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Abstract

We propose and evaluate a novel loss function for discovering deep embeddings that
make explicit the categorical and semantic structure of a domain. The loss function
is based on the F statistic that describes the separation of two or more distributions.
This loss has several key advantages over previous approaches, including: it does
not require a margin or arbitrary parameters for determining when distributions
are sufficiently well separated, it is expressed as a probability which facilitates its
combination with other training objectives, and it seems particularly well suited
to disentangling semantic features of a domain, leading to more interpretable and
manipulable representations.

In typical classification tasks, the input features—whether images, speech, text, or other
measurements—contain only implicit information about category labels, and the job of a classi-
fier is to transform the input features into a representation that makes category labels explicit. The
traditional representation has been a localist or one-hot encoding of categories, but an alternative
approach has recently emerged in which the representation is a distributed encoding in a high dimen-
sional space that captures category structure via metric properties of the space. The middle panel
of Figure 1 shows a projection of instances from three categories to a two-dimensional space. The
projection separates inputs by category and therefore facilitates classification of unlabeled instances
via proximity to the category clusters. Such a deep embedding also allows new categories to be
’learned’ with a few labeled examples that are projected to the embedding space. The literature is
somewhat splintered between researchers focusing on deep embeddings which are evaluated via
k-shot learning [1, 2, 3] and researchers focusing on k-shot learning who have found deep embeddings
to be a useful method [4, 5].

Figure 1 illustrates a fundamental trade off in formulating an embedding. From left to right frames,
the intra-class variability increases and the inter-class structure becomes more conspicuous. In the
leftmost panel, the clusters are well separated but the classes are all equally far apart. In the rightmost
panel, the clusters are highly overlapping and the blue and purple cluster centers are closer to one
another than to the yellow. Separating clusters is desirable, but so is capturing inter-class similarity.
If this similarity is suppressed, then instances of a novel class will not be mapped in a sensible
manner—a manner sensitive to input features, semantic features, and their correspondence. The
middle panel reflects a compromise between discarding variability between instances of the same
class and preserving relationships among the classes. With this compromise, deep embeddings can

Figure 1: Alternative two-dimensional embed-
dings of instances of three categories. Points rep-
resent instances and color the category label. In
the leftmost frame, the points are superimposed on
one another.



be used to model hierarchical category structure and can facilitate partitioning the instances along
multiple dimensions, e.g., disentangling content and style [6].

The trade off in Figure 1 points to a challenge in constructing deep embeddings. Some existing
methods aim to perfectly separate categories in the training set [1], which may not be appropriate
if there are labeling errors or noise in the data. Other methods require a margin or other parameter
to determine how well separated the categories should be in order to prevent overfitting [7, 2, 3, 8].
We propose a new method that automatically balances the trade off using the currency of probability
and statistical hypothesis testing. It also manages to align dimensions of the embedding space with
categorical and semantic features, thereby facilitating the disentangling of representations.

1 Using the F statistic to separate classes

For expository purposes, consider two classes, C = {1, 2}, having n1 and n2 instances, which are
mapped to a one-dimensional embedding. The embedding coordinate of instance j of class i is
denoted zij . The goal of any deep embedding procedure is to separate the coordinates of the two
classes. In our approach, we will quantify the separation via the probability that the true class means
in the underlying environment, µ1 and µ2, are different from one another. Our training goal can thus
be formulated as minimizing Pr (µ1 = µ2 | s(z), n1, n2), where s(z) denotes summary statistics of
the labeled embedding points. This posterior is intractable, so instead we operate on the likelihood
Pr (s(z) | µ1 = µ2, n1, n2) as a proxy.

We borrow a particular statistic from analysis of variance (ANOVA) hypothesis testing for equality of
means. The statistic is a ratio of between-class variability to within-class variability:

s = ñ

∑
i ni(z̄i − ¯̄z)2∑
i,j(zij − z̄i)2

where z̄i = 〈zij〉 and ¯̄z = 〈z̄i〉 are expectations and ñ = n1 + n2 − 2. Under the null hypothesis
µ1 = µ2 and an additional normality assumption, zij ∼ N (µ, σ2), our statistic s is a draw from a
Fisher-Snedecor (or F ) distribution with degrees of freedom 1 and ñ, S ∼ F1,ñ. Large s indicate
that embeddings from the two different classes are well separated relative to two embeddings from
the same class, which is unlikely under F1,ñ. Thus, the CDF of the F distribution offers a measure of
the separation between classes:

Pr (S < s|µ1 = µ2, ñ) = I
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,
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2
,
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)
(1)

where I is the regularized incomplete beta function, which is differentiable and thus can be incorpo-
rated into an objective function for gradient-based training.

Several comments on this approach. First, although it assumes the two classes have equal variance,
the likelihood in Equation 1 is fairly robust against inequality of the variances as long as n1 ≈ n2.
Second, the F statistic can be computed for an arbitrary number of classes; the generalization of the
likelihood in Equation 1 is conditioned on all class instances being drawn from the same distribution.
Because this likelihood is a very weak indicator of class separation, we restrict our use of the F
statistic to class pairs. Third, this approach is based entirely on statistics of the training set, whereas
every other deep-embedding method of which we are aware uses training criteria that are based on
individual instances. For example, the triplet loss [7] attempts to ensure that for specific triplets
{z11, z12, z21}, z11 is closer to z12 than to z21. Objectives based on specific instances will be more
susceptible to noise in the data set and may be more prone to overfitting.

1.1 From one to many dimensions

Our example in the previous section assumed one-dimensional embeddings. We have explored two
extensions of the approach to many-dimensional embeddings. First, if we assume that the Euclidean
distances between embedded points are gamma distributed—which turns out to be a good empirical
approximation at any stage of training—then we can represent the numerator and denominator in
the F statistic as sums of gamma random variables, and a variant of the unidimensional separation
measure (Equation 1) can be used to assess separation based on Euclidean distances. Second, we
can apply the unidimensional separation measure for multiple dimensions of the many-dimensional
embedding space. We focus on the latter approach in this article.
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For a given class pair (α, β), we can compute Pr (S < s|µ1k = µ2k) for each dimension k of the
embedding space We select a set, Dα,β , of the d dimensions with largest Pr (S < s|µ1k = µ2k)
i.e., the dimensions that are best separated already. Although it is important to separate classes, they
needn’t be separated on all dimensions because the pair may have semantic similarity or equivalence
along some dimensions. The pair is separated if they can be distinguished reliably on a subset of
dimensions.

For a training set or a mini-batch with multiple instances of a set of classes C, our embedding
objective is to maximize the joint probability of separation for all class pairs (α, β) on all relevant
dimensions, Dα,β . Framed as a loss, we minimize the log probability:

LF = −
∑
{α,β}∈C

∑
k∈Dα,β

ln Pr (S < s|µ1k = µ2k)

This F -statistic loss has four desirable properties. First, the gradient rapidly drops to zero once classes
become reliably separated on at least d dimensions, leading to a natural stopping criterion; the degree
of separation obtained is related to the number of samples per class. Second, in contrast to other
losses, the F-statistic loss is not invariant to rotations in the embedding space; this focus on separating
along specific dimensions tends to yield disentangled features when the class structure is factorial
or compositional. Third, embeddings obtained are relatively insensitive to the one free parameter,
d. Fourth, because the loss is expressed in the currency of probability it can readily be combined
with additional losses expressed similarly (e.g., a reconstruction loss framed as a likelihood). The
following sections demonstrate the advantages of the F -statistic loss for identity classification and
for disentangling attributes related to identity.

2 Identity Classification

In this section, we demonstrate the advantages of the F -statistic loss over state-of-the-art methods on
identity classification. The task involves matching a person from a wide-angle, full-body photograph,
taken at various angles and poses. We evaluate two data sets—CUHK03 [9] and Market-1501 [10]—
following the methodology of [1]. Five-fold cross validation is performed for CUHK03, and a single
train/test split used for Market-1501.

Training Details. Following [1], we use the Deep Metric Learning [3] architecture with a 500-
dimensional embedding. All nets were trained using the ADAM [11] optimizer, with a learning rate
of 10−4. A validation set was withheld from the training set, and used for early stopping. To construct
a mini-batch for training, we randomly select 12 identities, with up to 10 samples of each identity,
as in [1]. In addition to the F -statistic loss, we evaluated histogram [1], triplet [2], and binomial
deviance [12] losses. For the triplet loss, we use all triplets in the minibatch. For the histogram loss
and binomial deviance losses, we use all pairs. For the F -loss, we use all class pairs. The triplet loss
is trained and evaluated using L2 distances. The F -statistic loss is evaluated using L2 distances. As in
[1], embeddings obtained discovered by the histogram and binomial-deviance losses are constrained
to lie on the unit hypersphere; cosine distance is used for training and evaluation. For the F -statistic
loss, we determined the best value of d, the number of dimensions to separate, using the validation
set of the first split. Performance is relatively insensitive to d for 2 < d < 100.

Results. Figure 2 reports Recall@k accuracy, the performance metric used in earlier work. For
each query image in the test set, we compute the distance of its embedding vector to the embedding
vectors in the remainder of the test set. A query returns a 1 if one of the k nearest neighbors in the
embedding space is of the same class as the query image, 0 otherwise. Recall@k is the percentage
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Figure 2: Recall@k for the CUHK03 dataset
and four deep-embedding losses. For
CUHK03, each line indicates the mean
Recall@k over cross-validation splits, and ver-
tical bars indicate ±1 standard error of the
mean.
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of queries that return a 1. The F -statistic loss leads to reliably better accuracy, especially for low k.
On CUHK03, the F -statistic loss obtains a Recall@1 accuracy of 90.5%± 0.4%, compared to next
best, histogram loss, 86.3%± 0.6%. On Market-1501, the single train-test split yields comparable
performance for all losses for small k, e.g., Recall@1 accuracy is 66.51% for the histogram loss,
65.87% for the triplet loss, 65.75% for the F -statistic loss, and 65.45% for binomial deviance loss.

3 Disentangling Identity Attributes

Next, we show that the F -statistic loss obtains disentangled embeddings—embeddings whose
dimensions are aligned with the categorical and semantic features of the input data. We explore
disentangling with a data set of video game sprites—60× 60 pixel color images of game characters
viewed from various angles and in a variety of poses [13]. The identity of the game characters is
composed of 7 attributes—body, arms, hair, gender, armor, greaves, and weapon—each with 2–5
distinct values, leading to 672 total unique identities which can be instantiated in various viewing
angles and poses.

We used the encoder architecture of Reed et al. [13] as well as their embedding dimensionality of
22. We evaluated with five-fold cross validation, splitting by identity and including all variations in
viewing angle and pose. A portion of the training set was reserved to determine when to stop training
based on Recall@1 performance. For these experiments, we compare the F -statistic loss to the triplet
loss; other losses using Lp norm distances should yield similar results.

The sprite dataset is factorial: every combination of attribute-values is present. An ideal disentangled
representation will also be factorial, wherein all pairs of dimensions are statistically independent.
However, due to the fact that the embedding dimensionality may allow for redundancy, simply
measuring mutual information will not reveal disentangled structure: if one embedding is more
compact than another, it will allow for more redundancy and consequently higher mutual information.
As an alternative to mutual information, we measure how well each embedding dimension predicts
each identity-attribute value (e.g., hair=blond, weapon=spear); in a disentangled representation, single
dimensions should be highly predictive of these values. For each value, we assess how well each
embedding dimension discriminates the given value from other values of the attribute, and record the
AUC of the most predictive embedding dimension. There are in total 17 (nonredundant) attribute
values, and five cross-validation splits, so we record 85 AUCs for each training loss. AUC is based on
the entire dataset to ensure adequate coverage over all attribute values. Figure 3 shows the distribution
of AUCs for embeddings based on the triplet, histogram, and F -statistic losses. The embeddings
trained using the F -statistic loss are more likely to include dimensions that are aligned with the
generative attributes of the domain (i.e., AUC close to 1). This property is robust for moderate values
of d.

4 Discussion and Future Work

The F -statistic loss is a novel approach to learning deep embeddings that uses only summary statistics
to judge embedding quality, in contrast to approaches that examine the relationships among the
individual embedding points. Our approach beats state-of-the-art performance on the “person re-
identification” task. Our approach also yields better disentangling of factors that compose identity,
leading to more interpretable representations.

We are presently investigating the use of this loss for disentangling content and style (or, identity
and non-identity) by incorporating an additional reconstruction loss to ensure that the combined
content+style representation preserves information in the input [14, 15]. We further expect to improve
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the disentangling of content and style by inverting the F -statistic loss for the style component of the
embedding to reduce class separation. Finally, we are evaluating the content-style decompositions
obtained with the F -statistic loss to those obtained by other losses, in an effort to demonstrate that the
F -statistic decompositions are superior for image synthesis and for generating augmented data sets.
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