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Abstract

Neural networks have proven poor at learning the structure in complex and extended tem-
poral sequences in which contingencies among elements can span long time lags. The principle
of history compression [18] provides a means of transforming long sequences with redundant
information into equivalent shorter sequences; the shorter sequences are more easily manipu-
lated and learned by neural networks. The principle states that expected sequence elements
can be removed from the sequence to form an equivalent, more compact sequence without
loss of information. The principle was embodied in a neural net predictive architecture that
attempted to anticipate the next element of a sequence given the previous elements. If the
prediction was accurate, the next element was discarded; otherwise, it was passed on to a
second network that processed the sequence in some fashion (e.g., recognition, classification,
autoencoding, etc.). As originally proposed, a binary judgement was made as to the pre-
dictability of each element. Here, we describe a contininuous version of history compression
in which elements are discarded in a graded fashion dependent on their predictability, em-
bodied by their (Shannon) information. We implement continuous history compression using
a RAAM architecture, yielding a class of sequence learning algorithms that are both entirely
local and still able to bridge long time lags between correlated events.

1 INTRODUCTION

Neural networks for supervised sequence learning have been successful at solving certain interesting
sequence learning tasks. However, they have proven poor at learning the structure in extended
sequences in which contingencies among elements can span long time lags. This paper provides a
technique that can help to greatly improve the performance of sequence processing neural networks
on certain sequence learning tasks involving long time lags.

The Problem. A training sequence p with n, discrete time steps consists of n, ordered pairs
of real-valued vectors (zP(t),d”(t)), 0 < t < m,. At time ¢ > 0 of sequence p a learning system
receives zP(t) as an input and produces the output yP(¢). The goal is for the output produced by
the system to match the desired output. The learning system tries to achieve this by minimizing
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Here, as well as in the remainder of this paper, the ith component of some vector v is denoted by
Vj.

A typical task that fits this framework is grammar learning. There the goal is to predict a set
of possible next symbols in a string (generated by an initially unknown grammar) from previous
symbols. Other typical tasks include trajectory learning for robot control as well as all kinds of
sequence classification problems (like those in speech recognition).

Ideally, we would like to have a local learning algorithm for learning such tasks from training
examples. A learning algorithm for dynamic neural networks is local if, for arbitrary durations of
sequences to be learned and for arbitrary network sizes (measured in number of connections), the
peak computation and storage complexity per connection and time step is constant.

The most powerful conventional sequence learning algorithms are non-local, however. The
following section addresses a weakness of conventional (local and non-local) algorithms. Later we
will present a novel local algorithm that can solve certain tasks that cannot be solved even by
existing non-local algorithms.

1.1 A WEAKNESS OF PREVIOUS LEARNING ALGORITHMS

Exact gradient-based supervised learning algorithms for minimizing E are back-propagation through
time (BPTT), e.g. [14][24][10], the real time recurrent learning algorithm (RTRL) [13][27], its ac-
celerated versions [26][28][17], and the recent fast-weight algorithm [19]. All these approaches are
non-local  for a restricted class of recurrent networks, however, there is a local gradient-based
algorithm [6].

Local (but much weaker) approximations of the general supervised algorithms have been pro-
posed (e.g. [3][1]). Local approaches to reinforcement learning in recurrent networks [25][15][5]
unfortunately are not very practicable in realistic applications.

Although non-local gradient-based recurrent nets are general and can sometimes learn to per-
form quite complicated algorithms, they tend to fail when it comes to long time lags (see e.g. [18]

and [8]):
Suppose you want your learning algorithm to make the distinction between two possible input
sequences: a,x1,Xs,...,%19 and b, xy,Z2,...,219. The distinction is to be made by switching on

a particular output unit at the end of the first sequence, and switching it off at the end of the
second sequence. Local supervised learning recurrent networks in the style of [1], receiving one
symbol at a time, have no chance to solve this apparently simple task. But even the non-local
recurrent networks have the greatest difficulties. If not carefully designed, they hardly learn to
bridge the 10 step time lags between the end of the sequences and the discriminating events a and
b, respectively. [2] provides some theoretical analysis why this is the case. The essential problem
is: In unstructured nets, error signals tend to disperse the further they have to go ‘back in time’.

1.2 HISTORY COMPRESSION

The principle of history compression [18][20] can help to overcome problems like the one with
extended sequences mentioned in the last subsection. This principle essentially states that only
unexpected events (including representations of the time steps at which they occurred) carry non-
redundant information. Based on this insight, long sequences containing redundant information
can be transformed into much shorter sequences without loss of information.

The principle was embodied in a neural net predictive architecture that attempted to anticipate
the next input vector given the previous input vectors [18]. If the prediction was accurate, the
next input vector was discarded; otherwise, it was passed on to a second network (working on a
self-organizing slower time scale) that processed the sequence in some fashion (e.g., recognition,
classification, autoencoding, etc.). In simulations with certain grammars involving long time lags,
supervised E-minimization became an easy job for the second network. In some cases it was
possible to obtain speed-up factors of more than 1,000 over conventional learning algorithms [18]
[21].



The history compression technique formulated in [18], however, suffers from the weakness that
a binary judgement is made as to the predictability of each input vector. Expectation-mismatches
are defined in an all-or-none fashion: Each input pattern that is not predictable at a certain time
gives rise to an unexpected event. Only unexpected events provoke updates of the internal state
of the higher-level sequence processing network whose input is the reduced sequence description.
There is no concept of a partial mismatch or of a ‘near-miss’. There is no possibility of updating
the higher-level net ‘just a little bit’ in response to a ‘nearly expected input’.

2 CONTINUOUS HISTORY COMPRESSION

In response to this weakness, continuous history compression is based on update procedures that
let highly informative events have a stronger influence on the history representation than less
informative (more likely) events. Input events are discarded in a graded fashion dependent on
their predictability, embodied by their (Shannon) information.

We introduce a deterministic discrete time predictor whose state at time ¢ of sequence p is
described by an environmental input vector zP(t), an internal state vector h”(t), and an output
vector zP(t). For now, assume z”(¢) is a binary vector whose components are all 0 except for one
which is 1 local input representation. The environment may be nondeterministic. At time 0 of
each sequence p, the predictor starts with a default input z?(0) and an initial internal start state
h?(0). At time ¢t > 0, the predictor computes

() = Fa”(t), W7(1)):

At time t > 0, the predictor furthermore computes

hP(t) = g(2P(t), b7 (t = 1)).

By normalization, the components of zP(t) are forced to sum to 1 and are interpreted as a prediction
of the probablhty distribution of the possible zP(t + 1): 27(t) is interpreted as the prediction of
the probability that =% (¢ + 1) is 1.

The output entropy

fz t)log zj(t)

can be interpreted as a measure of the predictor’s confidence.
How much information is conveyed by zP(¢ + 1) (relative to the current predictor), once it is
observed? According to [22] it is
—log zf(f)

with j chosen such that 2% (¢t + 1) = 1.

In section 3 we will define an update procedure where the ‘strength’ of an update in response
to a more or less unexpected event will be a monotonically increasing function of the information
the event conveys.

2.1 HEURISTIC GENERALIZATION

Using local input representations as above, it is easy to measure the information that an event
conveys. In the case of distributed, real-valued inputs this is not possible.

The simple heuristic proposed in this subsection is to make the ‘strength’ of an update in
response to a more or less unexpected event a monotonically increasing function of the current
error of the predictor who predicted the event. A similar method has been independently suggested
by Don Mathis (personal communication). A tacit and not always justified assumption behind
this heuristic is that two similar inputs quantified by their distance in Euclidean space have
similar ‘semantics’.



3 CONTINUOUS HISTORY COMPRESSION WITH RAAMs

One way to implement continuous history compression involves Pollack’s recursive auto-associative
memories (RAAMs) [11]. This section first explains RAAMs and demonstrates that local super-
vised learning algorithms based on RAAMs may theoretically bridge arbitrary time lags between
correlated events (modulo crosstalk). Experiments are then mentioned that show that in practical
applications time lags ought not to be longer than a few time steps. Finally we describe an archi-
tecture that combines RAAM’s and continuous history compression, yielding a system capable of
uniquely representing much longer sequences.

An interesting aspect of the method described in this section is that, unlike general methods
for performing gradient descent through time, it allows for an entirely local algorithm for learning
arbitrary sequences.

3.1 INTRODUCTION TO ‘SEQUENTIAL RAAMs’

A sequential RAAM is an auto-encoder network A whose only goal is to create different internal
representations in response to different input sequences.

A is a 3 layer, strictly layered, fully interconnected feedforward net with ny + ng input units,
ny hidden units, and n; + ng output units.

A’s internal state hP(t) is the activation vector of the hidden units at time step ¢ of sequence p.
A’s input at time ¢ is hP(t — 1) o xP(t). Here, as well as in the remainder of this paper, o denotes
the concatenation operator for vectors. The environment may be nondeterministic. For all p, the
initial internal state h”(0) takes on a default value, say 0. At time 0 < ¢ < n,, A computes

hP(t) = g(2P(t), WP (t = 1)).

Here g is implemented by the conventional activation spreading rules for back-propagation nets
[23] [4] [9] [14]. A’s output 2P(t) is computed from hP(t) according to the same rules. 2zP(t) is
interpreted as a ‘reconstruction’ of zP(¢) o hP(t — 1).

Following [11], we modify g such that h”(t),0 < ¢t < m, takes on a value that allows to
reconstruct hP(t — 1) and zP(t). A’s error at time ¢ of sequence p is

Ba(t) = 5(a?(0) 0 hP(t — 1) — (1)) (a7 (1) o BP(t — 1) — 27(1)).

Minimizing E 4 requires just to store h?(¢—1) but not any previous activations. In other words,
we get a local algorithm, essentially the one proposed by Pollack [11].

Why should this local learning algorithm theoretically force A to create unique internal states
for arbitrary sequences and subsequences? For the sake of the argument, we neglect all problems
specific for the particular gradient descent training algorithm (like crosstalk between internal
representations):

1. Let us assume that there are s different training sequences 1,...,s. The length of sequence
pis np > 0. We train hP(1) to allow the reconstruction of h?(0) and zP(1) for all p =1,...,s.
Therefore the beginnings of all sequences will be uniquely represented in h.

2. Now let us assume that all sequences and subsequences with lengths < k cause unique
representations in h. For all sequences and subsequences p with length & we train h?(k) to allow
the reconstruction of h?(k — 1) and 2P (k). Therefore all sequences and subsequences with length
< k + 1 will cause unique representations in h. O

Of course, it may be difficult to find a set of weights in practice that satisfy the reconstruction
criteria for all hP(k).

Note that any reinforcement or supervised learning system can receive the unique sequence
representations (across the hidden units of A) as an input and can be trained to do whatever its
task is!.

IFor instance, a supervised feed-forward net can be trained to emit desired outputs. A reinforcement learner
with a non-Markovian interface to its environment [16] will be potentially able to build a Markovian interface using
RAAMs.



3.2 RAAMs FAIL WITH LONG TIME LAGS

We conducted experiments similar to the one described in [18] which showed that RAAMs usually
fail to create sufficiently distinct representations of sequences with lengths of the order of as few
as 10 time steps [12]. The following section shows how to extend the capabilities of sequential
RAAMs.

3.3 RAAMs AND CONTINUOUS HISTORY COMPRESSION

By combining continuous history compression, RAAMs, and an update rule previously proposed
by Mozer in [7], we can greatly extend the capabilities of sequential RAAMs as follows. We need
two modules. The first module is a RAAM A which corresponds to the architecture described in
section 3.1. A is going to encode reduced sequence descriptions in its hidden units. The second
module is a predictor P which is going to determine the information content of a particular input
vector in order to determine the degree to which it should be passed to A.

The basic strategy is: At a given time, P tries to model the (context dependent) probability
distribution of the possible next inputs from the previous input and the previous activation vector
of A’s hidden units. As long as the next input turns out to be (nearly) predictable (in the sense
that P predicts a high context-dependent probability) the inputs and targets of A remain (nearly)
invariant. In this case the reduced sequence description across A’s hidden units hardly changes.
Ouly the highly unexpected events (those with low probability) cause strongly different targets
for A, thus forcing it to incorporate the unexpected events into its internal representation.

The strength of an update of A in response to a new input is modulated by a function 7 of
an estimation of the information conveyed by the input. This estimation is obtained by looking
up the probability of the input event as predicted by P. 7 returns minimal values (near zero)
for arguments representing low information. 7 returns maximal values for arguments representing
high information.

Here are the details. A has ng hidden units, ng +ny input units and ng +ny output units. At
time ¢ of sequence p, the input of A is HP(t)o XP(t). A’s internal state vector across the bottleneck
of hidden units is called hP(t). A’s ng + n;-dimensional output vector is called AP(t). At every
time step ¢ > 0, A is trained to match its input, using back-propagation. The ng-dimensional
vector HP(t) (called the ‘reduced state’ for reasons to become obvious below) takes on a default
value (e.g. the zero vector) for ¢ = 0. The same holds for the n;-dimensional vector XP(t).

At time ¢ of sequence p, the feed-forward predictor P receives HP(t)oxP(t) as an input vector?.
Its n; dimensional output vector PP(t) is trained to match the probability distribution of the
possible zP(t+ 1), using back-propagation and normalization of P’s output units. For ¢ > 1, HP(t)
and XP(t) are defined by

Hy(t) = (1=7P(@)H}(t = 1) + TP (D)7 (t = 1)

and
X7(t) = (1= 7P(8) X7 (t = 1) + 77 (t)a7 (1),

where 77(t) is a monotonically increasing function of —log P}(t — 1), e.g. 7°(t) =1~ P/(t — 1),
where j is chosen such that Pjp(t — 1) is the predicted probability of the observed input pattern
xP(t). '

By setting 7P(t) = 0 if PP(t — 1) = xP(¢) and 1 otherwise, we obtain a ‘conventional’ history
compression algorithm.

Unique sequence representations created by our method can be used as inputs to a feed-forward
supervised learner minimizing F.

2In theory it would be necessary to include a unique representation of the time step at which the unexpected
event occurred [18]. For simplicity, we will omit such unique time representations.



4 EXPERIMENTS

In the experiments described herein P’s outputs were not even normalized, and 77(t) was simply
taken to be a monotonically increasing function of P’s prediction error (see section 2.1). The good
results justified this heuristic simplification.

We tested the system on a task described in [18]. This task essentially requires to find unique
representations of two different 20 time step sequences. The only discriminating difference between
the two was the input at the first time step. Therefore the entirely local system had to learn to
bridge a 20 step time lag.

Details: There were 22 possible input symbols x,y,b1,b2,...,bag. The system observed one
input symbol at a time. Two possible input sequences, xb; ...byo and yb; ...bso, were presented
in random order. Note that in general it was not possible to predict the first symbol of each
sequence, due to the random occurrence of z and a. No sequence boundaries were used: Input
sequences were fed to the learning systems without providing information about their beginnings
and their ends. Therefore there was a continuous stream of input events. The task was considered
to be solved if the euclidean distance between the internal representations at the sequence endings
exceeded 0.5.

All non-input units employed the logistic activation function f(z) = H% Weights were ini-
tialized between -0.3 and 0.3. Local input representations of 22 possible input symbols a, z, by, . .., bag
were employed: Each symbol was represented by a bit-vector with only one non-zero component.
For both the predictor and the RAAM there was an additional input unit with constant activation
1 for providing a modifiable bias for the non-input units. No unique time step representations [18]
were necessary to solve this task. All learning rates were equal to 1.0.

Conventional recurrent nets consistently failed to solve an analoguous task within less than
1,000,000 training sequences. The 2-net chunker in [18] usually solved the task after the presen-
tation of a few thousand training sequences. However, in some cases it needed more than 30,000
sequences®.

The system described above consistently needed less than 600 training sequences.

Therefore, at least sometimes we can get the best of two worlds: Fast learning and an entirely

local learning algorithm.

5 FURTHER EXTENSIONS

Noise is usually unexpected, otherwise it would not be noise. Therefore, noise conveys information,
in the sense of Shannon. This does not fit the human conception of information, however. In the
context of the problems and methods above, how can we discover noise and get rid of it?

An event 2P(t) can be considered as noise with respect to sequence p if the current input, z?(t),
does not provide information about the rest of the sequence and therefore ought to be ignored:

P({a”(k).k > t}[{a” (k). k < t}) = P({a (k). k > t}[{a"(k), k < 1}).

However, to measure and compare these two probabilities requires to know a unique represen-
tation of the future at time ¢.

This can be achieved with an additional chunking system seeing each sequence in reverse order
(‘running backward in time’). Two predictors can be trained to predict the internal state of the
‘reverse chunker’ at time ¢ + 1, one of them seeing only the current state of the ‘forward chunker’,
the other one also seeing the current input at time ¢. Comparing both predictions, one can make
statements about the information conveyed by 2zP(¢). This can serve as the basis for calculating
the strength of the update of a ‘super-chunker’ that learns to ignore unexpected noise. These ideas
have been implemented and successfully tested with small examples [12]. The limitations of the
approach, however, are not clear yet.

3 A multi-level system (also described in [18]) needed just a few 100 training sequences to solve the analoguous
task the final sequence representation, however, required two networks instead of a single network.
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