embed-
dings, one specific loss function is most effective for small-k ITL, the histogram loss [31].
This loss comes from the deep metric learning literature, and it has never previously been
compared to losses from the few-shot learning literature.

• We propose a hybrid approach, adapted embeddings, that combines loss functions for deep
embeddings with weight adaptation in the target domain. This hybrid approach robustly
outperforms every few-shot learning and every deep metric learning method previously
proposed on k-ITL. The performance differences are not in tiny percentage error reductions
that justify and differentiate contemporary methods, but are systematic and meaningful: a
mean error reduction of 30% over state-of-the-art. To our knowledge, the only previous
work to explore such a hybrid approach did so in a cursory manner and the results were
ambiguous [32].

In the next section, we survey the three paradigms for k-ITL and identify a state-of-the-art method
within each. Where multiple methods are roughly comparable in performance, we select based
on simplicity of the method. We then describe an experimental methodology for systematically
comparing methods, which includes the hybrid we propose, on a range of common data sets.

2 Paradigms for k-Shot Inductive Transfer Learning

2.1 Deep Metric Learning

An embedding is a distributed representation that captures class structure via metric properties of the
embedding space. In deep metric learning, a neural network is trained to map from the input to the
embedding space.1 Various objective functions have been proposed for deep metric learning, all of
which aim to ensure that instances of the same class are near one another in the embedding space
and instances of different classes are far apart [1, 3, 17, 19, 24, 26, 28, 31, 33, 34, 37]. The objective
functions differ in how they quantify ‘near’ and ‘far’. Because classes are separated in the embedding,

1Deep metric learning methods are often initialized with a pretrained classification model such as AlexNet or
VGG. One can decapitate its output layer and continue training with a metric-learning loss on the penultimate
layer (e.g., [28, 31])
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metric learning supports categorization of an unlabeled instance by projecting it to the embedding
space and considering its proximity to labeled instances. Given a pretrained deep embedding, one
can perform k-shot learning by embedding the k instances of each novel class and then classifying
unlabeled instances by their proximity to the labeled data.

Deep metric learning methods are evaluated using a variation of k-shot learning in which a support
set of k examples of n classes is embedded, and a mean Recall@r score is obtained for a query set,
held-out examples of this domain. Recall@1 is simply nearest-neighbor classification and this single
best guess is typically how k-ITL is scored. Although the entire range of r is swept in evaluation,
ranking of the methods is fairly consistent across r. Since there is not an emphasis on learning from
few examples, k typically varies in magnitude and is generally not directly specified.

The histogram loss [31], hereafter HISTLOSS, is a state-of-the-art method that we chose to represent
the deep metric learning paradigm. Its Recall@1 performance is equivalent to or slightly better
than contemporaneous methods [24, 33, 34], and HISTLOSS has only one hyperparameter and results
are robust to the setting of the hyperparameter.2 HISTLOSS constructs two sets of similarities,
S+ = {s(fφ(xi), fφ(xj))|yi = yj} and S− = {s(fφ(xi), fφ(xj))|yi 6= yj}, where fφ(xi) is the
neural network embedding of input i with class label yi and s(., .) is a similarity metric. A loss,
Lφ = Es∼p− [

∫ s
−∞ p+(z)dz], is defined on the similarity distributions of positive pairs and negative

pairs, p+(s) and p−(s) respectively. The distributions are each estimated as a histogram, and the
empirical loss is efficiently computed using the histogram bins to identify all (s+ ∈ S+, s− ∈ S−)
similarity pairs for which s− ≥ s+. The loss is is minimized via stochastic gradient descent in
weights φ.

2.2 Few-Shot Learning

The few-shot learning literature is explicitly directed at the k-ITL problem with an emphasis on
small k, typically k ≤ 20. Embeddings form the basis of some methods [7, 11, 13, 27, 30, 32].
Meta-learning [9, 23] is another innovative approach involving training a recurrent network on a
sequence of small classification tasks, so that it learns more efficiently on a subsequent task. We
chose the prototypical network [27], hereafter PROTONET, as our representative of few-shot learning
methods. It is simple and elegant, in addition to being state-of-the-art.3

PROTONET is a deep network that embeds input xi, and for each class c, a prototype µc is constructed
from the k instances in the support set: µc = 1

k

∑
{i|yi=c} fφ(xi). A query q is classified according

to its distance to the prototypes: p(yq = c|xq) ∼ exp(−d(fφ(xq),µc)). The network parameters,
φ, are trained to maximize the conditional likelihood, i.e., Lφ = −

∑
i ln p(yi|xi).

2.3 Weight Transfer

Weight transfer in neural networks [18, 22, 35, 36] is an instance of a more general framework in
which parameters of a machine-learning model trained on a source domain are applied to a target
domain. In some situations, the source and target are trained simultaneously [2, 25]. Some of the
literature on weight transfer appears under the heading of domain adaptation [20, 25], which is often
treated as a synonym for transfer learning, though formally domain adaptation involves changing
input distributions instead of output labels [5].

The most systematic and thorough analysis of weight transfer is the work of Yosinski et al. [35]. In
this work, the source and target domains share a common layered feedforward architecture, which
maps input xi to internal state fφ(xi) which is then mapped to domain-specific class probabilities
via a softmax, p(y|xi) ∼ exp(ωfφ(xi)), where ω is a set of domain-specific weights. Yosinski
et al. transfered various portions of φ, from only the first layer of weights to all layers, up to and
including the penultimate layer. In addition, the copied weights were either clamped after transfer
or were further adapted on the target task. Training on the source task and adaptation on the target
aimed to maximize the conditional likelihood, Lφ,ω = −

∑
i ln p(yi|xi). Yosinki et al. found that

2To rank deep metric learning algorithms, we used comparisons directly reported in articles as well as
performance on the same data sets and evaluation methodology. We obtain the partial ranking [31] ≥ [24, 33, 34]
> [17, 26, 28, 37].

3Our partial ranking of few-shot learning methods based on target-domain accuracy is: [27] > [9, 30] > [23]
> [7] > [11] > [32] > [13].
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the best classification accuracy on the target domain is obtained when all network weights up to the
penultimate layer are transferred and then adapted. We will refer to this state-of-the-art scheme as
weight adaptation, or WEIGHTADAPT for short.

Yosinski et al. mainly focused on large k, k > 1000, and observed only a modest improvement
in accuracy over the baseline condition of ignoring the source-domain data and training only on
the target-domain data. Nonetheless, the notion of weight adaptation is extremely popular in deep
learning because it can provide a large time savings over training models from scratch, and it may
prevent overfitting when the target domain is data constrained [22, 35].

2.4 Adapted Embeddings

We have summarized two representative, state-of-the-art embedding methods: HISTLOSS and PRO-
TONET. For both methods, model parameters are determined solely based on the source-domain data.
The target-domain support set—the k instances of each of the n classes in the target domain—are
used merely for comparison to query (to-be-classified) instances. In contrast, weight adaptation
determines model parameters using both source and target domain data. We explore a straightforward
hybrid, adapted embeddings, which unifies embedding methods and weight adaptation by using
the target-domain support set for model-parameter adaptation. To the best of our knowledge this
seemingly obvious idea has been incorporated into only one few-shot learning paradigm, matching
nets [32], referred to as fine tuning, and is beneficial in one domain, harmful in another.4 Perhaps the
assumption in the few-shot literature has been that little value will be obtained from adaptation with
small k; indeed, for most algorithms, the data are insufficient to permit adaptation with k = 1. In the
deep metric learning literature, the target domain is considered as a means of evaluating embeddings,
and thus optimizing performance in the target domain is not a focus of interest.

3 Methodology

We tested six methods: WEIGHTADAPT, HISTLOSS, PROTONET, ADAPTHISTLOSS, ADAPTPROTONET,
and a non-transfer BASELINE that ignores the source domain and trains a classifier solely on the limited
labeled data in the target domain. We systematically explored how methods perform as a function of
k and n on four popular data sets: MNIST [16], Isolet [4], tinyImageNet [8], and Omniglot [15].

Previous research on deep-metric and few-shot learning has addressed problems in which the number
of available classes in the source domain, Nsrc, is much larger than the number of classes to be
discriminated in the target domain, n. Consequently, training on the source is divided into a series
of episodes where n classes are sampled from the Nsrc.5 In contrast, weight transfer has chosen
problems in which Nsrc = n and the same n classes are used across training episodes, for a relatively
large n. We had hoped to independently varyNsrc and n in our exploration, but combined with search
over k, the space becomes too large. We therefore assumed Nsrc = n. This constraint helps balance
task difficulty across n: increasing n makes the target task harder but also provides more data for
training in the source domain. As a result, our simulations do not reach ceiling performance, which
can be a concern in few-shot learning. Another rationale for this decision is that many real-world
k-ITL tasks provide a limited supply of source data, as well as target data. For example, in medical
radiology, one might hope to use labeled wrist x-rays to support the classification of ankle x-rays. To
obtain robust and generalizable results, we evaluated models over n ranging from 5 to 1000.

Also in the interest of robustness, we opted for another difference in methodology from most previous
research on deep-metric and few-shot learning. Previous research has typically trained a single source
model and evaluated over many episodes of the target domain. Statistical inference from these data
allow one to predict the ranking of methods for new samples of the target domain, but not for new
samples of the source domain. Consequently, we ran multiple replications of each method for a given
k and n, and on each replication we drew a single sample of n classes from both the source and target
domains. This approach is computation intensive, but if method X consistently outranks method

4The authors of [32] provide no details of how they fine tuned. They present results for fine tuning with
k = 1, which cannot do much more than move all instances further apart.

5PROTONET [27] found advantages from sampling more than n classes for source training episodes. 60-class
episodes were constructed for source training on Omniglot. For miniImageNet source training, 30-class episodes
were used when k = 1 and 20-class episodes were used when k = 5.
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Figure 1: Data pipeline. Data setD is divided into source
S and target T domains. S is further split into τ training
and ν validation instances (see Table 1). From T , k sup-
port instances per class are selected and the rest become
query instances. Tsupport is further split into support and
query subsets for ADAPTPROTONET adaptation.

Table 1: Splits and sizes for each data set used in the kn-TL experiments. The source data set doesn’t
use a test split and the target data set doesn’t use a validation split. The train size for the target data
set, Tsupport, is k × n for all data sets.

Source Data Set Target Data Set

n Train Size (τ ) Valid Size (ν) k Test Size

MNIST 5 1600n 600n {1, 5, 10, 50, 100, 500, 1000} 10000
Omniglot {5, 10, 100, 1000} 15n 5n {1, 5, 10} n(20− k)
Isolet {5, 10} 250n 50n {1, 10, 50, 100, 200} n(300− k)
tinyImageNet {5, 10, 50} 350n 200n {1, 10, 50, 100, 300} n(550− k)

Y , it should do so for a new (related) target domain, as well as a new (related) source domain. We
expected to need many dozens of replications to obtain reliable estimates of mean performance, but
to our surprise, we found that 10 replications was more than adequate to discern among methods.

All simulations were thus replicated 10 times. Each replication involved a random selection of classes
and split of instances, as sketched in the data pipeline of Figure 1. To reduce variability, the same
class and instance splits were used across methods, as were the contents of each minibatch of training
data. Weights were initialized randomly for each replication.6 For the source domain, a validation set
was used to stop training. For target domain adaptation, training continued until performance reached
asymptote. Given the small k available for target domain adaptation, a validation set would have had
high variance and the transfer of weights from the source should impose a strong inductive bias.

Table 1 contains details on the sizes and splits of each data set. The supplementary materials contain
details on the network architectures used for each data set. For each data set, all six methods used
the same underlying network architecture with two exceptions: (1) the BASELINE and WEIGHTADAPT

architectures had an additional class-output layer which was not transferred from source to target; and
(2) for training HISTLOSS and ADAPTHISTLOSS, the embeddings were L2 normalized, allowing for the
use of the (bounded) cosine distance function with a 200-bin histogram. The embedding dimension
was 128 for MNIST, Omniglot, and tinyImageNet, and 64 for Isolet. Because training parameters in
PROTONET requires a data split between support and query sets, we chose to further divide Strain into
Ssupport and Squery as noted in Figure 1. All models were trained with the Adam [12] optimizer.

4 Results

MNIST. This data set consists of 28× 28 gray-scale images of handprinted digits [16]. MNIST was
split into a source domain, with the digit classes 0–4, and a target domain, with 5–9. For this and
following data sets, details of training parameters—learning rates and k′ (see Figure 1)—are included
in the supplementary materials. Figure 2 plots accuracy on the test set, Tquery, for each of the six
methods as a function of k, with n = 5 held constant. Each point is the average over ten replications.
Error bands of ±1 standard error of the mean are shown, though they may be difficult to discern
except when k is small. The pattern of results here mirrors the results that we will present for the
other data sets. Notably,

• WEIGHTADAPT shows modest improvements over BASELINE, but the benefit of the source
domain diminishes as k → 1000.

6In [31], HISTLOSS was initialized with a pretrained classification model whose output layer had been
decapitated, and training proceeded with the metric-learning loss. For the sake of comparison, we trained
HISTLOSS from scratch.
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Figure 2: MNIST k-ITL results.
Each point is the average test ac-
curacy over 10 replications. Error
bands indicate ±1 standard error of
the mean.
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Figure 3: Isolet k-
ITL results. Each
point is the aver-
age test accuracy over
10 replications. Er-
ror bands indicate ±1
standard error of the
mean.

• For k > 1, ADAPTPROTONET improves on PROTONET, and ADAPTHISTLOSS improves on
HISTLOSS. For k = 1, there are insufficient instances of each class to perform any adaptation,
and thus the adapted algorithms are identical to their non-adapted counterparts.

• ADAPTHISTLOSS consistently outperforms ADAPTPROTONET.

• PROTONET appears not to benefit from k > 50, as one would expect for a method with
high inductive bias which is designed for the small k regime. However, ADAPTPROTONET

continues to improve as more data are available because it can also use the data for adaptation.

• Across the range of k tested, WEIGHTADAPT is inferior to the adapted embeddings,
ADAPTHISTLOSS and ADAPTPROTONET.

Isolet. This data set, from the UCI repository, is a spoken letter (A-Z) data set with 26 classes and
approximately 300 examples per class [4]. The input is coded as 617 attributes which specify spectral
coefficients, contour features, sonorant features, pre-sonorant features, and post-sonorant features.
The left and right panels of Figure 3 show test accuracy for n = 5 and n = 10, respectively. The
results are qualitatively identical for the two values of n. The Isolet results eerily mirror those from
MNIST (Figure 2), all the more surprising considering that the domains—vision and speech—and
architectures—convolutional and fully-connected—are quite different.

tinyImageNet. This data set is a subset of ImageNet [6] containing 200 classes with 550 examples
per class [8]. Each image is 64× 64 with 3 channels for RBG. The few-shot literature typically uses
miniImageNet for evaluation. We chose tinyImageNet because it has a greater diversity of classes
(200 vs. 100). The three panels of Figure 4 show test accuracy for 5, 10, and 50-way classification
problems. The take-away is similar to the previous two simulations, although WEIGHTADAPT does
not seem to show as consistent a benefit over BASELINE as it did in the previous simulations. Once
again, ADAPTHISTLOSS is consistently the best performer over all (k, n) combinations.

Omniglot. This data set contains images of labeled, handwritten characters from diverse alphabets
[15]. In the few-shot literature, Omniglot is the standard model-comparison data set. However,
the literature relies on a specific split of the data on which state-of-the-art methods are now close
to achieving ceiling performance. To avoid ceiling effects and obtain greater generality, we chose
random splits. Omniglot has 1623 different characters, each with 20 instances; following previous
research, we augmented the data set with all 90 deg rotations, resulting in 6492 classes [27, 30, 32].
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Figure 4: tinyImageNet k-ITL results. Each point is the average test accuracy over 10 replications.
Error bands indicate ±1 standard error of the mean.
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Figure 5: Omniglot k-ITL results. Each point is the average test accuracy over 10 replications. Error
bands indicate ±1 standard error of the mean.

Each grayscale image is resized to 28× 28. The three panels in Figure 5 show test accuracy for 1-, 5-,
and 10-shot learning. In each panel, n is varied from 5 to 1000. Note that for 1000-way classification,
the embedding methods all achieve performance far above chance, whereas WEIGHTADAPT and
BASELINE do not. In contrast to the previous simulations, WEIGHTADAPT does not improve on
BASELINE for any k or n, and ADAPTPROTONET does not reliably improve on PROTONET. (Remember
that k = 1 does not provide sufficient data to permit adaptation.) Consistent with the conclusion of
other data sets, ADAPTHISTLOSS is clearly the method of choice. However, for the specific case of
n = 1000, the two variants of PROTONET reliably outperform the two variants of HISTLOSS.

5 Discussion and Conclusions

The results from our k-ITL simulations are remarkably consistent across data sets and offer unam-
biguous prescriptions for significantly improving current practice in inductive transfer learning. The
main messages are as follows.

Adapted embeddings are the method of choice for k-ITL. We proposed adapted-embedding
methods, ADAPTHISTLOSS and ADAPTPROTONET, that combine deep embedding losses for training
on the source domain with weight adaptation on the target domain. These methods are strictly
superior to non-adapted (HISTLOSS, PROTONET) and non-embedding (WEIGHTADAPT, BASELINE)
methods. Figure 6a summarizes 34 {data set, k, n} conditions by comparing the proportion reduction
in classification error obtained by the best adapted embedding method (i.e., ADAPTPROTONET and
ADAPTHISTLOSS) over the best of all alternative methods.7 Figures 6b,c break the results down by
comparing separately to non-adapted embeddings and adapted non-embedding methods, respectively.
The adapted embeddings achieve an error reduction of 30.3% over the best of other methods, with
a range from 0.8% to 71.4%. In every condition, adapted embeddings outperform non-adapted

7We exclude k = 1 conditions: one labeled example is insufficient to adapt either HISTLOSS or PROTONET.
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Figure 6: Histogram of percent reduction in classification error obtained by best adapted embedding
method (ADAPTPROTONET, ADAPTHISTLOSS) versus the best of (a) all other methods, (b) non-
adapted embeddings (PROTONET, HISTLOSS), and (c) adapted non-embedding methods (BASELINE,
WEIGHTADAPT). Each histogram includes all of the 34 {data set, k, n} conditions tested with k > 1.

embeddings (mean 35.3%) and adapted non-embedding methods (mean 47.6%). Of the adapted
embeddings, there is a clear ranking: ADAPTHISTLOSS is superior to ADAPTPROTONET.

To our knowledge, Vinyals et al. [32] is the only previous work to explore adapted embedding
methods, in the context of matching networks. Few details were provided about the effort and the
results were ambiguous. Several possibilities might explain why we see consistent and impressive
benefits of adaptation but Vinyals did not. First, some algorithms appear to benefit more than others:
for k ∈ {5, 10}, adapting HISTLOSS yields a greater benefit than adapting PROTONET. It’s possible
that matching nets overfit when adapting, whereas HISTLOSS, which has a natural stopping criterion,
does not. Second, the evaluation of matching nets focused on k = 1 and k = 5. For k = 1,
adaptation provides no information about intraclass structure; it can only separate classes. (And for
the embedding losses we studied, we cannot do that with k = 1.)

To construct models that can be repurposed, use deep embeddings. WEIGHTADAPT is a common
method of bootstrapping classifier training in a new domain. WEIGHTADAPT fails to match the adapted
embeddings or even the non-adapted embeddings on k-ITL. WEIGHTADAPT does beat BASELINE

for small k, but for our data sets, any advantage of WEIGHTADAPT seems to vanish for k ≥ 200,
in contrast to the adapted embedding methods that still benefit from increasing k. Our results are
consistent with those of Yosinski et al. [35]. TensorFlow Hub and other libraries have been released
to enable the reusability of large state-of-the-art models, in order to transfer and adapt their weights to
novel target domains. Our results suggest that models trained on embedding losses would be far more
accurate in transfer than models trained on an explicit classification loss, and should still achieve
comparable training speed ups—one goal of model re-purposing.

WEIGHTADAPT decapitates a classification network and treats the penultimate layer as an embedding.
So why does this embedding fail to be as useful for k-ITL as the embeddings discovered by PROTONET

and HISTLOSS? The hidden layers of a classification network aim to discard information unrelated
to class discrimination, and if successful, the penultimate layer will also orthogonalize the classes,
i.e., discard most information about how one class relates to another. This inter-class structure is
critical to projecting novel classes into an embedding space [24]. We thus argue that fundamentally,
the objective and one-hot output representation of a classification network is inferior for obtaining
representations that will transfer to novel domains.

Methods should not be segregated based on their focus on k. Weight transfer, few-shot learning,
and deep metric learning all perform a variant of k-ITL, yet these three lines of research have been
mostly disconnected from one another. (For example, when submitting to NIPS, there are distinct
subject areas for transfer learning, few-shot learning, and metric learning.) We suspect the lack of
interaction is due to the fact that each paradigm has a distinctive focus on k. Although weight transfer
may typically be used with larger k, our experiments show that it surprisingly beats BASELINE for
small k. Few-shot learning is aimed at small k but seems to work surprisingly well for large k. Metric
learning is neutral as to k, but the representative method we chose, HISTLOSS, seems to work well for
a range of k. If the preferred method depends on k, it might be sensible to treat these as independent
topics, but one method—the hybrid ADAPTHISTLOSS—is superior for all k and over a range of n.

The primary contribution of our work is the systematic comparison of methods across complementary
lines of research. The novelty of ADAPTHISTLOSS—as a synthesis of HISTLOSS and WEIGHTADAPT—
is admittedly minor: parameter fine tuning is a simple and obvious strategy in many areas of machine
learning. What makes our work a valuable contribution is the non-obvious and impressive magnitude

8



of improvements that are obtained by this obvious strategy. Many articles in metric learning and deep
embeddings justify and differentiate methods based on tiny percentage error reductions, as contrasted
with the comparatively impressive 30% we obtain over state of the art. By demonstrating gains of
this magnitude, we hope to motivate a unification of research in weight transfer, few-shot learning,
and deep metric learning.

Acknowledgements

We would like to thank Chenhao Tan for helpful discussions. This research was supported by the
National Science Foundation awards EHR-1631428 and SES-1461535.

References
[1] Bellet, A., Habrard, A., and Sebban, M. (2013). A Survey on Metric Learning for Feature Vectors and

Structured Data. CoRR, abs/1306.6709.

[2] Caruana, R. (1997). Multitask learning. Machine Learning, 28:41–75.

[3] Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric discriminatively, with application
to face verification. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2005).

[4] Cole, R. and Fanty, M. (1994). Isolet dataset.

[5] Daumé, H. (2007). Domain adaptation vs. transfer learning. https://nlpers.blogspot.com/2007/
11/domain-adaptation-vs-transfer-learning.html.

[6] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09.

[7] Edwards, H. and Storkey, A. (2016). Towards a neural statistician. arXiv preprint arXiv:1606.02185.

[8] Fei-Fei, L., Johnson, J., and Yeung, S. (2018). Tiny ImageNet Visual Recognition Challenge.

[9] Finn, C., Abbeel, P., and Levine, S. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks. CoRR, abs/1703.03400.

[10] Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift. CoRR, abs/1502.03167.

[11] Kaiser, L., Nachum, O., Roy, A., and Bengio, S. (2017). Learning to remember rare events. CoRR,
abs/1703.03129.

[12] Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv e-prints.

[13] Koch, G., Zemel, R., and Salakhutdinov, R. (2015). Siamese neural networks for one-shot image recognition.
In ICML Deep Learning Workshop, volume 2.

[14] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional
Neural Networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.

[15] Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning through
probabilistic program induction.

[16] LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database.

[17] Li, W., Zhao, R., Xiao, T., and Wang, X. (2014). DeepReID: Deep Filter Pairing Neural Network for
Person Re-identification. In CVPR.

[18] Long, M., Cao, Y., Wang, J., and Jordan, M. I. (2015). Learning Transferable Features with Deep
Adaptation Networks. ArXiv e-prints.

[19] Lu, J., Hu, J., and Zhou, J. (2017). Deep metric learning for visual understanding: An overview of recent
advances. IEEE Signal Processing Magazine, 34(6):76–84.

9

https://nlpers.blogspot.com/2007/11/domain-adaptation-vs-transfer-learning.html
https://nlpers.blogspot.com/2007/11/domain-adaptation-vs-transfer-learning.html


[20] Oquab, M., Bottou, L., Laptev, I., and Sivic, J. (2014). Learning and transferring mid-level image
representations using convolutional neural networks. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1717–1724.

[21] Pan, S. J. and Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and
Data Engineering, 22(10):1345–1359.

[22] Pratt, L. Y., Mostow, J., and Kamm, C. A. (1991). Direct transfer of learned information among neural
networks. In Proceedings of the American Association for Artificial Intelligence, volume 91, pages 584–589.
AAAI Press, Menlo Park, CA.

[23] Ravi, S. and Larochelle, H. (2017). Optimization as a model for few-shot learning. International Conference
on Learning Representations.

[24] Ridgeway, K. and Mozer, M. C. (2018). Learning Deep Disentangled Embeddings with the F-Statistic
Loss. CoRR, abs/1802.05312.

[25] Rozantsev, A., Salzmann, M., and Fua, P. (2018). Beyond sharing weights for deep domain adaptation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1.

[26] Schroff, F., Kalenichenko, D., and Philbin, J. (2015). FaceNet: A Unified Embedding for Face Recognition
and Clustering. ArXiv e-prints.

[27] Snell, J., Swersky, K., and Zemel, R. S. (2017). Prototypical Networks for Few-shot Learning. ArXiv
e-prints.

[28] Song, H. O., Xiang, Y., Jegelka, S., and Savarese, S. (2015). Deep metric learning via lifted structured
feature embedding. CoRR, abs/1511.06452.

[29] TensorFlow (2018). Tensorflow Hub.

[30] Triantafillou, E., Zemel, R., and Urtasun, R. (2017). Few-Shot Learning Through an Information Retrieval
Lens. ArXiv e-prints.

[31] Ustinova, E. and Lempitsky, V. (2016). Learning Deep Embeddings with Histogram Loss. ArXiv e-prints.

[32] Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. (2016). Matching Networks for
One Shot Learning. ArXiv e-prints.

[33] Wang, J., Zhou, F., Wen, S., Liu, X., and Lin, Y. (2017). Deep metric learning with angular loss. CoRR,
abs/1708.01682.

[34] Yi, D., Lei, Z., and Li, S. Z. (2014). Deep Metric Learning for Practical Person Re-Identification. ArXiv
e-prints.

[35] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep neural
networks? ArXiv e-prints.

[36] Zhang, Z., Ning, G., and He, Z. (2017). Knowledge projection for deep neural networks. CoRR,
abs/1710.09505.

[37] Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., and Tian, Q. (2015). Scalable Person Re-identification:
A Benchmark. In Computer Vision, IEEE International Conference on.

10



A Network Architectures in k-ITL Experiments

For each data set, all tested models used the same network architecture. Below are the details of these
architectures:

MNIST The MNIST architecture consisted of two convolutional layers, each with 32 filters, a 3× 3 kernel,
and a ReLU activation. The second convolutional layer was followed by a max-pooling layer with a 2× 2 kernel
and 2× 2 stride, and finally, a fully-connected layer with 128 neurons and a ReLU activation.

BASELINE, WEIGHTADAPT, HISTLOSS, and ADAPTHISTLOSS used a learning rate of 0.005. PROTONET and
ADAPTPROTONET used a learning rate of 0.001 and k′ = 100.

Isolet The Isolet architecture consisted of two fully-connected layers, the first with 128 neurons, and the
second with 64 neurons, each with a ReLU activation.

BASELINE, WEIGHTADAPT, HISTLOSS, and ADAPTHISTLOSS are trained with a learning rate of 0.005.
PROTONET and ADAPTPROTONET used a learning rate of 0.0001 and k′ = 50.

tinyImageNet The tinyImageNet architecture consisted of four convolutional layers, each with 32 filters and
a 3× 3 kernel, batch normalization, and a ReLU activation. The first three convolutional layers were followed by
a max-pooling layer with a 2×2 kernel and stride. Following the four convolutional layers was a fully-connected
layer with 128 neurons and a ReLU activation.

BASELINE, WEIGHTADAPT, HISTLOSS, and ADAPTHISTLOSS are trained with a learning rate of 0.005.
PROTONET and ADAPTPROTONET used a learning rate of 0.0001 and k′ = 50.

Omniglot The Omniglot architecture consisted of three convolutional layers, all of which had 32 filters, a
3 × 3 kernel, a batch normalization layer, and finally a ReLU activation. The first two convolutional layers
also had a max-pooling layer with a kernel and stride of 2 × 2 that followed the ReLU activation. The three
convolutional layers were followed by a fully-connected layer with 128 neurons and a ReLU activation.

BASELINE, WEIGHTADAPT, HISTLOSS, and ADAPTHISTLOSS are trained with a learning rate of 0.005.
PROTONET and ADAPTPROTONET used a learning rate of 0.0001 and k′ = 5.
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