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Our goal is to understand and optimize human concept learning by
predicting the ease of learning of a particular exemplar or category. We
propose a method for estimating ease values, quantitative measures of
ease of learning, as an alternative to conducting costly empirical train-
ing studies. Our method combines a psychological embedding of domain
exemplars with a pragmatic categorization model. The two components
are integrated using a radial basis function network (RBFN) that predicts
ease values. The free parameters of the RBFN are fit using human simi-
larity judgments, circumventing the need to collect human training data
to fit more complex models of human categorization. We conduct two
category-training experiments to validate predictions of the RBFN. We
demonstrate that an instance-based RBFN outperforms both a prototype-
based RBFN and an empirical approach using the raw data. Although
the human data were collected across diverse experimental conditions,
the predicted ease values strongly correlate with human learning perfor-
mance. Training can be sequenced by (predicted) ease, achieving what is
known as fading in the psychology literature and curriculum learning in
the machine-learning literature, both of which have been shown to facil-
itate learning.

1 Introduction

Visual categorization is a critical skill in many professions, including ra-
diology, dermatology, and satellite imagery analysis. The economic impor-
tance of visual categorization has motivated substantial research aimed at
reducing the cost of training visual experts. One approach for improving
training is to predict where learners are likely to make mistakes and adjust
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the training protocol appropriately (Nosofsky, Sanders, Zhu, & McDaniel,
2019). For example, a training protocol could train on easy exemplars only
(Giguère & Love, 2013; Hornsby & Love, 2014; Patil, Zhu, Kopeć, & Love,
2014) or introduce easy exemplars first and then progress to harder ones
(McLaren & Suret, 2000; Lindsey, Mozer, Huggins, & Pashler, 2013; Pashler
& Mozer, 2013; Roads, Xu, Robinson, & Tanaka, 2018). Accurate assessment
of a learner’s knowledge also requires knowing something about stimulus
difficulty: if an assessment is composed solely of easy exemplars, it will be
challenging to distinguish between trained and untrained individuals. In
this work, the relative ease of learning a particular exemplar is referred to
as the exemplar ease value. The average exemplar ease value of all exemplars
in a category is referred to as the category ease value. Exemplar and category
ease values are collectively referred to as ease values. A variety of methods
have been proposed for computing ease values, each with its own advan-
tages and disadvantages. The primary objective of this work is to demon-
strate a flexible and practical method for predicting ease values.

In this work, we leverage human similarity judgments in order to esti-
mate ease values in a flexible and cost-effective manner. By collecting hu-
man similarity judgments, we can infer both a stimulus representation and
the similarity function that operates over the representation, which we refer
to as psychological embedding (Roads & Mozer, 2019). Modeling the stimulus
representation enables us to anticipate how the arrangement of stimuli (in
feature space) will affect ease of learning. For example, a lone exemplar—
surrounded by exemplars belonging to a different category—is likely to be
harder to learn. Given a psychological embedding, we explore two vari-
ants of a radial basis function network (RBFN) that make different ease
value predictions. One variant is based on exemplars, the other on category
prototypes. The RBFNs are compared to a third model, which is neutral to
psychological theory and merely counts the frequency of different types of
similarity judgments in order to determine ease values. Each model is eval-
uated by comparing the predicted ease values to empirically derived ease
values. The proposed approach combines the positive qualities of existing
methods while solving many of the practical limitations. For example, it
applies to nonbinary classification and can gracefully handle overlapping
categories.

2 Related Work

The most direct method of computing ease values is to derive them from
the behavior of human participants performing the categorization task
of interest. Stimuli that are easy to learn will be categorized correctly
more often than stimuli that are difficult. The trial responses of multiple
participants can be used to determine the error statistics associated with
each exemplar or category. This approach can quickly become impracti-
cal for small-scale research programs. To obtain a high-power estimate of
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accuracy, multiple responses must be collected for each exemplar. While this
may be feasible for small stimulus sets, the cost can become impractical for
larger, real-world stimulus sets. These issues will bear on the experimental
analyses presented later.

Another intuitive alternative is to obtain expert difficulty ratings for each
stimulus (Evered, Walker, Watt, & Perham, 2014). Experts have learned
which visual features are diagnostic and can draw on their experience to
recall how difficult it was to learn a particular feature or category. Expert
consultation fees can be (justifiably) expensive, making expert-based norms
a nonoption for research on a tight budget. Furthermore, the rapid nature
of visual expertise (Tanaka & Taylor, 1991) may also make it difficult for
long-time experts to introspectively dissect material they have long since
mastered.

In some cases, it is possible to collect norms that circumvent the cost
of experts. By focusing on binary categorization tasks that rely on widely
available knowledge, the general population can be recruited to norm stim-
uli. For example, Salmon, McMullen, and Filliter (2010) collected ratings for
a set of images in which participants rated each stimulus on its “graspabil-
ity.” These norms can then been used by other researchers to create arbitrary
category boundaries where a stimulus’s distance from the category bound-
ary determines its ease value (Khan, Mutlu, & Zhu, 2011; Lindsey et al.,
2013). While this approach is relatively cost-effective, it does not work for
real-world tasks where the concept of interest requires expert knowledge
(e.g., malignant versus benign skin lesions).

Distance to the category boundary can also be used for artificial stim-
ulus sets where the stimulus representation is known by design (Giguère
& Love, 2013; Khan et al., 2011; Patil et al., 2014; Spiering & Ashby, 2008).
Given linearly separable categories, it is possible to learn a hyperplane sepa-
rator that defines a category boundary. Stimuli near the category boundary
require more precise specification of the separator and are therefore less
likely to be classified correctly given limited training data. Although dis-
tance to the category boundary is a simple and cost-effective approach, it
becomes problematic when category distributions are highly overlapping
or there are more than two categories.

Theories of human category learning provide an alternative approach
for estimating ease values. If a model is capable of predicting the likeli-
hood that a particular stimulus will be categorized correctly (Nosofsky,
1986; Kruschke, 1992; Love, Medin, & Gureckis, 2004; Nosofsky, Sanders, &
McDaniel, 2018), then the model’s predictions can be used to estimate ease
values. Yet the predictive power of a category learning model comes at a
cost. First, human category learning models rely on behavioral data to tune
the model’s free parameters. Consequently, behavioral data must be col-
lected in a manner that is consistent with the model’s assumptions, such
as requiring an alternative forced-choice response format. Second, human
category learning models also require a known stimulus representation.
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The proposed approach addresses a number of critical limitations as-
sociated with the existing approaches. It works for any arbitrary category
structure, not just binary tasks or linearly separable category structure. The
approach is also designed to yield modular and reusable assets. In this
work, the learned psychological embedding is used to compute ease val-
ues, but the psychological embedding makes relatively few assumptions,
enabling it to be reused in other research projects. Finally, the proposed
approach keeps costs down by collecting human data from widely avail-
able nonexperts and using a low-effort task. All of these features make
the proposed approach a flexible and practical method for estimating ease
values.

3 A Flexible and Practical Method for Estimating Ease Values

The proposed approach builds on the position that human category learn-
ing can be treated as density estimation (Ashby & Alfonso-Reese, 1995). One
method for performing density estimation is to use radial basis function
networks (RBFNs). At its simplest, an RBFN consists of three layers: an in-
put layer, a hidden layer, and an output layer. A number of free parameters
govern how activation propagates through the network. These free param-
eters belong to one of two network components: the similarity kernel (i.e.,
radial basis function) and the association weight matrix. These two com-
ponents are implemented by seminal category learning models, such as the
generalized context model (Nosofsky, 1986) and ALCOVE (Kruschke, 1992).
These category learning models fit all free parameters using human training
data.

In contrast to the standard approach in the human literature, we use a
method that fits the free parameters associated with the similarity kernel
using human similarity judgments. The remaining free parameters are fixed
based on psychological theory. In the following three sections, we outline
a simple class of RBFNs, detail how the free parameters are inferred, and
describe two RBFN variants.

3.1 A Simple RBFN Model. A standard method of representing stimuli
is to treat each exemplar as a point in a multidimensional feature space.
While an infinite number of potential visual and nonvisual features could
be used, we assume that we can identify the subset of features that are most
salient and relevant for the categorization task. The stimulus representation
is denoted by Z, where zi indicates the D-dimensional feature vector of the
ith stimulus. The input layer activations encode the query stimulus, x =
zquery.

The similarity kernel s (z, z′) specifies how similarity between two stim-
uli (z and z′) decays as a function of distance in feature space. The form of
the similarity kernel is constrained by existing psychological theory (Jones,
Love, & Maddox, 2006; Jones, Maddox, & Love, 2006; Nosofsky, 1986;
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Shepard, 1987). As done in previous work (Roads & Mozer, 2017, 2019;
Roads et al., 2018), we integrate various psychological models into a general
form to obtain

s
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The parameter ρ controls the type of distance (e.g., ρ = 2 yields Eu-
clidean distance), and D indicates the dimensionality of the embedding.
The weights w correspond to attention weights and allow the similarity
kernel to model differences in how individuals or groups attend to differ-
ent dimensions in the psychological embedding. The weights sum to D so
that when all the weights are equal (w j = 1), we recover the standard (un-
weighted) Minkowski distance. While the remainder of this work assumes
this similarity kernel, other differentiable similarity kernels could be sub-
stituted without loss of generality. For convenience, the parameters ρ, β, τ ,
and γ are denoted by the set variable θ.

The activation of the ith hidden unit h,i is determined by the similarity
kernel (see equation 3.1),

hi = s (x, zi) . (3.2)

The vector zi specifies the location (in feature space) of a particular basis
function. An RBFN network typically has multiple basis functions. The ba-
sis function locations can be determined in a number of ways, which are
discussed shortly.

The hidden layer is connected to the output layer via a fully connected
association weight matrix W . The output layer has the same number of
units as the number of categories in the categorization task. A normalizing
softmax operation is applied to the raw output activations to yield output
probabilities,

y = softmax (hW ) . (3.3)

The ease value of the query stimulus is the probability that the query is
correctly categorized.
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Figure 1: Sample displays shown to participants. The center image is the query
image, and the surrounding images are the reference images. (A) Initially no
reference examples are selected. (B) After participants make their selection, the
two selected references are highlighted.

3.2 Joint Inference of a Psychological Embedding and Similarity Ker-
nel. In a typical category learning research paradigm, the stimulus repre-
sentation Z is determined independent of the category learning model. For
example, one could use a set of hand-coded features, low-level computer
vision features, or features from a pretrained deep neural network to de-
termine the stimulus representation. The stimulus representation is then
treated as fixed, and the remaining free parameters are fit using human
training data.

In contrast, the proposed approach determines both the stimulus rep-
resentation and the parameters of the similarity kernel at the same time,
without using behavioral data from a human training experiment. This is
achieved by applying an embedding algorithm to human similarity judg-
ments in order to jointly infer the parameters of a similarity kernel and
stimulus representation (Roads & Mozer, 2019). While many algorithms
exist for determining a stimulus representation, such as metric multidi-
mensional scaling, nonmetric multidimensional scaling, and t-distributed
stochastic triplet embedding (Van Der Maaten & Weinberger, 2012), our ap-
proach leverages psychological theory to constrain the possible solutions.
We refer to the inferred stimulus representation and similarity kernel as a
psychological embedding. The procedure for collecting human similarity judg-
ments and the mechanisms of the embedding algorithm are summarized
below.

The first step to inferring a psychological embedding is to collect hu-
man similarity judgments for the set of stimuli. Inspired by approaches
used in the computer vision community (Wah et al., 2014), human simi-
larity judgments are collected by having novice participants view displays
composed of nine randomly selected images arranged in a 3-by-3 grid (see
Figure 1). Each display is composed of a query image (center image) and
eight reference images (surrounding images). Participants are asked to se-
lect the two reference images most similar to the query image. When they
make their selection, they also indicate which reference is most similar
and second most similar. The ith judged display is denoted using a vector
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Di = (qi, ai, bi, ci, di, ei, fi, gi, hi), where qi is a scalar indicating the query
image and ai to hi are scalars indicating the reference images. In this ar-
rangement, ai and bi represent the most similar and second most similar
references respectively. For convenience, Ri indicates the set of reference
images of Di. The set of all judged displays is indicated by D.

Next, the set of all judged displays D is used to jointly infer a stimulus
representation and similarity kernel. Given a set of observations, the likeli-
hood of the data given the model parameters is

L =
∏

i

p (Di|Z, θ) . (3.4)

In the case where participants select and rank two reference images, the
likelihood of a single judged display is

p (Di|Z, θ) = p (ai|Z, θ) p (bi|ai, Z, θ) . (3.5)

Given a similarity kernel, the likelihood of participant selections is mod-
eled in the same spirit as Luce’s ratio of strengths formulation (Luce, 1959)
and classic similarity choice models (Shepard, 1957, 1958; Nosofsky, 1985,
1986). The basic principle is that the probability of selecting a given refer-
ence is proportional to the similarity between the query and that reference:
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s
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where s
(
zi, z j

)
is the similarity kernel defined in equation 3.1.

After maximizing the log likelihood using gradient descent, we obtain a
stimulus representation and a corresponding similarity kernel that models
human-perceived similarity. During inference of the psychological embed-
ding, we assume a single group and therefore set all attention weights to
one.

3.3 Candidate RBFN Implementations. After inferring a psychologi-
cal embedding, an RBFN requires two additional pieces of information: the
basis function locations and the association weight matrix. Existing exem-
plar and prototype models provide guidance on setting these parameters (Kr-
uschke, 1992; Minda & Smith, 2002; Nosofsky, 1986; Smith & Minda, 1998).
Prototype and exemplar models have different assumptions regarding the
encoding and storing of experience. Exemplar models assume that a sep-
arate memory is storage for each exemplar. Prototype models assume that
only an average memory is stored for all exemplars belonging to the same
category. Some research suggests that learners employ a prototype-based
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representation early in learning and transition to an exemplar-based repre-
sentation as they approach mastery (Smith & Minda, 1998). If learners only
encode category-level statistics, then a prototype model should make bet-
ter predictions. If learners encode information about individual exemplars,
then an exemplar model should make better predictions. Since both models
provide plausible alternatives for computing ease values, we consider two
different variants of an RBFN.

An exemplar model takes a fine-grained approach and places a ba-
sis function at the embedding location of each exemplar. The association
weight matrix is fixed by assuming that each hidden unit is only con-
nected to the output unit that corresponds to its category. This RBFN vari-
ant closely resembles the generalized context model (Nosofsky, 1986) except
that there is no softmax free parameter that adjusts the determinism of hu-
man responses.

A prototype model takes a coarser approach and locates a basis func-
tion at the centroid of all exemplars belonging to a given category. In other
words, a single basis function is used to represent each category. In a pro-
totype model, we assume that the association weight matrix is the identity
matrix that connects each category basis function to its appropriate out-
put unit. The prototype implementation requires a bit more care to set up
properly. Since an embedding is inferred on individual stimuli and the pro-
totype basis function represents a category average, the parameters of the
similarity kernel must be appropriately constrained and adjusted. First, the
embedding algorithm is constrained to infer solutions where ρ = 2, τ = 2,
and γ = 0. Second, one multivariate gaussian is fit for each category. The
fitted gaussians are then used as the corresponding basis function for each
category. Since the fitted gaussians are not constrained to be spherical, the
basis functions are not radial basis functions. However, the additional flex-
ibility was allowed to give the prototype model the best chance at making
good predictions.

Ease values are computed using a leave-one-out approach. Let us denote
the set of all stimuli less the ith stimulus as I¬i. An RBFN is fit using the set
I¬i to determine the locations of the basis functions. The ease value of the
ith stimulus is then determined by the probability that it is correctly clas-
sified. The inferred psychological embedding is a window into a novice’s
perception of the world. Unlike experts, they have not yet learned which
visual features are diagnostic versus uninformative. The leave-one-out ap-
proach allows us to anticipate how the neighboring category structure will
influence the ease of learning a particular stimulus.

3.4 An Alternative Count-Based Model. The proposed approach con-
strains inference using psychological theory. While well motivated by cog-
nitive science research, the approach employs a number of theoretical
assumptions. As an alternative, it is possible to create a model that is rela-
tively unconstrained by theory but is trained on the same behavioral data.
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Instead of inferring a psychological embedding, the human similarity judg-
ments are treated as implicit categorization trials that used to assemble error
statistics. This approach is similar to norming procedures used by other re-
searchers (Hornsby & Love, 2014). This empirically based, atheoretic count-
based model leverages the same data as the exemplar-based and prototype
models but does so directly through the response counts and not through
the intermediate representation of an embedding. The count-based model
therefore serves as a control to ascertain the value of the inferred psycho-
logical embedding.

Each judged display tells us how often a given exemplar was judged to
be similar to an exemplar of the same or a different category. For example, if
a participant sees a query stimulus belonging to category j and selects two
references that also belong to category j, this provides two votes that the
query stimulus is easy. If a participant sees another query stimulus belong-
ing to category j but selects two references that belong to category j and k,
respectively, this provides one vote that the query stimulus is easy. By loop-
ing over all judged displays, a simple count matrix can be assembled that
tracks how often a given exemplar is judged to be more similar to a reference
of the same category versus a reference of a different category. After loop-
ing through all judged displays, the count matrix can be normalized such
that each row sums to one. Each row in the normalized count matrix gives
the probability that a particular exemplar will be judged as more similar to
a reference of the same category versus a reference of a different category.
These probabilities can be used to estimate the ease value.

4 Experiments

The above models encompass three intuitive methods for predicting diffi-
culty. A good test of the proposed approach is to compare the predicted
ease values to empirically derived ease values. Using two different hu-
man training experiments, we compute empirical ease values and compare
them to the ease values predicted by three different models: an exemplar-,
prototype-, and count-based model. The comparison will determine if the
general approach is valuable and which model makes the most accurate
predictions. For each experiment, we provide a brief description of the
experimental design followed by a comparison of the predicted and ob-
served ease values. In both experiments, the goal is to compare the predic-
tive power of the three candidate models. The first experiment compares
models based on their ability to predict generalization performance across
three different points during training. The second experiment focuses on
predicting generalization performance at the end of training.

A similar implementation of the proposed approach was previously
demonstrated with a two-way, alternative forced-choice task (Roads et al.,
2018). This work extends the previous work in three ways. First, ease val-
ues are predicted for a multiclass task rather than a binary classification
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Figure 2: Example stimuli of the bird species used in this work. Each row con-
tains four similar bird species, each of which belongs to the same or a similar
taxonomic family. Validation experiment 1 used the 12 bird species in rows A to
C. Validation experiment 2 used all 16 bird species.

task. Second, these values are compared to training data collected under a
wider variety of conditions. Third, this work considers alternative models
for computing ease values.

4.1 Validation Experiment 1. The goal of the first validation experiment
is to predict the ease values associated with categorizing a set of 156 bird im-
ages representing 12 different categories. Empirical ease values are derived
from experiment 1 of a previously conducted study (Roads & Mozer, n.d.a).
The exemplar-, prototype-, and count-based models use similarity judg-
ments that were previously collected for a similarity judgment database
(Roads & Mozer, 2019). An abbreviated description of the human training
study is included, with an emphasis given to details pertinent to the current
work.

4.1.1 Methods.
Participants. Two sets of participants were used in this experiment. A

psychological embedding was constructed from similarity judgments col-
lected from 232 participants (Roads & Mozer, 2019). Human training data
were collected from 160 participants. All participants were recruited from
Amazon Mechanical Turk and paid at a rate of approximately $8.00 per
hour for their time and effort.

Materials. A set of 156 bird images, representing 12 different species (see
Figures 2A to 2C), was selected from the CUB-200 data set (Wah, Branson,
Welinder, Perona, & Belongie, 2011). For each species, 13 exemplars were
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hand-picked by the first author. Exemplars were selected to make sure that
the resolution of the image was sufficiently high, the bird was clearly vis-
ible in the image, and the bird exhibited the visual features characteristic
of the species. To ensure a sufficiently challenging and representative task,
species were selected such that there were three groups of four visually sim-
ilar species.

Procedure. Empirical ease values and predicted ease values were de-
rived using separate procedures. The procedure for deriving empirical ease
values from training data is described first. The procedure for computing
ease values from the candidate models is described second.

During the training experiment, participants completed trials at their
own pace for approximately one hour. At the beginning of the experiment,
the set of stimuli was randomly partitioned into a practice and, assessment
set. The practice set was composed of seven exemplars from each cate-
gory, while the assessment set was composed of the remaining six exem-
plars from each category. The practice and assessment sets were further
partitioned into mini-sets of 12 exemplars containing one exemplar from
each category. Each mini-set was used to create a mini-block composed of
12 trials.

At the highest level, the experiment was composed of three parts. Each
part consisted of a practice phase, which took a fixed time of 15 minutes,
followed by an assessment phase. During a practice phase, trials were ar-
ranged into mini-blocks consisting of exemplars from the practice set. If a
participant made it through all practice mini-blocks, the sequence of prac-
tice mini-blocks was repeated. Each assessment phase was composed of a
fixed number of trials. During each assessment phase, two mini-blocks (24
trials) were shown to participants. Once the exemplars were shown dur-
ing the assessment phase, they were added to the practice set for use in the
next practice phase. Critically, all trials presented during the assessment
phase used unseen stimuli. On all trials (both practice and assessment), a
query stimulus was presented along with a blank response box. Participants
typed the name of the category corresponding to the query stimulus. After
submitting their response, participants received corrective feedback. Partic-
ipants were not scored based on capitalization, and answers within an edit
distance of two were marked as correct.

In addition to this basic setup, some participants were assigned to con-
ditions where they could request clues on some of the practice trials. The
clue-enabled trials are referred to as enriched trials. In the standard condi-
tion, participants were never given enriched training trials. In the enriched-3
condition, participants were given enriched training trials in all three parts
of the experiment. In the enriched-2 condition, participants were given en-
riched training trials in the first two parts of the experiment. In the enriched-
1 condition, participants were given enriched training trials only on the
first part of the experiment. For the purpose of this work, we make no
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Figure 3: A two-dimensional psychological embedding of (A) the 156 unique
bird images used in validation experiment 1 and (B) the 208 bird images used
in validation experiment 2. Each point represents a unique stimulus and is col-
ored according to category (i.e., species). Images judged to be similar are located
closer together than images judged to be dissimilar.

distinction among the conditions and use all conditions in order to predict
ease values. Each condition contained 40 participants.

Empirical ease values were computed using participant responses from
the assessment trials only. For each query exemplar in the assessment trials,
the exemplar ease value was determined by counting the total number of
times the query exemplar was categorized correctly and dividing it by the
total number of times that it was shown. Each category ease value was com-
puted by counting the number of times a category was classified correctly
and dividing it by the number of times the category was shown.

Predicted ease values were obtained by inferring a psychological em-
bedding from 7520 2-choose-1 displays and 4733 8-choose-2 displays. Two
separate embeddings were inferred: one for the exemplar model and a sec-
ond for the prototype model. The psychological embedding used for the
prototype model was constrained to have a gaussian similarity kernel in
L2 space in order to cohere with the later gaussian fitting procedure used
by the prototype-based RBFN. The dimensionality of the embedding was
determined using a cross-validation procedure (Roads & Mozer, 2019). For
visualization purposes, a two-dimensional embedding of the stimuli is pro-
vided in Figure 3A. After inferring the respective embeddings, the exemplar
and prototype models were used to generate predicted exemplar ease val-
ues. The raw similarity judgments were used by the count-based model to
generate exemplar ease values. Predicted category ease values were com-
puted by taking the average exemplar ease value of all exemplars within a
particular category.

Each model was evaluated by computing the Spearman rank correlation
coefficient between the predicted ease values and the empirical ease values.
Separate correlations were computed for exemplar and category ease val-
ues. In order to determine the best model, the Steiger’s (1980) method was
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Figure 4: Results of experiments 1 and 2. Participant performance on assess-
ment trials for (A) experiment 1 and (D) experiment 2. The data are plotted at the
individual level and using a box plot. The red line indicates the median value,
and the bottom and top edges of the box indicate the 25th and 75th percentiles.
The whiskers extend to the most extreme data points not considered outliers,
and the outliers are plotted individually using the + symbol. The Spearman’s
rank correlation coefficient between empirically derived ease values and pre-
dicted ease values for (B) experiment 1 and (E) experiment 2. Correlations were
computed for exemplar ease values and category ease values. Symbols above
the bars indicate the significance of the correlation. Scatter plots of observed
versus predicted exemplar-level ease values using the exemplar model for (C)
experiment 1 and (F) experiment 2.

used to test whether the difference between the different correlation scores
was significant.

4.1.2 Results. The primary hypothesis of this work is that a simple RBFN
can be used to predict ease values for a set of stimuli. Three models were
proposed as candidates, with the hypothesis that they would perform
differently.

On average, each stimulus appeared in an assessment trial 74 times
(SD = 6), providing a relatively large sample size for estimating the em-
pirical ease value of each stimulus. Across all assessment trials, accuracy
was moderately high (M = .61, SD = .19), indicating that participants were
able to learn parts of the categorization task (see Figure 4A).

Results indicated that simple models can be used to predict difficulty (see
Figure 4B). However, results were inconclusive regarding the best model.
Tests of the three pair-wise comparisons were conducted using Bonferroni
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adjusted alpha levels of .0167 per test (.05/3). Results indicated that the
correlation was significantly lower for the prototype model (ρs = .42) than
both the exemplar (ρs = .67), T2(155) = 3.96, p < .001 and count model
(ρs = .63), T2(155) = 2.97, p = .003. The pairwise comparison between the
correlations for the exemplar and count model was nonsignificant. The
same testing procedure was applied to the correlations between empirical
category-level difficulty and predicted category-level difficulty. The correla-
tions for the exemplar, count, and prototype models were ρs = .82, ρs = .69,
and ρs = .50, respectively. Results indicated that all category-level pairwise
comparisons were nonsignificant.

4.1.3 Discussion. The moderately high correlation results of validation
experiment 1 are encouraging because they show that a simple RBFN can
explain both category- and exemplar-level classification. A simple RBFN
can therefore be used to predict ease values. This is an exciting possi-
bility given its potential usefulness in category training. However, the
experiment did not clearly distinguish between the candidate models. One
possible explanation is that the empirical observations of experiment 1 were
derived from assessment trials that occurred near the beginning, middle,
and end of the experiment. It is possible that prototype models describe
early, novice-like knowledge representations, while exemplar models do
a better job of capturing the minutia of expert knowledge representations
(Smith & Minda, 1998). This perspective is consistent with computational
models such as SUSTAIN (Love et al., 2004) and nonparametric Bayesian
models of category learning (Sanborn, Griffiths, & Navarro, 2010), which
develop the complexity of the knowledge state as needed. If this conjecture
is true, we would expect prototype models to perform worse when empir-
ical ease values are derived solely from later assessment trials.

4.2 Validation Experiment 2. In the second validation experiment,
the goal is to predict the ease values associated with categorizing a set
of 208 bird images representing 16 different categories. Empirical ease
values are derived from human training data collected as part of a previ-
ously conducted study (Roads & Mozer, n.d.b). The exemplar-, prototype-,
and count-based models use similarity judgments that were previously col-
lected for a similarity judgment database. An abbreviated description of
the human training study is included, with an emphasis given to details
pertinent to the current work. Experiment 2 aims to replicate, strengthen,
and extend the conclusions from experiment 1 via three key differences.
First, the number of species in the training task increased from 12 in ex-
periment 1 to 16 in experiment 2, with 13 instances of each species in each
experiment. This increase makes the training task more challenging for hu-
man learners and places stronger constraints on ease predictions. Second,
experiment 1 evaluated performance at three different time points during
training with assessment stimuli randomized across participants, whereas
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experiment 2 places all assessment trials at the end of the experiment with
the same assessment stimuli for all participants. This change allows us to
focus on the time point we are most concerned with and to reduce variabil-
ity in experiment 2 in order to obtain additional statistical power for dis-
criminating between models. Third, experiment 1 was originally designed
to study alternative training strategies, and while it is beneficial to have
shown that ease predictions are robust over training strategy, strategy in-
troduced a confound irrelevant to our current goal of discriminating among
ease-prediction models. Consequently, experiment 2 allows us to deter-
mine which model best describes human generalization late in the learning
trajectory.

4.2.1 Methods.
Participants. Two sets of participants were used for this experiment. A

psychological embedding was constructed from similarity judgments col-
lected from 342 participants and human training data were collected from
120 participants. All participants were recruited from Amazon Mechanical
Turk and paid approximately $8.00 per hour for their time and effort.

Materials. A small data set of 208 bird images representing 16 species
was collected from the CUB 200 image data set (Wah et al., 2011). Species
were selected such that there were four groups of birds composed of four
similar-looking species, roughly corresponding to four taxonomic families.
For each species, 13 exemplars were hand-picked by the lead author in the
same manner as described in validation experiment 1. The image data set
was an expanded version of the image data set used in validation exper-
iment 1, with four new species making up a new taxonomic family (see
Figure 2D).

Procedure. Like experiment 1, two distinct procedures were used to de-
rive empirical ease values and predicted ease values. We describe the pro-
cedure used to derive the empirical ease values first and that for computing
ease values using the candidate models second.

The training experiment was split into a single practice phase immedi-
ately followed by an assessment phase. During the practice phase, partici-
pants completed 224 practice trials in approximately 40 minutes. During the
assessment phase, they completed 96 trials in approximately 15 minutes. In-
cluding instructions and breaks, the entire experiment took approximately
one hour.

The entire stimulus set was partitioned into a practice and assessment
set. The practice set presented seven randomly selected exemplars from
each of the 16 categories and the assessment set the remaining six exem-
plars from each category. The same partition was used for all participants.

During the practice phase, each exemplar in the practice set was shown
twice. This phase was divided into four equal-length blocks in order to
allow participants to rest if desired. The order of the practice trials was
determined by the experiment condition. During the assessment phase,
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participants saw each exemplar from the assessment set once. The assess-
ment trials were organized into six mini-blocks such that each mini-block
showed one exemplar from each category. Every participant saw the same
randomly generated assessment sequence.

Every trial displayed a query stimulus and a text box for typing a re-
sponse. On practice trials, a submitted answer was graded, and corrective
feedback was shown to participants. Participants chose when to advance to
the next trial by clicking a button. Corrective feedback displayed the par-
ticipant’s response, as well as the correct response. On assessment trials, no
feedback was provided, and participants clicked a button to advance to the
next trial.

Participants were randomly assigned to one of three scheduling condi-
tions that used a condition-specific scheduling policy for sequencing prac-
tice trials. For the purpose of this work, no distinction is made between the
conditions.

Empirical ease values were from participant responses on all assessment
trials. For each query exemplar in the assessment trials, the ease value was
determined by computing the total number of times the query exemplar
was categorized correctly and dividing it by the total number of times the
query exemplar was shown. Since every participant used the same parti-
tion, empirical ease values could only be computed for 96 of the exemplars.

Predicted ease values were obtained, and each model was evaluated us-
ing the same method from validation experiment 1. In this experiment,
embeddings were inferred from 7520 2-choose-1 displays and 8772 8-
choose-2 displays. The dimensionality of the embedding was deter-
mined using a cross-validation procedure (Roads & Mozer, 2019). A
two-dimensional embedding of the stimuli is provided in Figure 3B for vi-
sualization purposes. As before, Steiger (1980) was used to test if the differ-
ence between dependent correlation scores was significant.

4.2.2 Results. Having already confirmed that simple models can be used
to predict ease values, the primary hypothesis of experiment 2 is that the
exemplar model is better poised to explain behavior that occurs at the end of
training. The primary hypothesis was confirmed, and the results indicated
that the exemplar model was best at predicting exemplar and category ease
values (see Figure 4C).

Each assessment stimulus appeared 180 times, providing a large sam-
ple size for estimating the empirical ease values. Across all assessment
trials, accuracy was moderately high (M = .67, SD = .18), indicating that
participants were able to learn parts of the categorization task (see
Figure 4A).

Tests of the three pair-wise comparisons were conducted using Bonfer-
roni adjusted alpha levels of .0167 per test (.05/3). Results indicated that
the correlation was significantly higher for the exemplar model (ρs = .68)
than both the count (ρs = .19), T2(95) = 5.37, p < .001 and prototype models
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(ρs = .10), T2(95) = 6.21, p < .001. The pairwise comparison between the
correlations for the prototype and count models was nonsignificant.

The same testing procedure was applied to the correlations between
empirical category-level difficulty and predicted category-level difficulty.
Results indicated that the correlation was significantly higher for the exem-
plar model (ρs = .81) than both the count (ρs = .20), T2(15) = 3.64, p = .003
and prototype models (ρs = .22), T2(15) = 4.85, p < .001. The pairwise com-
parison between the correlations for the prototype and count model was
nonsignificant.

4.2.3 Discussion. The results of the current experiment replicated the
finding of validation experiment 1 that a simple RBFN can be used to pre-
dict ease values at both the exemplar and category levels. More impor-
tant, the results of the current experiment convincingly demonstrate that
the exemplar model is best able to predict ease values. The correlation
between predicted and empirical ease values is higher when predicting
category-level difficulty. This difference is likely the result of two factors.
First, exemplar-level predictions are made at a finer level, requiring that a
larger number of ease values be correctly ranked. Second, category-level
predictions average across exemplar-level predictions, which means that
category-level predictions leverage more data for each predicted ease value.

Interestingly, the results are consistent with the previously raised con-
jecture that prototype models are better suited for describing early learning
behavior. The results of the two experiments are consistent with the idea
that stimulus representations change over time. When predicting ease of
learning on early as well as later trials, the exemplar and prototype RBFNs
make equally good predictions. When predicting ease of learning on later
trials, exemplar models make better predictions. Given these two experi-
ments, the dominant strategy is to use an exemplar-based RBFN to predict
ease values.

5 Discussion

A key challenge of cognitive modeling is determining an appropriate stim-
ulus representation. Predicting ease values inherits this challenge. Many
approaches for computing ease values sidestep this challenge by invok-
ing simplifying assumptions (e.g., binary categorization) or indirectly prob-
ing the stimulus representation (e.g., expert ratings). This work attempts to
tackle the challenge head-on by collecting similarity judgments that can be
used to infer a psychological embedding. Modeling stimulus representa-
tions directly permits predictions for arbitrary stimulus sets, regardless of
whether the task involves two or more than two categories. Equally im-
portant, directly modeling the stimulus representation produces a modular
contribution that the rest of the scientific community can reuse.
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Figure 5: A cartoon depicting two different objective sets in a two-dimensional
feature space. Each exemplar is represented by an icon where the color of the
icon indicates the exemplar’s category membership. (A) In the original objective
set, the categories are nonoverlapping. (B) After adding six new exemplars (in-
dicated by squares), the categories are now slightly overlapping. The exemplar
denoted by an “x” will be easier to categorize in the first objective set compared
to the second objective set.

Inferring a stimulus representation using similarity judgments has a
number of additional advantages. Similarity judgments constitute a rela-
tively low-effort task compared to a training task. Since participant com-
pensation should be commensurate with task demands, these judgments
are a relatively cheaper source of behavioral data. Furthermore, these judg-
ments place fewer restrictions on the researchers collecting behavioral data.
While training experiments typically require long sessions in order to pro-
duce useful data, similarity judgments can be collected in short or long
sessions, giving researchers the flexibility to collect data in short sessions,
potentially boosting participant recruitment.

In addition to the points already covered, the proposed approach is ad-
vantageous because it allows for extendability. In part, an ease value is chal-
lenging to obtain because it is defined relative to a learning objective. An
ease value will depend on the stimulus itself, as well as all the other stimuli
defined to be part of the objective set, that is, the set of all stimuli a learner is
expected to know. To illustrate this point, consider a binary categorization
task where each exemplar is characterized by two feature dimensions (see
Figure 5). In the first scenario, the two categories are nonoverlapping (see
Figure 5A). In a second scenario, the stimulus set has been expanded by six
exemplars to create overlapping categories (see Figure 5B). The exemplar
denoted by the gold “x” will likely be easier to categorize in the first sce-
nario compared to the second one. This simple example illustrates how the
ease value of an exemplar fundamentally depends on the stimulus set and
the category membership of its (potentially confusing) neighbors.

If a researcher decides to expand (or shrink) the stimulus set, the cor-
responding ease values may change. If ease values were estimated empiri-
cally from error statistics, the corresponding behavioral data may no longer
be useful. In contrast, similarity judgments are robust to changes in the
stimulus set. Even if the set changes, past similarity judgments are still us-
able. Since researchers are often faced with immense uncertainty and tight
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budgets, it is reassuring to know that similarity judgments will hold their
value even if research goals and experimental designs change.

The various capabilities of ease values mean that they can easily be used
to implement a category training curriculum. When the difficulty of learn-
ing each exemplar is known, researchers can easily explore how different
fading policies affect learning outcomes (Roads et al., 2018). For example,
an easy-to-hard policy fades from exemplars with a high ease value to ex-
emplars with a low ease value. More sophisticated curricula are also possi-
ble. For example, a researcher could implement a performance-dependent
curriculum that selects an exemplar based on a learner’s recency-weighted
accuracy. Such a curriculum would select exemplars with ease values that
are close to a learner’s current abilities, making sure that the next trial is
neither too easy nor too difficult. Since ease values provide exemplar-level
information, they allow researchers to pursue previously inaccessible re-
search questions.

6 Conclusion

The goal of this work is twofold: to specify a flexible and practical ap-
proach for computing ease values at both the exemplar and category levels.
Flexibility is largely achieved by inferring a psychological embedding from
human similarity judgments. Directly learning a stimulus representation
enables researchers to tackle arbitrary categorization tasks. This freedom—
along with the relatively low cost—makes the proposed approach easy to
use with real-world data sets. The results of two separate validation exper-
iments show that using an exemplar-based model is the dominant strat-
egy for predicting empirical ease values. The first experiment computed
empirical ease values using generalization behavior collected across a
learning trajectory and was predicted equally well by a prototype and an
exemplar model. A second experiment computed empirical ease values us-
ing generalization behavior at the end of training and was best predicted
by an exemplar model. We hope this practical method will enable the de-
velopment of better skill assessment protocols and more efficient training
systems.
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