
CONTINUOUS HISTORY COMPRESSIONIn H. H�uning, S. Neuhauser, M. Raus, and W. Ritschel, editors, Proc. of Intl. Workshop on NeuralNetworks, RWTH Aachen, pages 87-95. Augustinus, 1993.J�urgen H. SchmidhuberMichael C. Mozer�Daniel PrelingerInstitut f�ur Informatik,Technische Universit�at M�unchenAbstractNeural networks have proven poor at learning the structure in complex and extended tem-poral sequences in which contingencies among elements can span long time lags. The principleof history compression [18] provides a means of transforming long sequences with redundantinformation into equivalent shorter sequences; the shorter sequences are more easily manipu-lated and learned by neural networks. The principle states that expected sequence elementscan be removed from the sequence to form an equivalent, more compact sequence withoutloss of information. The principle was embodied in a neural net predictive architecture thatattempted to anticipate the next element of a sequence given the previous elements. If theprediction was accurate, the next element was discarded; otherwise, it was passed on to asecond network that processed the sequence in some fashion (e.g., recognition, classi�cation,autoencoding, etc.). As originally proposed, a binary judgement was made as to the pre-dictability of each element. Here, we describe a contininuous version of history compressionin which elements are discarded in a graded fashion dependent on their predictability, em-bodied by their (Shannon) information. We implement continuous history compression usinga RAAM architecture, yielding a class of sequence learning algorithms that are both entirelylocal and still able to bridge long time lags between correlated events.
1 INTRODUCTIONNeural networks for supervised sequence learning have been successful at solving certain interestingsequence learning tasks. However, they have proven poor at learning the structure in extendedsequences in which contingencies among elements can span long time lags. This paper provides atechnique that can help to greatly improve the performance of sequence processing neural networkson certain sequence learning tasks involving long time lags.The Problem. A training sequence p with np discrete time steps consists of np ordered pairsof real-valued vectors (xp(t); dp(t)), 0 < t � np. At time t > 0 of sequence p a learning systemreceives xp(t) as an input and produces the output yp(t). The goal is for the output produced bythe system to match the desired output. The learning system tries to achieve this by minimizingE = 12Xp Xt>0Xi (dpi (t)� ypi (t))2:�Department of Computer Science, University of Colorado, Boulder, CO 80309, USA1



Here, as well as in the remainder of this paper, the ith component of some vector v is denoted byvi. A typical task that �ts this framework is grammar learning. There the goal is to predict a setof possible next symbols in a string (generated by an initially unknown grammar) from previoussymbols. Other typical tasks include trajectory learning for robot control as well as all kinds ofsequence classi�cation problems (like those in speech recognition).Ideally, we would like to have a local learning algorithm for learning such tasks from trainingexamples. A learning algorithm for dynamic neural networks is local if, for arbitrary durations ofsequences to be learned and for arbitrary network sizes (measured in number of connections), thepeak computation and storage complexity per connection and time step is constant.The most powerful conventional sequence learning algorithms are non-local, however. Thefollowing section addresses a weakness of conventional (local and non-local) algorithms. Later wewill present a novel local algorithm that can solve certain tasks that cannot be solved even byexisting non-local algorithms.1.1 A WEAKNESS OF PREVIOUS LEARNING ALGORITHMSExact gradient-based supervised learning algorithms for minimizingE are back-propagation throughtime (BPTT), e.g. [14][24][10], the real time recurrent learning algorithm (RTRL) [13][27], its ac-celerated versions [26][28][17], and the recent fast-weight algorithm [19]. All these approaches arenon-local { for a restricted class of recurrent networks, however, there is a local gradient-basedalgorithm [6].Local (but much weaker) approximations of the general supervised algorithms have been pro-posed (e.g. [3][1]). Local approaches to reinforcement learning in recurrent networks [25][15][5]unfortunately are not very practicable in realistic applications.Although non-local gradient-based recurrent nets are general and can sometimes learn to per-form quite complicated algorithms, they tend to fail when it comes to long time lags (see e.g. [18]and [8]):Suppose you want your learning algorithm to make the distinction between two possible inputsequences: a; x1; x2; : : : ; x10 and b; x1; x2; : : : ; x10. The distinction is to be made by switching ona particular output unit at the end of the �rst sequence, and switching it o� at the end of thesecond sequence. Local supervised learning recurrent networks in the style of [1], receiving onesymbol at a time, have no chance to solve this apparently simple task. But even the non-localrecurrent networks have the greatest di�culties. If not carefully designed, they hardly learn tobridge the 10 step time lags between the end of the sequences and the discriminating events a andb, respectively. [2] provides some theoretical analysis why this is the case. The essential problemis: In unstructured nets, error signals tend to disperse the further they have to go `back in time'.1.2 HISTORY COMPRESSIONThe principle of history compression [18][20] can help to overcome problems like the one withextended sequences mentioned in the last subsection. This principle essentially states that onlyunexpected events (including representations of the time steps at which they occurred) carry non-redundant information. Based on this insight, long sequences containing redundant informationcan be transformed into much shorter sequences without loss of information.The principle was embodied in a neural net predictive architecture that attempted to anticipatethe next input vector given the previous input vectors [18]. If the prediction was accurate, thenext input vector was discarded; otherwise, it was passed on to a second network (working on aself-organizing slower time scale) that processed the sequence in some fashion (e.g., recognition,classi�cation, autoencoding, etc.). In simulations with certain grammars involving long time lags,supervised E-minimization became an easy job for the second network. In some cases it waspossible to obtain speed-up factors of more than 1,000 over conventional learning algorithms [18][21]. 2



The history compression technique formulated in [18], however, su�ers from the weakness thata binary judgement is made as to the predictability of each input vector. Expectation-mismatchesare de�ned in an all-or-none fashion: Each input pattern that is not predictable at a certain timegives rise to an unexpected event. Only unexpected events provoke updates of the internal stateof the higher-level sequence processing network whose input is the reduced sequence description.There is no concept of a partial mismatch or of a `near-miss'. There is no possibility of updatingthe higher-level net `just a little bit' in response to a `nearly expected input'.2 CONTINUOUS HISTORY COMPRESSIONIn response to this weakness, continuous history compression is based on update procedures thatlet highly informative events have a stronger in
uence on the history representation than lessinformative (more likely) events. Input events are discarded in a graded fashion dependent ontheir predictability, embodied by their (Shannon) information.We introduce a deterministic discrete time predictor whose state at time t of sequence p isdescribed by an environmental input vector xp(t), an internal state vector hp(t), and an outputvector zp(t). For now, assume xp(t) is a binary vector whose components are all 0 except for onewhich is 1 { local input representation. The environment may be nondeterministic. At time 0 ofeach sequence p, the predictor starts with a default input xp(0) and an initial internal start statehp(0). At time t � 0, the predictor computeszp(t) = f(xp(t); hp(t)):At time t > 0, the predictor furthermore computeshp(t) = g(xp(t); hp(t� 1)):By normalization, the components of zp(t) are forced to sum to 1 and are interpreted as a predictionof the probability distribution of the possible xp(t + 1): zpj (t) is interpreted as the prediction ofthe probability that xpj (t+ 1) is 1.The output entropy �Xj zpj (t)log zpj (t)can be interpreted as a measure of the predictor's con�dence.How much information is conveyed by xp(t + 1) (relative to the current predictor), once it isobserved? According to [22] it is �log zpj (t)with j chosen such that xpj (t+ 1) = 1.In section 3 we will de�ne an update procedure where the `strength' of an update in responseto a more or less unexpected event will be a monotonically increasing function of the informationthe event conveys.2.1 HEURISTIC GENERALIZATIONUsing local input representations as above, it is easy to measure the information that an eventconveys. In the case of distributed, real-valued inputs this is not possible.The simple heuristic proposed in this subsection is to make the `strength' of an update inresponse to a more or less unexpected event a monotonically increasing function of the currenterror of the predictor who predicted the event. A similar method has been independently suggestedby Don Mathis (personal communication). A tacit and not always justi�ed assumption behindthis heuristic is that two similar inputs|quanti�ed by their distance in Euclidean space|havesimilar `semantics'. 3



3 CONTINUOUS HISTORYCOMPRESSIONWITH RAAMsOne way to implement continuous history compression involves Pollack's recursive auto-associativememories (RAAMs) [11]. This section �rst explains RAAMs and demonstrates that local super-vised learning algorithms based on RAAMs may theoretically bridge arbitrary time lags betweencorrelated events (modulo crosstalk). Experiments are then mentioned that show that in practicalapplications time lags ought not to be longer than a few time steps. Finally we describe an archi-tecture that combines RAAM's and continuous history compression, yielding a system capable ofuniquely representing much longer sequences.An interesting aspect of the method described in this section is that, unlike general methodsfor performing gradient descent through time, it allows for an entirely local algorithm for learningarbitrary sequences.3.1 INTRODUCTION TO `SEQUENTIAL RAAMs'A sequential RAAM is an auto-encoder network A whose only goal is to create di�erent internalrepresentations in response to di�erent input sequences.A is a 3 layer, strictly layered, fully interconnected feedforward net with nI + nH input units,nH hidden units, and nI + nH output units.A's internal state hp(t) is the activation vector of the hidden units at time step t of sequence p.A's input at time t is hp(t� 1) � xp(t). Here, as well as in the remainder of this paper, � denotesthe concatenation operator for vectors. The environment may be nondeterministic. For all p, theinitial internal state hp(0) takes on a default value, say 0. At time 0 < t � np, A computeshp(t) = g(xp(t); hp(t� 1)):Here g is implemented by the conventional activation spreading rules for back-propagation nets[23] [4] [9] [14]. A's output zp(t) is computed from hp(t) according to the same rules. zp(t) isinterpreted as a `reconstruction' of xp(t) � hp(t� 1).Following [11], we modify g such that hp(t); 0 < t < np takes on a value that allows toreconstruct hp(t� 1) and xp(t). A's error at time t of sequence p isEA(t) = 12(xp(t) � hp(t� 1)� zp(t))T (xp(t) � hp(t� 1)� zp(t)):Minimizing EA requires just to store hp(t�1) but not any previous activations. In other words,we get a local algorithm, essentially the one proposed by Pollack [11].Why should this local learning algorithm theoretically force A to create unique internal statesfor arbitrary sequences and subsequences? For the sake of the argument, we neglect all problemsspeci�c for the particular gradient descent training algorithm (like crosstalk between internalrepresentations):1. Let us assume that there are s di�erent training sequences 1; : : : ; s. The length of sequencep is np > 0. We train hp(1) to allow the reconstruction of hp(0) and xp(1) for all p = 1; : : : ; s.Therefore the beginnings of all sequences will be uniquely represented in h.2. Now let us assume that all sequences and subsequences with lengths < k cause uniquerepresentations in h. For all sequences and subsequences p with length k we train hp(k) to allowthe reconstruction of hp(k � 1) and xp(k). Therefore all sequences and subsequences with length< k + 1 will cause unique representations in h. 2Of course, it may be di�cult to �nd a set of weights in practice that satisfy the reconstructioncriteria for all hp(k).Note that any reinforcement or supervised learning system can receive the unique sequencerepresentations (across the hidden units of A) as an input and can be trained to do whatever itstask is1.1For instance, a supervised feed-forward net can be trained to emit desired outputs. A reinforcement learnerwith a non-Markovian interface to its environment [16] will be potentially able to build a Markovian interface usingRAAMs. 4



3.2 RAAMs FAIL WITH LONG TIME LAGSWe conducted experiments similar to the one described in [18] which showed that RAAMs usuallyfail to create su�ciently distinct representations of sequences with lengths of the order of as fewas 10 time steps [12]. The following section shows how to extend the capabilities of sequentialRAAMs.3.3 RAAMs AND CONTINUOUS HISTORY COMPRESSIONBy combining continuous history compression, RAAMs, and an update rule previously proposedby Mozer in [7], we can greatly extend the capabilities of sequential RAAMs as follows. We needtwo modules. The �rst module is a RAAM A which corresponds to the architecture described insection 3.1. A is going to encode reduced sequence descriptions in its hidden units. The secondmodule is a predictor P which is going to determine the information content of a particular inputvector in order to determine the degree to which it should be passed to A.The basic strategy is: At a given time, P tries to model the (context dependent) probabilitydistribution of the possible next inputs from the previous input and the previous activation vectorof A's hidden units. As long as the next input turns out to be (nearly) predictable (in the sensethat P predicts a high context-dependent probability) the inputs and targets of A remain (nearly)invariant. In this case the reduced sequence description across A's hidden units hardly changes.Only the highly unexpected events (those with low probability) cause strongly di�erent targetsfor A, thus forcing it to incorporate the unexpected events into its internal representation.The strength of an update of A in response to a new input is modulated by a function � ofan estimation of the information conveyed by the input. This estimation is obtained by lookingup the probability of the input event as predicted by P . � returns minimal values (near zero)for arguments representing low information. � returns maximal values for arguments representinghigh information.Here are the details. A has nH hidden units, nH+nI input units and nH+nI output units. Attime t of sequence p, the input of A is Hp(t)�Xp(t). A's internal state vector across the bottleneckof hidden units is called hp(t). A's nH + nI -dimensional output vector is called Ap(t). At everytime step t > 0, A is trained to match its input, using back-propagation. The nH -dimensionalvector Hp(t) (called the `reduced state' for reasons to become obvious below) takes on a defaultvalue (e.g. the zero vector) for t = 0. The same holds for the nI -dimensional vector Xp(t).At time t of sequence p, the feed-forward predictor P receives Hp(t)�xp(t) as an input vector2.Its nI dimensional output vector P p(t) is trained to match the probability distribution of thepossible xp(t+1), using back-propagation and normalization of P 's output units. For t > 1, Hp(t)and Xp(t) are de�ned by Hpi (t) = (1� �p(t))Hpi (t� 1) + �p(t)hpi (t� 1)and Xpi (t) = (1� �p(t))Xpi (t� 1) + �p(t)xpi (t);where �p(t) is a monotonically increasing function of �log P pj (t� 1), e.g. �p(t) = 1� P pj (t� 1),where j is chosen such that P pj (t � 1) is the predicted probability of the observed input patternxp(t).By setting �p(t) = 0 if P p(t � 1) = xp(t) and 1 otherwise, we obtain a `conventional' historycompression algorithm.Unique sequence representations created by our method can be used as inputs to a feed-forwardsupervised learner minimizing E.2In theory it would be necessary to include a unique representation of the time step at which the unexpectedevent occurred [18]. For simplicity, we will omit such unique time representations.
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4 EXPERIMENTSIn the experiments described herein P 's outputs were not even normalized, and �p(t) was simplytaken to be a monotonically increasing function of P 's prediction error (see section 2.1). The goodresults justi�ed this heuristic simpli�cation.We tested the system on a task described in [18]. This task essentially requires to �nd uniquerepresentations of two di�erent 20 time step sequences. The only discriminating di�erence betweenthe two was the input at the �rst time step. Therefore the entirely local system had to learn tobridge a 20 step time lag.Details: There were 22 possible input symbols x; y; b1; b2; : : : ; b20. The system observed oneinput symbol at a time. Two possible input sequences, xb1 : : : b20 and yb1 : : : b20, were presentedin random order. Note that in general it was not possible to predict the �rst symbol of eachsequence, due to the random occurrence of x and a. No sequence boundaries were used: Inputsequences were fed to the learning systems without providing information about their beginningsand their ends. Therefore there was a continuous stream of input events. The task was consideredto be solved if the euclidean distance between the internal representations at the sequence endingsexceeded 0.5.All non-input units employed the logistic activation function f(x) = 11+e�x . Weights were ini-tialized between -0.3 and 0.3. Local input representations of 22 possible input symbols a; x; b1; : : : ; b20were employed: Each symbol was represented by a bit-vector with only one non-zero component.For both the predictor and the RAAM there was an additional input unit with constant activation1 for providing a modi�able bias for the non-input units. No unique time step representations [18]were necessary to solve this task. All learning rates were equal to 1.0.Conventional recurrent nets consistently failed to solve an analoguous task within less than1,000,000 training sequences. The 2-net chunker in [18] usually solved the task after the presen-tation of a few thousand training sequences. However, in some cases it needed more than 30,000sequences3.The system described above consistently needed less than 600 training sequences.Therefore, at least sometimes we can get the best of two worlds: Fast learning and an entirelylocal learning algorithm.5 FURTHER EXTENSIONSNoise is usually unexpected, otherwise it would not be noise. Therefore, noise conveys information,in the sense of Shannon. This does not �t the human conception of information, however. In thecontext of the problems and methods above, how can we discover noise and get rid of it?An event xp(t) can be considered as noise with respect to sequence p if the current input, xp(t),does not provide information about the rest of the sequence and therefore ought to be ignored:P (fxp(k); k > tgjfxp(k); k < tg) = P (fxp(k); k > tgjfxp(k); k � tg):However, to measure and compare these two probabilities requires to know a unique represen-tation of the future at time t.This can be achieved with an additional chunking system seeing each sequence in reverse order(`running backward in time'). Two predictors can be trained to predict the internal state of the`reverse chunker' at time t+1, one of them seeing only the current state of the `forward chunker',the other one also seeing the current input at time t. Comparing both predictions, one can makestatements about the information conveyed by xp(t). This can serve as the basis for calculatingthe strength of the update of a `super-chunker' that learns to ignore unexpected noise. These ideashave been implemented and successfully tested with small examples [12]. The limitations of theapproach, however, are not clear yet.3A multi-level system (also described in [18]) needed just a few 100 training sequences to solve the analoguoustask { the �nal sequence representation, however, required two networks instead of a single network.6
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