
i
i

“TabibianCommentaryPreprint” — 2019/1/31 — 22:46 — page 1 — #1 i
i

i
i

i
i

Artificial intelligence to support human instruction
Michael C. Mozer ∗ †, Melody Wiseheart ‡, and Timothy Novikoff †

∗University of Colorado, Boulder,†Research and Machine Intelligence, Google, and ‡York University

Submitted to Proceedings of the National Academy of Sciences of the United States of America

The popular media’s recent interest in artificial intelligence
(AI) has focused on autonomous systems that might ulti-
mately replace people in fields as diverse as medicine, customer
service, and transportation and logistics. Often neglected is a
subfield of AI that focuses on empowering people by improving
how we learn, remember, perceive, and make decisions. This
human-centered focus relies on interdisciplinary research from
cognitive neuroscience, psychology, and theoretical computer
science.

The synergy among these fields promises to improve the
micro-organization of human instruction: picking the next ex-
ercise for a student to attempt, choosing what sort of hints
and feedback to provide, determining when material should
be reviewed, and selecting among teaching activities. These
are decisions which occur on a granularity that human in-
structors are typically unable to monitor and individualize,
and for which students have poor meta-cognitive strategies
[1]. Such micro-instruction complements the strengths of hu-
man teachers and can yield significant benefits. For example,
in a semester-long experiment integrated into a middle-school
foreign language course, setting aside roughly 30 minutes per
week for AI-guided personalized review of previously intro-
duced material led to a 16.5% improvement in overall course
retention on a cumulative exam administered a month after
the end of the semester, relative to a time-matched control
condition that reflects current educational practice [2].

In PNAS, Tabibian et al. [3] address the learning and re-
tention of factual material such as foreign language vocab-
ulary. They present an adaptive, data-driven method with
theoretical guarantees for scheduling retrieval practice. Their
work contributes to a growing body of results in algorithmic-
education theory that proves properties of idealized mathemat-
ical models of educational scenarios [4, 5, 6].

Like every proposal for AI-based instruction, the approach
of Tabibian et al. is formalized by two models: student and
teacher. The student model quantifies an individual’s current
knowledge state and how it evolves based on instructional ac-
tions and the passage of time. The teacher model specifies
a policy—in the control-theoretic sense—for administering in-
structional actions conditioned on the student model. Student
models range from those motivated heavily by psychological
theory [7, 8, 9, 10] to those motivated primarily by mathemati-
cal elegance and tractability [5, 6]. Somewhere in the middle of
this continuum are methods that mine corpora of educational
data [11] to predict the influence of various teaching actions on
the student’s subsequent performance [2, 12]. Teacher models
also lie along a continuum, from hand-constructed heuristic
or expert-based approaches [2, 9, 13, 14] to those that prov-
ably optimize according to some criterion, such as the student
model’s score on a post-instruction quiz [4, 15].

The ultimate aim in AI is to develop automated instruction
methods based on the combination of a psychologically valid
student model and a theoretically grounded teacher model.
However, this goal has yet to be achieved. Research concerned
with solving a tractable optimization problem has assumed a
simplified student model; nonetheless, even with a naive or
unrealistic student model, the formal nature of the work can
provide intuitions and a deeper understanding of the com-
putational issues. Conversely, the research most concerned

with psychological fidelity of the student model has relied on
heuristic teacher models; nonetheless, heuristic strategies of-
ten appear to be effective (e.g., Bjork’s [16] notion of desirable
difficulty).

Tabibian et al. [3] have identified a class of student mod-
els that admit a formal analysis yet are informed by human
memory data. They characterize the student’s memory state
in terms of stochastic differential equations with jumps: when
the student reviews a particular item (e.g., vocabulary word),
the memory strength of the item is bumped up and then de-
cays over time. Reviewing times for an item are specified
via a temporal point process. The stochastic optimal control
problem is to determine the point-process reviewing intensity,
i.e., the rate of retrieval practice, in order to maintain mem-
ory without excessive practice. Formally, the penalty function
they optimize is quadratic in both recall failure rate and re-
viewing intensity. Their key result is a proof that the optimal
reviewing intensity is proportional to the student model’s pre-
dicted probability of recall failure. Predicted recall probability
has long been used as a heuristic measure for prioritizing ma-
terial in flashcard-type schedulers, but Tabibian et al. provide
the first compelling theoretical justification for the use of this
heuristic.

Tabibian et al.’s claim that the benefit of review increases
as memory decays is consonant with the spacing effect [17],
the behavioral finding that temporally distributed practice
leads to more robust and durable learning than massed prac-
tice. The spacing effect is often cast as “don’t cram for an
exam.” Cramming can help students remember information
on the exam; however, cramming also leads to rapid forget-
ting. The rate of forgetting is slowed by spaced practice.
Figure 1a presents results from an empirical study in which
participants learned trivia facts in two sessions and were sub-
sequently quizzed on the facts [18]. In the first session, each
item is practiced to criterion; in the second session, each item
is practiced a fixed number of times. The lag between the first
and second study sessions (the inter-study interval or ISI ) is
varied from minutes to 105 days, and the lag between the sec-
ond study session and the quiz (the retention interval or RI )
is varied from 7 to 350 days. The Figure reveals an optimal
ISI, and this optimum increases with the RI. This interaction
between optimal ISI and RI is also found in big data corpora
[19]. The smooth curves in the Figure are predictions from a
psychological model [10]. Figure 1b shows hypothetical for-
getting curves for various ISIs, consistent with the empirical
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results in Figure 1a and psychological theories of the spacing
effect [e.g., 10, 17].

Whereas psychologists have focused on optimizing time-of-
study given a fixed number of practice opportunities (Figure
1a), or on prioritizing items for study given finite study time
[2, 13, 14], Tabibian et al. have framed the challenge as de-
termining the optimal (time varying) reviewing rate per item.
It may be unrealistic in an educational context to forego hard
constraints on practice trials or time, but the cost trade-off for-
mulation that Tabibian et al. propose—standard in machine
learning—is a fresh perspective for psychology. Another nov-
elty of Tabibian et al. concerns the objective of spaced prac-
tice. Experimentalists typically consider optimizing spacing
for a particular RI, i.e., the duration following final study over
which the information must be maintained (Figure 1a). In
contrast, Tabibian et al. suggest a perhaps more practical sit-
uation in which study and test phase are not distinguished and
knowledge must be periodically refreshed to ensure its contin-
uous availability. This practical, lifelong learning perspective
is relatively understudied in psychology [20].

Just as cognitive psychology may find new avenues of in-
vestigation from algorithmic-instruction theory, algorithmic-
instruction theory may have more practical impact as it takes
into consideration the complexity of human behavioral data.
For example, consider the inverted-U shape of the curves in
Figure 1a. Various psychological accounts have been proposed
to explain these curves [17], most positing dual opposing mech-
anisms at play, one favoring short ISIs and one favoring long
ISIs, and the trade-off between these opposing mechanisms
gives rise to the inverted U.

Formal student models in Tabibian et al. and in other the-
oretical work [15] presently do not capture this key dynamic
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Fig. 1. (a) Recall accuracy at test for a given retention interval (7, 35, 70, 350

days), after the learner has studied material over two sessions separated by a given

inter-study interval (<1 to 105 days). Data points are from a human behavioral exper-

iment [18]. Solid lines are predictions of a cognitive model fit with one free parameter

to the data [10]. (b) Hypothetical memory strength curves consistent with experimen-

tal results in Figure 1a. Each curve shows a sequence of two study sessions, aligned

such that the second session of each sequence occurs at time t0 (dashed line). For

various t > t0 (i.e., the retention interval t − t0) the bars at the top of the graph

indicate which inter-study interval achieves the highest recall accuracy. The optimal

spacing depends on the retention interval.

of spaced practice. As Tabibian et al. acknowledge, under
their student model, the forgetting rate is reduced at least
as much by massed practice as spaced practice, inconsistent
with the behavioral data. They suggest possible extensions
but the theory does not at present incorporate these exten-
sions. One might therefore expect an actual student following
the schedule prescribed by their algorithm to fail to achieve
optimal performance. Remarkably, Tabibian et al. present ev-
idence ameliorating this concern. They report on a natural
experiment involving the reanalysis of a big-data corpus from
an online-learning platform. They find that forgetting is rela-
tively slowed following study sequences that more closely ad-
here to their theory’s optimum spacing. Their natural experi-
ment is as well conducted as one could hope for: in comparing
alternative schedules, they control for the lag between first and
final study, the total number of study trials, and the memory
strength after the first study trial. Our explanation for the
theory’s success in practice is their choice of penalty function,
which imposes a cost for high review intensities, i.e., massed
practice. This cost encourages long ISIs, and the inevitability
of forgetting encourages short ISIs, resulting in dual oppos-
ing factors that yield an intermediate spacing. Whether the
Tabibian et al. theory can predict the precise peak of the spac-
ing function (Figure 1a) may not be terribly critical, given that
for long retention periods, the peak appears to be broad and
flat. This fact gives us some reason to be optimistic about the
ease with which the spacing effect can be leveraged to miti-
gate forgetting. Indeed, online platforms that perform adap-
tive scheduling using variants of the Leitner method [21] and
SuperMemo [22] have thrived despite their heuristic nature.

Although ‘rote memorization’ is not considered a particu-
larly glamorous area of research in the education community,
facts underpin most types of learning, and one cannot engage
in critical thinking without sufficient field-specific knowledge.
The notion of an automated instructor which refreshes our
knowledge base at appropriate times is quite appealing. Such
an instructor even has a role to play in the classroom that is
complementary to that of the teacher: in the study mentioned
earlier utilizing personalized review software [2], the teacher is
freed from mechanical duties to interact with smaller groups
of students.

AI-guided micro-instruction has other potential applica-
tions, such as selecting and ordering examples to learn com-
plex visual concepts (e.g., bird species, skin-lesion diagnosis),
determining the hints a learner requires to solve a problem
and when to provide them, and recognizing when a student’s
attention has wandered while reading. In each of these cases,
principled approaches require a psychologically plausible stu-
dent model, a quantitative measure of performance to be op-
timized, and a teacher model with theoretical guarantees of
achieving optimal performance under the student model. The
field of AI has made advances through development of its the-
oretical foundations and explicit formulations of system objec-
tives. We expect this lesson to apply to human-centered AI
as well, but it will occur only through collaborations between
cognitive scientists who understand the intricacy of human
behavior and AI researchers who can bring a new degree of
clarity and elegance to cognitive models.
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