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Abstract
Psychological embeddings provide a powerful formalism for characterizing human-perceived similarity among members
of a stimulus set. Obtaining high-quality embeddings can be costly due to algorithm design, software deployment, and
participant compensation. This work aims to advance state-of-the-art embedding techniques and provide a comprehensive
software package that makes obtaining high-quality psychological embeddings both easy and relatively efficient.
Contributions are made on four fronts. First, the embedding procedure allows multiple trial configurations (e.g., triplets)
to be used for collecting similarity judgments from participants. For example, trials can be configured to collect triplet
comparisons or to sort items into groups. Second, a likelihood model is provided for three classes of similarity kernels
allowing users to easily infer the parameters of their preferred model using gradient descent. Third, an active selection
algorithm is provided that makes data collection more efficient by proposing comparisons that provide the strongest
constraints on the embedding. Fourth, the likelihood model allows the specification of group-specific attention weight
parameters. A series of experiments are included to highlight each of these contributions and their impact on converging to
a high-quality embedding. Collectively, these incremental improvements provide a powerful and complete set of tools for
inferring psychological embeddings. The relevant tools are available as the Python package PsiZ, which can be cloned from
GitHub (https://github.com/roads/psiz).

Keywords Cognitive modeling · Similarity kernel · Psychological embedding · Active learning · Python package

Introduction

In many interactive software systems, it is essential to model
an individual’s behavior during a perceptual task. Decision
support applications anticipate and adjust for novice per-
ception in order to help novice users arrive at expert-like
categorization decisions (Fang & Geman, 2005; Ferecatu &
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Geman, 2009; Roads & Mozer, 2017). Human-in-the-loop
computer vision algorithms utilize a model of human simi-
larity to improve machine categorization performance (Wah
et al., 2014). Human category-training applications use cog-
nitive models to predict learning outcomes (e.g., Nosofsky
1986; Kruschke 1992; Love, Medin, & Gureckis, 2004;
Nosofsky, Sanders, & McDaniel, 2018). At the core of these
applications is the notion of stimulus feature representations
and psychological similarity.

The primary objective of this work is to provide a method
for jointly inferring a multi-dimensional feature representa-
tion and a corresponding similarity function. Given a feature
representation, a similarity function specifies the degree that
responses associated with one stimulus transfer to another
(Shepard, 1987; Nosofsky, 1986; Tenenbaum, 1999). The
more similar stimuli are, the more likely generalization is
to occur. Similarity is based not on external properties of
the stimuli, but rather on an individual’s internal representa-
tion. We refer to this internal representation—coupled with
a similarity function—as a psychological embedding.

A mature set of algorithms exists that uses proximity data
(e.g., pair-wise similarity ratings) to infer a low-dimensional
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embedding (Gower, 1966; Torgerson, 1958). These mul-
tidimensional scaling orMDS algorithms can be classified
based on two properties: the type of observations used to
support inference and the form of the similarity function.
In psychology, two dominant types of observations are sim-
ilarity (dissimilarity) ratings (e.g., Torgerson 1952, 1958)
and ordinal similarity rankings (e.g., Agarwal et al. 2007;
Tamuz, Liu, Belongie, Shamir, & Kalai, 2011; van der
Maaten & Weinberger 2012). Similarity ratings are elicited
by asking participants to rate the similarity between pairs
of stimuli on a predefined scale. Similarity rankings are
elicited by asking participants to rank stimuli in order of
similarity; typically by presenting participants with triplets
and asking them to select the pair that is most similar. This
work focuses on similarity rankings given their benefits
of rater consistency (Demiralp, Bernstein, & Heer, 2014),
subject-specific precision (Li, Malave, Song, & Yu, 2016),
and cost-effective scalability (Wilber, Kwak, & Belongie,
2014).

The second property of MDS algorithms concerns the
form of the similarity function. The similarity function spec-
ifies how distance in the embedding space translates to psy-
chological similarity. The least-constrained form assumes
only that similarity decays monotonically as a function
of distance (Shepard 1962a, b; Kruskal 1968a, b). While
being the most flexible, such a similarity function has
an increased risk of over-fitting and discounts existing
psychological research on stimulus generalization. At the
other extreme, similarity is defined as a fixed, parameter-
free function (Gower, 1966; Torgerson, 1958). In between
these two extremes, similarity is specified as a function
with one or more free parameters (Shepard, 1957; Nosofsky,
1985; Tamuz et al., 2011; van der Maaten & Weinberger,
2012). Our work is also situated in between these two
extremes, and continues a tradition of using parameterized
similarity functions that are well motivated by psychologi-
cal theory (Shepard 1957, 1958; Nosofsky 1985, 1986).

The primary purpose of this work is to provide a
unified set of state-of-the-art tools for individuals interested
in inferring psychological embeddings. These tools are
collected in a Python package called PsiZ, short-hand for
psychological embedding. The Greek letter Ψ is commonly
associated with psychology, while z is often used in
machine learning to denote a latent feature vector, and Z ≡
{z1, ..., zn} is a matrix containing a collection of vectors.
PsiZ unites four facets that can be adjusted to suit the needs
of the user. First, observations used for inference can be
collected using a variety of different trial configurations
(e.g., ranking, clustering). Second, a number of different
similarity functions can be used for performing inference,
some derived from psychological research and others
widely used in machine learning. Additional similarity
functions can easily be implemented by the user. Third, the

embedding algorithm can be used to infer group-specific
attention weights in the same spirit as INDSCAL (Carroll
& Chang, 1970). Lastly, high-quality embeddings can be
constructed with less data via an active-selection algorithm
that intelligently determines which stimulus comparisons
should be collected next. The active-selection algorithm
is similar to the capabilities provided by the powerful
NEXT system (Jamieson, Jain, Fernandez, Glattard, &
Nowak, 2015; Rau, Mason, & Nowak, 2016; Sievert et al.
2017). Unlike the more general-purpose NEXT system,
PsiZ focuses exclusively on psychological embeddings and
aims to provide a comprehensive set of features, classes,
and utilities. Each of these facets is described in turn,
followed by experiments highlighting the potential benefits
to researchers. The relevant tools are available as the Python
package PsiZ, which can be cloned from https://github.com/
roads/psiz. The code used to run the experiments can be
cloned from https://github.com/roads/psiz-brm.

Data collection

Inference of a psychological embedding requires a set
of observations, or judged trials. On each trial, subjects
compare a query stimulus to a set of reference images R.
In the simplest case, a trial contains two reference images
and participants must select the reference image they believe
is most similar to the query (Fig. 1a). In addition to this
basic trial configuration, PsiZ is designed to work with more
complicated configurations—like those that have become
popular in the machine learning literature (e.g., Wilber et al.
2014; Wah et al. 2014).

Let us consider all the different trial configurations that
PsiZ can handle. Since PsiZ allows the configuration to
switch on each trial, we denote the configuration parameters
of the ith trial using the subscript i. The set of references
Ri can contain 2-8 stimuli. Given a set of references,
subjects select a predefined number of reference stimuli
that they consider most similar to the query. The set of
selected reference images Si , may be 1 to |Ri | − 1. The last
configuration parameter determines whether subjects must
rank their selection. In the basic case, where |Ri | = 2
and |Si | = 1, subjects provide triplet similarity judgments
(Fig. 1a). In a more complicated scenario, subjects can
partition the set of references into a similar and dissimilar
group (Fig. 1b). Alternatively, subjects may be asked to rank
their selections (Fig. 1c).

In order to simplify the description of the embedding
models—as well as the actual code implementation—all
observations are assumed to be notated in a specific way.
The set of all observations is denoted by D. Assuming that
each stimulus has been assigned a unique index, Ri and
Si are sets of stimulus indices on trial i. Each judged trial
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Fig. 1 Sample displays shown to subjects. The center image is the
query stimulus while the surrounding images are the reference stim-
uli. a Given two reference images, subjects select the one reference
image that is most similar to the query. bGiven eight reference images,

subjects select the two reference images that are most similar to the
query. c Given eight reference images, subjects select two reference
images in the order of their similarity

collects one observation. Response information for trial i,
denoted Di , is coded as a triple, Di = (qi, si , ui ), where
qi indicates the index of the query stimulus, si is a row
vector comprised of the selected reference stimulus indices,
and ui is a row vector comprised of the unselected reference
stimulus indices. Depending on the trial configuration, the
length of Di will vary. For example, if |Ri | = 2 and
|Si | = 1, Di = (qi, ai, bi), where ai indicates the
index of the selected reference stimulus and bi indicates the
index of the unselected reference stimulus. If |Ri | = 8,
|Si | = 2 and subjects make ranked selections, then Di =
(qi, ai, bi, ci , di, ei, fi, gi, hi). Now ai indicates the
index of the most similar reference and bi indicates the
index of the second most similar reference, and ci-hi

indicate the remaining unselected references.
PsiZ uses the class psiz.trials.Observations

to create a set of judged trials. You can also create a set of
unjudged trials using the class psiz.trials.Docket.
The initialization format of these classes is shown below.

psiz.trials.Docket(stimulus_set,
n_select=None, is_ranked=None)

psiz.trials.Observations(response_set,
n_select=None, is_ranked=None,

group_id=None)

The stimulus set argument for a Docket is a
matrix where each row indicates the set of stimuli used
in a trial. The first column indicates the query stimulus,
while the remaining columns indicate the references. The
stimulus set argument for a Docket is also a matrix
where each row indicates the responses of a single trial. The

columns of the matrix are organized according to formatting
described above, i.e., the first column indicates the query,
the second column indicates the first selected reference,
and so on. By default, both Docket and Observations
will assume that n select=1 and is ranked=True.
The Observations class also allows you to pass in a
group indicator (group id), which is used when inferring
group-specific parameters (described in more detail below).

One way to think about the information contained in
the different trial configurations is to consider how many
noisy triplet constraints are implied by a single trial (Wah
et al., 2014). Holding all other factors constant, providing
more triplet constraints improves the quality of the inferred
solution. In the basic case (|R| = 2, |S| = 1), each trial
provides one triplet constraint of the form q : a > b, where
a is the reference stimulus that was selected as more similar
to the query q. More generally, for unordered selections,
each display yields |S| (|R| − |S|) triplet constraints. For
ordered selections, each trial yields |S| (|R| − |S|) + (|S|

2

)

triplet constraints. The best trial configuration will depend
in part upon the time needed to complete a single trial and
the reliability of subject responses (Wilber et al., 2014).

Embeddingmodel

Given a set of observations, the goal is to infer a psycho-
logical embedding, which consists of two parts: a multi-
dimensional feature representation and a corresponding
similarity function. To improve conceptual clarity, the free
parameters representing and the feature representation (Z)
and the parameters controlling the similarity function (θ )
are written separately. Observed behavior is linked to the
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parameters of interest (Z, θ ) using a generative model. The
generative model describes how the observed behavior is
generated from the parameters of interest. Given a set of
observations D, the likelihood of the observations given the
model parameters is:

L =
∏

i

p (Di |Z, θ) (1)

It should be noted that the likelihood allows researchers
to combine different trial configurations since each trial is
assumed to contribute independently to the likelihood. In the
remainder of this section, we walk through the generative
model, starting with the distance function.

Distance function

To start, we assume the feature representation Z is
composed of points in a D-dimensional space. Following
decades of psychological research (e.g., Nosofsky 1985),
we further assume that distance between points is computed
using the weighted Minkowski distance:

‖zm − zn‖ρ,wk
=

⎛

⎝
D∑

j=1

wj |zm,j − zn,j |ρ
⎞

⎠

1
ρ

, (2)

where wj ≥ 0 and
∑D

j=1 wj = D. Note that the weights
sum to D, so that when all the weights are equal, i.e.,
wj = 1, we recover the standard (unweighted) Minkowski
distance. The arguments zm and zn indicate two arbitrary
feature representations. The parameter ρ controls the type
of distance (e.g., ρ = 2 results in Euclidean distance).

The weights correspond to attention weights and allow
the model to capture differences in how individuals or
groups attend to different dimensions in the psychological
embedding. When inferring a population-level model (i.e.,
there is only one group), all the weights are set to one.
In the single group case, setting the weights to one does
not eliminate any degrees of freedom. Since the weights
are jointly inferred with the embedding vectors, the vectors
can adjust themselves during inference to incorporate any
stretching or shrinking of the dimensions. In the most
general case, these weights are allowed to vary by individual
or group. In the remainder of this work, we use wk to
indicate the attention weights of group k.

Similarity function

Equipped with a distance function, we assume that psycho-
logical similarity is described by a parameterized function
based on the weighted Minkowski distance:

s (zm, zn) = f
(‖zm − zn‖ρ,wk

)
. (3)

Given two embedding points zk and zl , the similarity
function s (zk, zl ) returns a value, where 0 indicates
that the two points are maximally dissimilar. Three
popular parameterizations assume that similarity decays
exponentially (Shepard 1957, 1958; Nosofsky 1985, 1986),
inversely with respect to distance (Agarwal et al., 2007;
Tamuz et al., 2011), or according to the Student’s-t kernel
(van der Maaten & Weinberger, 2012).

In addition to these approaches, there are two other pop-
ular approaches: classical MDS (Gower, 1966; Torgerson,
1958) and standard non-metric MDS (Shepard 1962a, b;
Kruskal 1968a, b). Classical MDS assumes an identity rela-
tionship between distances and dissimilarity. While there
are methods for converting similarity to dissimilarity (e.g.,
by subtracting dissimilarity from a constant), introducing
these transformations quickly moves away from a faith-
ful implementation of the approach. Standard non-metric
MDS only assumes a monotonic relationship between dis-
tance and similarity. Typically, this monotonic relationship
is determined using isotonic regression. Isotonic regres-
sion results in a piece-wise linear function with multiple
discontinuities, which creates problems for gradient-based
inference.

Exponential-family kernel

Integrating various psychological models (e.g., Jones, Love,
& Maddox, 2006; Jones, Maddox, & Love, 2006; Nosofsky
1986; Shepard 1987) into their most general form, we
obtain:

s (zm, zn) = exp
(−β‖zm − zn‖τ

ρ,wk

) + γ, (4)

where β, τ , and γ are free parameters that control the gra-
dient of generalization. Since the most common parameter
settings result in a Laplacian kernel (τ = 1, ρ = 2, γ = 0)
and Gaussian kernel (τ = 2, ρ = 2, γ = 0), we refer to
this class of similarity functions as the exponential-family
kernel.

Student’s-t kernel

Although substantial psychological evidence supports the
idea that individuals use an exponential similarity function,
other similarity functions have been used with success.
In machine learning, a popular similarity function is the
Student’s-t kernel (van der Maaten & Weinberger, 2012):

s (zm, zn) =
(

1 + ‖zm − zn‖22,wk

α

)− α+1
2

. (5)

A primary advantage of the Student’s-t kernel is that it has a
heavy tail. The heavy tail is advantageous during inference
because it provides a signal to the inference algorithm
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to continue pushing similar points together and dissimilar
points apart.

Inverse distance kernel

A second similarity function that has been widely used in
machine learning is the inverse distance kernel (Agarwal
et al., 2007; Tamuz et al., 2011):

s (zm, zn) = 1

μ + ‖zm − zn‖τ
ρ,wk

(6)

, where μ and τ are free parameters that govern similarity.
The free parameter τ serves the same role as in the
exponential-family kernel. The parameter μ is included to
make the approach numerically stable.

Heavy-tailed kernel

By itself, the Student’s-t kernel lacks the flexibility of the
exponential kernel. By generalizing the Student’s-t kernel
with additional free parameters, one obtains a heavy-tailed
kernel with comparable flexibility to the exponential kernel:

s (zm, zn) = (
κ + ‖zm − zn‖τ

ρ,wk

)−α . (7)

Selection function

The last component is the selection function, which spec-
ifies how perceived similarity is converted into observed
behavior. Given a similarity function, the likelihood of sub-
ject selections are modeled in the same spirit as Luce’s ratio
of strengths formulation (Luce, 1959) and classic similarity
choice models (Shepard 1957, 1958; Nosofsky 1985, 1986).
The basic principle is that the probability of selecting a
given reference is proportional to the similarity between the
query and that reference. For example, when subjects make
only one selection (|Ri | ∈ [2, 8], |Si | = 1), the likelihood
of the observed outcome is,

p (Di |Z, θ) = s
(
zq, za

)

∑
r∈Ri

s
(
zq, zr

) . (8)

This basic principle is expanded following the rules
of probability in order to describe more complicated
trial configurations. For example, when a trial requires
participants to select two (unranked) references (|Ri | ∈
[3, 8] and |Si | = 2),

p (Di |Z, θ) = s
(
zq, za

)

∑
r∈Ri

s
(
zq, zr

)
s
(
zq, zb

)

∑
r∈Ri¬a

s
(
zq, zr

)

+ s
(
zq, zb

)

∑
r∈Ri

s
(
zq, zr

)
s
(
zq, za

)

∑
r∈Ri¬b

s
(
zq, zr

) . (9)

The selection function is similar when a participant is
required to select and rank two reference,

p (Di |Z, θ) = s
(
zq, za

)

∑
r∈Ri

s
(
zq, zr

)
s
(
zq, zb

)

∑
r∈Ri¬a

s
(
zq, zr

) . (10)

Inference procedure

Equipped with a likelihood a set of observations, it is now
possible to perform inference. The PsiZ package leverages
the TensorFlow Python library (Abadi et al., 2015) to
perform gradient-based inference on the log-likelihood of
the data given the model parameters:

max
Z,θ

∑

i

logp (Di |Z, θ) . (11)

The burden of solving this optimization problem is almost
completely removed, allowing researchers to call a few
high-level methods in order to achieve their goals. For
example, it is simple to infer a psychological embedding
using an exponential similarity function.

from psiz import datasets
from psiz.models import Exponential

# Load some observations.
(obs, catalog) =

datasets.load_dataset(’birds-16’,
is_hosted=True)

# Initialize an embedding model.
embedding =

Exponential(catalog.n_stimuli,
n_dim=3)

# Fit the embedding model using
similarity judgment observations.

embedding.fit(obs)

The above example loads a set of observations, initializes
a three-dimensional embedding model, and then fits the
model to the loaded observations. While this example
requests a three-dimensional embedding, the researcher
must decide which dimensionality is appropriate for their
problem. The PsiZ package includes a separate procedure
that researchers can use to help them decide on the
appropriate dimensionality.
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from psiz import datasets
from psiz.models import Exponential
from psiz.dimensionality import

dimension_search
(obs, catalog) =

datasets.load_dataset(’birds-16’,
is_hosted=True)

dim_list = [2, 3, 5, 6, 7, 8, 9, 10]
suggested_dimensionality =

dimension_search(obs,
Exponential, catalog.n_stimuli,
dim_list=dim_list)

The dimension search procedure first partitions the
provided observations into a train and hold-out set. For each
of the candidate dimensionalities provided by the user, an
embedding is fit using the training set and is evaluated
using the validation set. The procedure continues to try
embeddings with a larger dimensionality until validation
loss stops improving. When validation loss is worse for the
current dimensionality under consideration, the procedure
terminates and returns the dimensionality that resulted in the
last observed improvement.

When inferring an embedding, it is important to assess
whether a sufficient number of observations have been col-
lected. If an insufficient number of observations have been
collected, the inferred embedding is much more likely to
model noise rather than actual behavior. One method for
determining if enough data have been collected is to perform
a simple convergence analysis. To perform a convergence
analysis, the observations are split up into multiple parti-
tions. A separate embedding is inferred using observations
from an increasing number of partitions. Each embedding
is compared to the previous embedding by computing a
Pearson correlation coefficient between the two embed-
dings. If a sufficient amount of data have been collected,
then adding more data should not change the inferred
embedding and the correlation score should be high. PsiZ
provides a simple function called assess convergence
for performing a convergence analysis.

from psiz.utils import
assess_convergence

n_shuffle = 3
result = assess_convergence(obs,

Exponential, catalog.n_stimuli,
n_shuffle)

In the above example, n shuffle indicates the number
of times the analysis should be repeated. In between each
analysis, the data is shuffled, giving a different set of
partitions each time.

Intelligent trial selection

The final aspect of this work focuses on intelligently select-
ing trials to collect maximally informative data. A simple
strategy is to randomly select images for each trial, with the
sole constraint that all images be unique. Although a reason-
able approach, random displays have a drawback. Imagine
for the moment that judged displays have been collected
using all but one stimulus. Ideally, the next trial shown to a
participant would include that unused stimulus. More gen-
erally, the embedding procedure will be less confident about
the position of some images in an embedding. An active-
selection approach constructs trials that have the best chance
of minimizing uncertainty associated with the embedding.
Active selection proceeds via multiple iterations of gener-
ating trials and collecting the corresponding observations.
This component is heavily inspired by previous active
selection research (Tamuz et al., 2011), but has been gen-
eralized to handle arbitrary trial configurations and uses a
different set of heuristics.

Formalizing uncertainty

The uncertainty of an embedding point’s location is
formally characterized using a posterior distribution,

p (zk|D, Z¬k, θ) ∝ p (D|Z, θ) p (zk|Z¬k, θ) . (12)

For simplicity, we assume that the prior distribution of
the embedding points is characterized using a Gaussian
distribution

p (zk|Z¬kθ) ∼ N (μ, �) . (13)

The likelihood is the same as previously described and
predicts how participants select references given a particular
query,

p (D|Z, θ) . (14)

The posterior distribution is approximated by sampling
from the joint distribution using Gibbs sampling. Since
the posterior distribution has a Gaussian prior, elliptical
slice sampling (Murray, Adams, & MacKay, 2010) can
be used to sample points in a relatively efficient manner.
In effect, the sampling procedure produces a set of points
for each stimulus. If the distribution of points is tightly
clustered, then there is relatively low uncertainty about the
position of that stimulus. If the distribution is wide, then
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there is relatively high uncertainty about the location of
the stimulus in the embedding. For clarity, the posterior
samples are denoted using a three-dimensional tensor ζ

such that ζ (s)
k indicates the s’th sample of the k’th stimulus,

a d-dimensional vector corresponding to a point in the
embedding space. The matrix ζ (s) can be thought of as a
sampling snapshot of the entire embedding.

Maximizing information gain

To maximize information gain, we need to compute the
expected information gain for a candidate trial. Given a
candidate trial c, the expected information gain is equal to
the mutual information,

I (Z; Y |D, c) = H (Z|D) − H (Z|D, Y, c) , (15)

where Y is a discrete random variable indicating all possible
outcomes when the candidate trial is shown to a participant.
For example, if the candidate trial displays two references
and participants must select one reference, then there are
two possible outcomes. The first term indicates the entropy
(i.e., uncertainty) associated with the current embedding.
The second term indicates the expected entropy of the
embedding if we collect an observation for the candidate
trial. Since we would like to minimize entropy associated
with the embedding, we are looking for a candidate trial
such that H (Z|D) > H (Z|D, Y, c) and information gain
is positive.

Since Z is a continuous variable, computing information
gain appears non-trivial. Fortunately, the computation
can be simplified by exploiting the identity of mutual
information (i.e., H(A) − H(A|B) = H(B) − H(B|A))
and using our previously obtained samples taken from the
posterior distribution in order to approximate the integrals.
After all modifications and approximations, the equation for
information gain becomes,

I (Z; Y |D, c) =−
M∑

i=1

P (yi |D,c) logP (yi |D, c)

+ 1

N

N∑

s

M∑

i

p(yi |ζ (s),D) logp(yi |ζ (s),D),

(16)

where M indicates the number of possible outcomes associ-
ated with the candidate trial and N is the number of samples
being used to approximate the integral.

Heuristic search procedure

For simple scenarios, it is possible to evaluate all candi-
date trials in order find the trial that maximizes expected

information gain. Unfortunately, for most scenarios, par-
ticularly those involving larger stimulus sets, exhaustive
search becomes prohibitively expensive. As an alternative,
we employ a two-stage heuristic search strategy. In the first
stage, a query stimulus is stochastically selected based on
its relative uncertainty. In the second stage, a candidate set
of references is stochastically selected based on their sim-
ilarity to the query stimulus. This process is repeated until
the desired number of trials have been created. Ideally, the
embedding would be updated to take into account obser-
vations for the new trial. In practice, multiple trials can
be generated at once by limiting the number of times a
particular stimulus can be used as a query.

In the first stage, relative uncertainty is determined
by summing the Kullback–Leibler divergence between the
stimulus of interest and all other stimuli. Intuitively, this pri-
oritizes stimuli that exhibit high uncertainty in the embed-
ding. However, not all uncertainty is equivalent from the
perspective of constraining the embedding. Rather, high
uncertainty stimuli with close neighbors should be priori-
tized over high uncertainty stimuli with distant neighbors.
The asymmetric nature of Kullback–Leibler divergence is
also exploited in this heuristic. Given two stimuli, one
that has high uncertainty and one that has low uncertainty,
only the stimulus with high uncertainty should be given
higher priority. Once the relative uncertainty has been deter-
mined for all stimuli, a query is stochastically selected
proportional to its relative uncertainty such that higher
uncertainty stimuli are more likely to be chosen as query
stimuli.

In the second stage, a set of candidate references are
selected based on similarity using the current best esti-
mate of the similarity function. The candidate references are
selected stochastically such that more similar neighbors are
more likely to be chosen. In effect, this heuristic biases the
reference set to include stimuli that are close neighbors of
the query stimulus. If all the reference stimuli are exces-
sively dissimilar from the query stimulus, the corresponding
similarity judgments will not provide much information.
When few observations have been collected, this heuristic
prioritizes unevaluated stimuli.

Experiment andmodel recovery simulations

Experiment 1: kernel comparison

The following experiment compares the ability of three
different similarity kernels to predict human similarity
judgments. The exponential-family kernel is motivated by
psychological theory, while the inverse distance kernel,
Student’s-t kernel, and heavy-tailed kernel are largely
motivated by common practice in machine learning.
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Methods

Participants Apopulation of 342 participants were recruited
from Amazon Mechanical Turk and paid at a rate of approx-
imately $6.00 per hour.

Materials A small dataset of 16 species of birds was
assembled from the CUB 200 image dataset (Wah, Branson,
Welinder, Perona, & Belongie, 2011). Species were chosen
such that there were four groups of birds composed of
four similar-looking species, roughly corresponding to four
taxonomic families (Fig. 2a–d). For each species, we
selected 13 images, yielding a total of 208 unique images.
Images were selected and cropped such that each image
displayed a single bird, the bird was clearly visible, the
image was of a good resolution, and no text was present.

Procedure Similarity judgments were collected during
short, 10-min sessions via a web-based application deployed
on Amazon Mechanical Turk. Each 10-min session used
one of two possible trial configurations. Participants either
saw trials with two references and selected the most similar
reference (2-choose-1) or saw eight references and selected
two references in a ranked order (8-choose-2). During a
2-choose-1 session, participants saw between 60 and 120
trials. The number of displays varied in order to calibrate
each session to be approximately 10 min. During an 8-
choose-2 session, participants saw 30 trials. Participants

were allowed to complete more than one 10-min session.
Collectively, participants judged 7520 2-choose-1 trials and
8772 8-choose-2 trials. All judged trials were combined to
create a single dataset of observations (D).

The collected similarity judgments were used in a
tenfold, subject-stratified cross-validation procedure in
order to evaluate the capabilities of an exponential-family
kernel, an inverse distance kernel, a heavy-tailed kernel, and
a Student’s-t kernel. Similarity judgments were partitioned
into ten roughly equal folds such that each fold had the
same proportion of 2-choose-1 and 8-choose-2 trials. For
each fold, the dimensionality was estimated using the
dimension search routine. Once a dimensionality was
selected, an embedding was inferred using nine folds as
training data. The remaining fold was used as a validation
set. For each fold, the validation loss (i.e., negative log-
likelihood) and validation accuracy was recorded. Accuracy
was computed differently for each trial configuration. For
2-choose-1 configurations, accuracy was determined by
computing the proportion of time the model correctly
predicted the chosen reference (i.e., top-1 accuracy). For
8-choose-2 configurations, there are 56 possible outcomes.
The prediction of an 8-choose-2 was graded as correct if
the actual outcome was among the top five most probable
outcomes (top-5 accuracy). Since individuals may perceive
similarity differently and individuals themselves may not be
consistent, we do not expect to infer embeddings with zero
loss or perfect accuracy.

a  Orioles

b  Warblers

c  Sparrows

Hooded Oriole

Hooded Warbler

Chipping Sparrow

Blue Grosbeak

Bobolink

Kentucky Warbler

Tree Sparrow

Indigo Bunting

Yellow-headed Blackbird

Magnolia Warbler

Fox Sparrow

Lazuli Bunting

Scott Oriole

Wilson Warbler

Harris Sparrow

Painted Buntingd  Cardinals

Fig. 2 Example stimuli of the different bird species used in this work. Each row contains four similar bird species, each of which belongs to the
same or similar taxonomic family. The images shown in this figure were drawn from the set of 208 images used in the experiments



Behav Res

Results

The primary goal of the model comparison is to determine
which model is best able to predict unseen human similarity
judgments. The results are presented in Fig. 3. During
the cross-validation procedure, the dimension search
procedure selected a dimensionality that varied between
2 and 4. The modal dimensionality for the inverse,
exponential, heavy-tailed, and Student’s-t model was 4, 3,
2, and 3, respectively. Significance tests use a Bonferroni
corrected alpha value of .05 (.008 corrected). Focusing
on validation loss, pairwise t tests of the tenfold cross-
validation validation procedure reveal that the differences
between the inverse kernel (M = 2.99, SD = 0.14),
exponential-family kernel (M = 2.93, SD = 0.15), the
heavy-tailed kernel (M = 2.99, SD = 0.14), and the
Student’s-t kernel (M = 2.92, SD = 0.13) are all non-
significant. Likewise, pairwise t tests of top-N accuracy
were all non-significant.

To ensure that the null results were not merely a
result of insufficient data, a convergence analysis was
performed using the assess convergence function.
When splitting the data into ten partitions and performing
three different restarts, the Pearson correlation between the
similarity matrices of an embedding that uses all of the data
and an embedding that uses nine partitions of the data is very
high (ρ = .95). The high correlation value suggests that the
inferred embeddings are consistent and a sufficient amount
of data have been collected.

Discussion

The three kernels appear equally capable of predicting
human similarity judgments. For domains that are similar to

the set of birds used here, it is likely reasonable to use either
kernel. One advantage of using the exponential-family ker-
nel is that many computational models of human category
learning also use an exponential-family kernel. By assuming
an exponential-family kernel, the resulting psychological
embedding could be integrated with a category learning
model (e.g., Shepard 1957, 1958; Nosofsky 1985, 1986;
Roads, Xu, Robinson, & Tanaka, 2018).

Given a domain as complicated as birds, it may be
surprising that the dimensionality search choose relatively
low dimensionality embeddings. While birds unquestion-
ably involve a plethora of features, the embedding algorithm
is constrained by three factors. First, the chosen bird dataset
does not span the entire space of bird features. If a particular
type of feature variability is not represented in the dataset,
it is unlikely to be captured in the inferred embedding.
Second, the inferred embeddings represent nonlinear mani-
folds of a higher-dimensional feature space. Consequently,
a single embedding dimension is unlikely to model a single
visual feature, but will capture a mixture of features. Lastly,
the embeddings are constrained by the number of observa-
tions that are available. Each additional dimension adds an
additional degree of freedom for every embedding vector.
Without sufficient data, these additional degrees of free-
dom will lead to model overfitting and poor generalization.
Under ideal conditions, an infinite number of observations
would be collected in order to allow the dimensionality
search procedure to consider higher dimensional spaces.

Simulation 1: data collection strategies

Having compared different kernels, we turn to the issue of
comparing different strategies for collecting observations.
The goal is to determine the strategy that results in the

a b

Fig. 3 Model fitting results using a tenfold cross-validation procedure
for four different similarity kernels: inverse, exponential, heavy-tailed,
and Student’s-t . Validation results are shown for a validation loss
(i.e., negative log-likelihood) and b top-n validation accuracy. Top-1

accuracy is used evaluate 2-choose-1 trials while top-5 accuracy is
used to evaluate 8-choose-2 trials. All error bars indicate standard
error of the mean across the ten folds
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highest-quality embedding at the lowest cost. Since the
primary cost of collecting similarity judgments is paying
participants for their time, we evaluate different collection
strategies based on how many worker hours are required to
reach a given quality level.

Data collection strategies are evaluated along two
dimensions. First, the trial itself can take on many different
configurations. Second, trials can be generated randomly or
via active selection. The different collection strategies are
evaluated using simulations of human similarity judgments.

Methods

Participants No new participants were recruited for this
experiment. All similarity judgments collected for the
previous experiment were re-used to infer a ground-truth
model of human behavior.

Materials The experiment used the same set of 208 bird
images as the previous experiment.

Procedure Three different collection strategies were evalu-
ated using simulated human responses. The first collection
strategy presented trials containing two references, where
simulated participants selected one reference. The content
of the trials was chosen randomly, subject to the constrain
that a single image could not appear more than once on
a trial (random 2-choose-1). The second collection strat-
egy presented trials containing eight references and required
participants to select two references, in ranked order. The
particular images for each trial were chosen randomly (ran-
dom 8-choose-2). The last strategy used an 8-choose-2 trial
configuration, but selected the trial content using active
selection (active 8-choose-2).

Simulated responses were generated by treating a fitted
psychological embedding as a generative model of human
behavior (i.e., a virtual subject). Once a psychological
embedding predicts the probability of all possible response
outcomes for a particular trial (see “Selection function”),
a specific response is generated by stochastically sampling
from the possible outcomes. To ensure that the simulated
responses mirror human behavior, an exponential-family
psychological embedding was fitted to all human similarity
judgments described in the previous experiment (7520 2-
choose-1 trials and 4733 8-choose-2 trials). The fitted
model served as a virtual subject and the ground-truth
psychological embedding by which other models were
evaluated.

Each collection strategy is used to generate trials, collect
observations, and infer a strategy-specific psychological
embedding. The quality of a strategy-specific embedding
is determined by comparing its predictions to those
of the ground-truth embedding. The critical predictions

of a psychological embedding can be summarized by
generating a corresponding pair-wise similarity matrix S.
The element sij indicates the similarity between the ith
and j th stimulus. The predictions of a strategy-specific and
ground-truth psychological embedding can be compared
by computing the Pearson correlation coefficient between
the respective similarity matrices. When computing the
Pearson correlation, we only use the upper diagonal
portion of the matrix less the diagonal elements, since the
matrix is symmetric and the diagonal elements indicate
self-similarity. If the strategy-specific embedding has
successfully modeled the ground-truth embedding, the
Pearson correlation will be high.

Each strategy-specific embedding was inferred using a
different number of trials in order to map out how the
number of trials affects the quality of the inferred embed-
ding. Starting with an initial set of observations, additional
observations were added in an incremental fashion. Each
strategy-specific embedding was evaluated based on how
many worker hours it took to reach a Pearson correla-
tion of .95. Since there are two sources of stochasticity
(trial generation and response simulation), five separate
runs were conducted for each strategy. For each run, ran-
dom 2-choose-1, random 8-choose-2, and active 8-choose-2
were seeded with 500, 50, and 50 trials, respectively. For
all strategies, the seed trials had their content generated
randomly. During active selection, 40 trials (each with a
unique query image) were generated per round. In between
every round, the posterior distribution of the embedding
points was updated, while holding constant the parameters
of the similarity function. Every fifth round, the parame-
ters of the similarity function were updated. For simplic-
ity, all inference is performed assuming a dimensionality
of three—matching the dimensionality of the ground-truth
embedding.

Results

From the actual human data, it is clear that a 2-choose-1
display (M = 4.73, SD = 11.18) and 8-choose-2 (M =
13.07, SD = 23.49) display require different amounts of
time to complete (t (12251) = 26.41, p < 0.001). The
number of trials is converted to worker hours based on the
median human response time of the 2-choose-1 (median
3.06 s) and 8-choose-2 (median 8.98 s) trials. Since the
human response times include dramatic outliers, median
response times provide an appropriate measure of central
tendency.

The simulation results for three different collection
strategies are presented in Fig. 4. The simulation results
show that random 8-choose-2 (M=28.0 h) is more efficient
than random 2-choose-1 (M=82.0 h) in reaching a Pearson
correlation of .95. For the same embedding quality, only
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Fig. 4 Results of Simulation 1. Each line indicates a different collection strategy. Since cost is determined by total number of worker hours needed,
the quality of the inferred embeddings is plotted with respect to worker hours. Each line indicates the mean between five independent simulation
runs. The shaded regions indicate the maximum and minimum envelope across runs

about 34% of the worker hours are necessary when using
randomly selected 8-choose-2 versus 2-choose-1 trials. The
results also reveal that active 8-choose-2 (M=16.0 h) is
more efficient than either random strategy. When using
an 8-choose-2 trial configuration, active selection requires
about 57% of the worker hours compared to random
selection.

Discussion

Assuming reliability of responses is in accordance with
our simulations, using 8-choose-2 displays is more cost-
effective than 2-choose-1 displays, allowing a high-quality
embedding to be inferred at nearly a third of the cost.
If the goal is to obtain a psychological embedding using
the most effective trial configuration, the 8-choose-2 trial
configuration is a good way to save money. These results
replicate the findings of Wilber et al. (2014), except with a
proper likelihood model.

Additional savings are achieved when switching to a
strategy that uses active selection. The benefit of active
selection appears to be greatest when the quality of the
inferred embedding is starting to asymptote. Without much
data, active selection behaves similarly to random selection.
In effect, the active selection procedure is highly uncertain
about all embedding points and the chosen displays provide
the same amount of information at randomly generated
displays. As data accumulate, active selection is able to
focus on uncertain stimuli, allowing the inferred embedding
to reach asymptote more quickly. According to these
simulations, active selection provides an efficient and cost-
effective way to obtain high-quality embeddings.

Simulation 2: group-specific attention weights

In the final simulation, we demonstrate how the embed-
ding procedure is capable of inferring group-specific
attention weights in a similar spirit to MDS procedure IND-
SCAL (Carroll and Chang, 1970). Attention weights assume
that all agents use the same feature space, but may differ in
how important they view each dimension. For example, an
expert birdwatcher may place more weight on the color of
feathers surrounding a bird’s eye, while a novice may place
very little weight on this feature. Since the development
of INDSCAL, many cognitive models have captured indi-
vidual and group differences using attention weights (e.g.,
Nosofsky 1984, 1986; Kruschke 1992; Love et al. 2004).

In addition to demonstrating the ability to learn group-
specific attention weights, this simulation also demonstrates
how inferring a shared embedding has the potential to
reduce the cost of collecting data. The demonstration uses
a shared set of fictitious stimuli and two simulated groups.
These two groups can be likened to novices and experts.
Inspired by novice and expert attention differences with
musical notes (Shepard, 1982), we assume a scenario where
novices pay attention to one set of feature dimensions, while
experts attend to a complementary set of feature dimensions.

Methods

Participants No human participants were used in this
experiment. All observations were simulated.

Materials A fictitious set of 100 stimuli was used in this
experiment. The stimuli coordinates were drawn from a
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four-dimensional Gaussian distribution with zero mean and
a spherical covariance matrix of 0.03 (equal variance along
each dimension).

Procedure Following the design of Simulation 1, we
assume a known ground-truth psychological embedding.
In contrast to the previous experiment, this embedding is
not based on actual human behavior, but assumes that a
set of stimuli are distributed in a four-dimensional space.
Furthermore, it is assumed that novices focus on the first
two dimensions (w = [1.8, 1.8, .2, .2]) while experts
focus on the last two dimensions (w = [.2, .2, 1.8, 1.8])
when judging similarity. Novice and expert responses are
simulated using the respective attention weights.

Multiple-group inference is examined using two condi-
tions: a naive approach (independent) and an information-
sharing approach (shared). The naive approach is to infer an
independent embedding for each group. There are two pri-
mary disadvantages with this approach. First, independently
inferred embeddings are not directly comparable, sinceMDS
solutions exhibit rotation and scale invariance. Second,
independently inferred embeddings will not be able to lever-
age any mutual information between the observations of the
two groups. The shared condition infers a shared psycho-
logical embedding with group-specific attention weights.

The quality of an inferred embedding is evaluated in the
same manner as Simulation 1, with a small twist. Since
there are two groups, there are group-specific similarity

matrices: a novice similarity matrix and an expert similarity
matrix. The quality of an inferred embedding is determined
by comparing each group-specific similarity matrix to the
corresponding ground-truth similarity matrix.

The independent and shared condition require different
considerations when deciding how to collect observations.
In the independent condition, each group is treated inde-
pendently and the researcher collects whatever number of
observations are necessary for each group. In the shared
condition, the researcher could collect an equal number of
novice and expert observations. Since it is assumed that
there is mutual information between the two groups, the
researcher can choose to collect an imbalanced set of obser-
vations that optimizes some external utility function. For
example, it is often the case that compensating experts
costs more than compensating novices. If the external util-
ity function is to minimize cost, the researcher can collect
a larger proportion of novice observations. The best propor-
tion will be determined by the particular circumstances of
the researcher. As a proof of concept, we consider the case
where novice observations are collected approximately 74%
of the time.

Using five independent runs, we determine how many
expert worker hours are necessary to reach psychological
embeddings that correctly capture novice and expert
behavior with at least a .95 Pearson correlation. Worker
hours are estimated using the same conversion values used
in Simulation 1.

a b

Fig. 5 Results of Simulation 2. a Total worker hours for the inde-
pendent and shared condition. The results indicate an average of
five independent runs. b A breakdown of expert-specific conver-
gence as a function of expert worker hours. Each line indicates
a different simulated scenario evaluating how many expert worker
hours are necessary. The blue line indicates the number of expert
worker hours necessary to reach criterion when a independent

psychological embedding is inferred for each group. The red line
indicates the number of expert worker hours necessary to reach cri-
terion when a shared psychological embedding is inferred. Each line
indicates the mean between five independent simulation runs. The
shaded regions indicate the maximum and minimum envelope across
runs
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Results

The simulation expert-specific results for the two different
conditions are presented in Fig. 5. When inferring an expert-
specific psychological embedding for the independent
condition, approximately 14.8 expert worker hours are
required to reach criterion. Inferring a novice-specific
psychological embedding requires 14.8 novice worker hours
to reach criterion (not shown in the figure). When inferring
a shared embedding, criterion can be met for both groups
using 8.9 novice worker hours and 5.3 expert worker hours.
From the perspective of total worker hours, the independent
condition requires 29.6 worker hours while the shared
condition requires 14.2 worker hours.

Discussion

Fewer total worker hours are required when inferring a sin-
gle psychological embedding with group-specific attention
weights than when inferring two independent embeddings.
It is notable that the shared condition only requires about
half the total worker hours as the independent condition.
The large difference is likely driven by three factors. First,
a shared embedding involves fewer free parameters in
total. Second, a shared embedding can take advantage of
any mutual information between the novice and expert
groups. Lastly, inference likely struggles to determine
the location of stimuli along the feature dimensions that
receive little attention weight. By combining observa-
tions from subjects that have complementary attention
weights, it becomes easier to determine the location of each
stimulus in the psychological embedding. Combined, these
factors make the shared condition a clear winner.

In addition to fewer total worker hours, a shared psycho-
logical embedding can reach criterion for both experts and
novices by using relative fewer expert hours. Since experts
are typically paid more for their time (and expertise), reduc-
ing the required number of expert worker hours can substan-
tially reduce the financial burden of collecting data. It is pos-
sible that more extreme savings can be achieved by shifting
more of the inference burden onto novice observations. The
above analysis assumed that novice and experts complete
trials in the same amount of time. However, novices and
experts may differ on their throughput. One possibility is
that experts would be faster given their ability to make quick
fine-grained judgments about their domain of expertise
(Tanaka & Taylor, 1991).

Conclusions

Psychological embeddings are useful in many domains of
research. Despite the substantial progress that has been

made, a unified and coherent set of tools has been slow to
emerge. This work presents the key aspects of a publicly
available Python package that makes it easy for researchers
to infer their own psychological embeddings. In an effort
to make the tools as useful as possible, the algorithms have
been designed to handle a variety of trial configurations
and handle inference of group-specific attention weights. In
addition, the package includes an active selection routine
to help researchers get the most out of their budget.
While these facets were discussed in the context of visual
similarity, the software package can work with similarity
judgment based on other modalities.

To accompany the description of the algorithm, three
experiments demonstrated the various ways the package
can be used. Experiment 1 demonstrated how different
similarity kernels can easily be compared, allowing the
researcher to select the one that makes the most sense
for their project. Simulation 1 highlighted how different
collection strategies can make data acquisition more cost-
effective. In particular, active selection combined with 8-
choose-2 trial configurations beat out the other options.
Lastly, Simulation 2 illustrated how group-specific attention
weights can be inferred using a single model—potentially
reducing the cost of collecting data. In isolation, the results
presented in this work make incremental contributions on
four different fronts. As a whole, a meaningful contribution
is made by providing a complete top-to-bottom software
package.
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