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Abstract

People perform a remarkable range of tasks that require search of the visual en-
vironment for a target item among distractors. The Guided Search model (Wolfe,
1994, 2007), or GS, is perhaps the best developed psychological account of hu-
man visual search. To prioritize search, GS assigns saliency to locations in the
visual field. Saliency is a linear combination of activations from retinotopic maps
representing primitive visual features. GS includes heuristics for setting the gain
coefficient associated with each map. Variants of GS have formalized the notion
of optimization as a principle of attentional control (e.g., Baldwin & Mozer, 2006;
Cave, 1999; Navalpakkam & Itti, 2006; Rao et al., 2002), but every GS-like model
must be ’dumbed down’ to match human data, e.g., by corrupting the saliency map
with noise and by imposing arbitrary restrictions on gain modulation. We propose
a principled probabilistic formulation of GS, called Experience-Guided Search
(EGS), based on a generative model of the environment that makes three claims:
(1) Feature detectors produce Poisson spike trains whose rates are conditioned on
feature type and whether the feature belongs to a target or distractor; (2) the en-
vironment and/or task is nonstationary and can change over a sequence of trials;
and (3) a prior specifies that features are more likely to be present for target than
for distractors. Through experience, EGS infers latent environment variables that
determine the gains for guiding search. Control is thus cast as probabilistic infer-
ence, not optimization. We show that EGS can replicate a range of human data
from visual search, including data that GS does not address.

1 Introduction

Human visual activity often involves search. We search for our keys on a cluttered desk, a face in
a crowd, an exit sign on the highway, a key paragraph in a paper, our favorite brand of cereal at
the supermarket, etc. The flexibility of the human visual system stems from the endogenous (or
internal) control of attention, which allows for processing resources to be directed to task-relevant
regions and objects in the visual field. How is attention directed based on an individual’s goals? To
what sort of features of the visual environment can attention be directed? These two questions are
central to the study of how humans explore their environment.

Visual search has traditionally been studied in the laboratory using cluttered stimulus displays con-
taining artificial objects. The objects are defined by a set ofprimitive visual features, such as
color, shape, and size. For example, an experimental task might be to search for a red vertical line
segment—thetarget—among green verticals and red horizontals—thedistractors. Performance is
typically evaluated as the response latency to detect the presence or absence of a target with high
accuracy. The efficiency of visual search is often characterized by the searchslope—the increase
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Figure 1: The archi-
tecture of Guided
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in response latency with each additional distractor in the display. An inefficient search can often
require an additional 25–35 ms/item (or more, if eye movements are required).

Many computational models of visual search have been proposed to explain data from the burgeon-
ing experimental literature (e.g., Baldwin & Mozer, 2006; Cave, 1999; Itti & Koch, 2001; Mozer,
1991; Navalpakkam & Itti, 2006; Sandon, 1990; Wolfe, 1994). Despite differences in their details,
they share central assumptions, perhaps most plainly emphasized by Wolfe’s (1994) Guided Search
2.0 (GS) model. We describe the central assumptions of GS, taking some liberty in ignoring details
and complications of GS that obfuscate the similarities within this class of models and that are not
essential for the purpose of this paper.1

As depicted Figure 1, GS posits that primitive visual features are detected across the retina in parallel
along dimensions such as color and orientation, yielding a set offeature activity maps. Feature
activations are scalars in[0, 1]. The feature maps represent each dimension via a coarse coding.
That is, the maps for a particular dimension are highly overlapping and broadly tuned. For example,
color might be represented by maps tuned to red, green, blue, and yellow; orientation might be
represented by maps tuned to left, right, steep, and shallow-sloped edges. The feature activity maps
are passed through a differencing mechanism that enhances local contrast and texture discontinuities,
yielding abottom-up activation.

The bottom-up activations from all feature maps are combined to form asaliency mapin which
activation at a location indicates the priority of that location for the task at hand. Attention is directed
to locations in order from most salient to least, and the object at each location is identified. GS
supposes that response latency is linear in the number of locations that need to be searched before
a target is found. (The model includes rules for terminating search if no target is found after a
reasonable amount of effort.)

Consider the task of searching for a red vertical bar among green vertical bars and red horizontal
bars. Ideally, attention should be drawn to red and vertical bars, not to green or horizontal bar. To
allow for guidance of attention, GS posits that a weight ortop-down gainis associated with each
feature map, and the contribution of given feature map to the saliency map is scaled by the gain. It
is the responsibility ofcontrol processesto determining gains that emphasize task-relevant features.

Although gain modulation is a sensible means of implementing goal-directed action, it yields be-
havior than is more efficient than people appear to be. To elaborate, consider again the task of
searching for a red vertical. If the gains on the red and vertical maps are set to 1, and the gains on
green and horizontal maps are set to 0, then a target (red vertical) will have two units of activation
in the saliency map, whereas each distractor (red horizontal or green vertical) will have only one
unit of activation. Because the target is the most salient item and GS assumes that response time is
monotonically related to the saliency ranking of the target, the target should be located quickly, in a
time independent of the number of distractors. In contrast, human response times increase linearly
with the number of distractors in conjunction search.

To reduce search efficiency, GS assumes noise corruption of the saliency map. In the case of GS, the
signal-to-noise ratio is roughly 2:1. Baldwin and Mozer (2006) also require noise corruption for the
same reason, although the corruption is to the low-level feature representation not the saliency map.
Although Navalpakkam and Itti (2006) do not explicitly introduce noise in their model, they do so
implicitly via a selection rule that the probability of attending an item is proportional to its saliency.

To further reduce search efficiency, GS includes a complex set of rules that limit gain control. For ex-
ample, gain modulation is allowed for only one feature map per dimension. Other attentional models

1Although Guided Search has undergone refinement (Wolfe, 2007), the key claims summarized here are
unchanged. Recent extensions to GS consider eye movements and acuity changes with retinal eccentricity.
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place similar, somewhat arbitrary limitations on gain modulation. Baldwin and Mozer (2006) im-
pose the restriction

∑
i |gi − 1| < c, wheregi is the gain of feature mapi and c is a constant.

Navalpakkam and Itti (2006) prefer the constraints
∑

i gi = c andgi > 0.

Finally, we mention one other key property the various models have in common. Gain tuning is
cast as an optimization problem: the goal of the model is to adjust the gains so as to maximize the
target saliency relative to distractor saliency for the task at hand. Baldwin and Mozer (2006) define
the criterion in terms of the target saliency ranking. Navalpakkam and Itti (2006) use the expected
target to distractor saliency ratio. Wolfe (1994) sets gains according to rules that he describes as
performing optimization.

2 Experience-Guided Search

The model we introduce in this paper makes three contributions over the class of Guided Search
models previously proposed. (1) GS uses noise or nondeterminism to match human data. In reality,
noise and nondeterminism serve to degrade the model’s performance over what it could otherwise
be. In contrast, all components of our model are justified on computational grounds, leading to a
more elegant, principled account. (2) GS imposes arbitrary limitations on gain modulation that also
result in the model performing worse than it otherwise could. Although limitations on gain mod-
ulation might be neurobiologically rationalized, a more elegant account would characterize these
limitations in terms of trade offs: constraints on gain modulation may limit performance, but they
yield certain benefits. Our model offers such a trade-off account. (3) In GS, attentional control is
achieved by tuning gains to optimize performance. In contrast, our model is designed to infer the
structure of its environment through experience, and gain modulation is a byproduct of this infer-
ence. Consequently, our model has no distinct control mechanism, leading to a novel perspective on
executive control processes in the brain.

Our approach begins with the premise that attention is fundamentally task based: a location in the
visual field is salient if a target is likely at that location. We define saliency as thetarget probability,
P (Tx = 1|Fx), whereFx is the local feature activity vector at retinal locationx andTx is a binary
random variable indicating if locationx contains a target. Torralba et al. (2006) and Zhang and
Cottrell (submitted) have also suggested that saliency should reflect target probability, although they
propose approaches to computing the target probability very different from ours. Our approach is to
compute the target probability using statistics obtained from recent experience performing the task.
Consequently, we refer to our model asexperience-guided searchor EGS.

To expandP (Tx|Fx), we make the naive-Bayes assumption that the feature activities are indepen-
dent of one another, yielding

P (Tx|Fx,ρ) = P (Tx)
∏

i P (Fxi|Tx,ρ)/
∑1

t=0 P (Tx = t)
∏

i P (Fxi|Tx = t,ρ), (1)

whereρ is a vector of parameters that characterize the current stimulus environment in the current
task, andFxi encodes the activity of featurei. ConsiderFxi to be a rate-coded representation of
a neural spike train. Specifically,Fxi denotes thecountof the number of spikes that occurred in a
window ofn time intervals, where at most one spike can occur in each interval.

We propose a generative model of the environment in whichFxi is a binomial random variable,
Fxi|{Tx = t, ρ} ∼ Binomial(ρit, n), where a spike rateρit is associated with featurei for target
(t = 1) and nontarget (t = 0) items. Asn becomes large—i.e., the spike count is obtained over
a larger period of time—the binomial is well approximated by a Gaussian:Fxi|{Tx = t,ρ} ∼
N (nρit, nρit(1− ρit)). Using the Gaussian approximation, Equation 1 can be rewritten in the form
of a logistic function:P (Tx|Fx,ρ) = 1/(1 + e−(rx+ n

2 sx)), where

rx = ln
[
P (Tx = 1)
P (Tx = 0)

]
− 1

2

∑
i

ln
[
ρi1(1− ρi1)
ρi0(1− ρi0)

]
and sx =

∑
i

1∑
t=0

1− 2t

ρit(1− ρit)
(f̃xi−ρit)2 (2)

andf̃xi = fxi/n denotes the observed spikerate for a feature detector.

Because of the logistic relationship,P (Tx|Fx,ρ) is monotonic inrx + n
2 sx. Consequently, if at-

tentional priority is given to locations in order of their target probability,P (Tx|Fx,ρ), then it is
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equivalent to rank usingrx + n
2 sx. Further, if we assume that the target is equally likely in any

location, thenrx is constant across locations, andsx can substitute forP (Tx|Fx,ρ) as an equivalent
measure of saliency.

This saliency measure,sx, makes intuitive sense. Saliency at a location increases if featurei’s
activity is distant from the mean activity observed in the past for a distractor (ρi0) and decreases if
featurei’s activity is distant from the mean activity observed in the past for a target (ρi1). These
saliency increases (decreases) are scaled by the variance of the distractor (target) activities, such that
high-variance features have less impact on saliency.

Expanding the numerator terms in the definition ofsx (Equation 2), we observe thatsx can be written
as a linear combination of terms involving the feature activities,f̃xi, and the squared activities,̃f2

xi
(along with a constant term that can be ignored for ranking by saliency). The saliency measure
sx in EGS is thus quite similar to the saliency measure in GS,sGS

x =
∑

i gif̃xi. The differences
are: first, EGS incorporates quadratic terms, and second, gain coefficients of EGS are not free
parameters but are derived from statistics of targets and distractors in the current task and stimulus
environment. In this fact lies the virtue of EGS relative to GS: The control parameters are obtained
not by optimization, but are derived directly from statistics of the environment.

2.1 Uncertainty in the Environment Statistics

The model parameters,ρ, could be maximum likelihood estimates obtained by observing target
and distractor activations over a series of trials. That is, suppose that each item in the display is
identified as a target or distractor. The set of activations of featurei at all locations containing a
target could be used to estimateρi1, and likewise with locations containing a distractor to estimate
ρi0. Alternatively, one could adopt a Bayesian approach and treatρit as a random variable, whose
uncertainty is reduced by the evidence obtained on each trial. Because feature spike rates lie in[0, 1],
we defineρit as a beta random variable,ρit ∼ Beta(αit, βit).

This Bayesian approach also allows us to specify priors overρit in terms of imaginary counts,α0
it

andβ0
it. For example, in the absence of any task experience, a conservative assumption is that all

feature activations are predictive of a target, i.e.,ρi1 should be drawn from a distribution biased
toward 1, andρi0 should be drawn from a distribution biased toward 0.

To compute the target probabilities, we must marginalize overρ, i.e., P (Tx|Fx) =∫
ρ

P (Tx|Fx,ρ)p(ρ)dρ. Unfortunately, this integral is impossible to evaluate analytically. We in-
stead compute the expectation ofsx overρ, s̄x ≡ Eρ(sx), which has the solution

s̄x =
∑

i

1∑
t=0

(1− 2t)
[
(αit + βit − 1)(αit + βit − 2)

(αit − 1)(βit − 1)
f̃2

xi −
2(αit + βit − 1)

βit − 1
f̃xi +

αit

βit − 1

]
(3)

Note that, like the expression forsx, s̄x is a weighted sum of linear and quadratic feature-activity
terms. Whenαit andβit are large, the distribution ofρit is sharply peaked, and̄sx approachessx

with ρit = αit/(αit + βit). When this condition is satisfied, ranking bys̄x is equivalent to ranking
by P (Tx|Fx). Although the equivalence is not guaranteed for smallerαit andβit, we have found
the equivalence to hold in empirical tests. Indeed, in our simulations, we find that defining saliency
as eithersx or s̄x yields similar results, reinforcing the robustness of our approach.

2.2 Modeling the Stimulus Environment

The parameter vectorsα andβ maintain a model of the stimulus environment in the context of the
current task. Following each trial, these parameters must be updated to reflect the statistics of the
trial. We assume that following a trial, each item in the display has been identified as either a target
or distractor. (All other adaptive attention models such as GS make this assumption.)

Consider a locationx that has been labeled as typet (1 for target, 0 for distractor), and some feature
i at that location,Fxi. We earlier characterizedFxi as a binomial random variable reflecting a
spike count; that is, duringn time intervals,fxi spikes are observed. Each time interval provides
evidence as to the valueρit. Given prior distributionρit ∼ Beta(αit, βit), the posterior isρit|Fxi ∼
Beta(αit + fxi, βit + n− fxi). However, to limit the evidence provided from each item, we scale it
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by a factor ofn. When all locations are considered, the resulting posterior is:

ρit|Fi ∼ Beta
(
αit +

∑
x∈χt

f̃xi, βit +
∑

x∈χt
1− f̃xi

)
(4)

whereFi is feature mapi andχt is the set of locations containing elements of typet.

With the approach we’ve described, evidence concerning the value ofρit accumulates over a se-
quence of trials. However, if an environment is nonstationary, this build up of evidence is not
adaptive. We thus consider a switching model of the environment that specifies with probabilityλ,
the environment changes and all evidence should be discarded. The consequence of this assumption
is that the posterior distribution is a mixture of Equation 4 and the prior distribution, Beta(α0

it, β
0
it).

Modeling the mixture distribution is problematic because the number of mixture components grows
linearly with the number of trials. We could approximate the mixture distribution by the beta dis-
tribution that best approximates the mixture, in the sense of Kullback-Leibler divergence. However,
we chose to adopt a simpler, more intuitive solution: to interpolate between the two distributions.
The update rule we use is therefore

ρit|Fi ∼ Beta

(
λα0

it + (1− λ)

[
αit +

∑
x∈χt

f̃xi

]
, λβ0

it + (1− λ)

[
βit +

∑
x∈χt

1− f̃xi

])
. (5)

3 Simulation Methodology

We present a step-by-step description of how the model runs to simulate experimental subjects per-
forming a visual search task. We start by generating a sequence of experimental trials with the
properties studied in an experiment. The model is initialized withαit = α0

it andβit = β0
it. On each

simulation trial, the following sequence occurs. (1) Feature extraction is performed on the display
to obtain firing rates,̃fxi for each locationx and feature typei. (2) Saliency,̄sx, is computed for
each location according to Equation 3. (3) The saliencyrank of each location is assessed, and the
number of locations that need to be searched in order to identify the target is assumed to be equal to
the target rank. Response time should then be linear in target rank. (4) Following each trial, target
and distractor statistics,αit andβit, are updated according to Equation 5.

EGS has potentially many free parameters:{α0
it} and{β0

i1}, andλ. However, with no reason to
believe that one feature behaves differently than another, we assign all the features the same priors.
Further, we impose symmetry such thatα0

i0 = β0
j1 = ν andα0

i1 = β0
j0 = µ for all i andj, reducing

the total number of free parameters to three.

Because we are focused on the issue of attentional control, we wanted to sidestep other issues, such
as feature extraction. Consequently, EGS uses the front-end preprocessing of GS. GS takes as input
an8× 8 array of locations, each of which can contain a single colored bar. As described earlier, GS
analyzes the input via four broadly tuned features for color, and four for orientation. After a local
contrast-enhancement operator, GS yields activation values in[0, 1] at each of8 × 8 locations for
each of eight feature dimensions. We treat the activation produced by GS for featurei at location
x as the firing ratẽfxi needed to simulate EGS. Like GS, the response time of EGS is linear in the
target ranking. A scaling factor is required to convert rank to response time; we chose 25 msec/item,
which is a fourth free parameter of GS.

4 Results

We simulated EGS on a series of tasks that Wolfe (1994) used to evaluate GS. Because GS is limited
to processing displays containing colored, oriented lines, some of the tasks constructed by Wolfe did
not have an exact correspondence in the experimental literature. Rather, Wolfe, the leading expert
in visual search, identified key findings that he wanted GS to replicate. Because EGS shares front-
end processing with GS, EGS is limited to the same set of tasks as GS. Consequently, we present a
comparison of GS and EGS.

We began by replicating Wolfe’s results on GS. This replication was nontrivial, because GS contains
many parameters, rules, and special cases, and published descriptions of GS do not provide a crisp
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algorithmic description of the model. To implement EGS, we simply removed much of the com-
plexity of GS—including the distinction between bottom-up and top-down weights, heuristics for
setting the weights, and the injection of high-amplitude noise into the saliency map—and replaced
it with Equations 3 and 5.

Each simulation begins with a sequence of 100 practice trials, followed by a sequence of 1000 trials
for each blocked condition. Displays on each trial are generated according to the constraints of
the task with random variation with respect to unconstrained aspects of the task (e.g., locations of
display elements, distractor identities, etc.). In typical search tasks, the participant is asked to detect
the presence or absence of a target. We omit results for target-absent trials, since GS and EGS make
identical predictions for these trials.

The qualitative performance of EGS does not depend on its free parameters when two conditions
are met:λ > 0 andµ > ν. The latter condition yieldsE[ρi1] > E[ρi0] for all i, and corresponds
to the bias that features are more likely to be present for a target than for a distractor. This bias is
rational in order to prevent cognition from suppressing information that could potentially be critical
to behavior. All simulation results reported here usedλ = 0.3, µ = 25, andν = 10.

Figure 2 shows simulation results on six sets of tasks, labeled A–F. The first and third columns (thin
lines) are data from our replication of GS; the second and fourth columns (thick lines) are data from
our implementation of EGS. The key feature to note is that results from EGS are qualitatively and
quantitatively similar to results from GS. As should become clear when we explain the individual
tasks, EGS probably produces a better qualitative fit to the human data. (Unfortunately, it is not
feasible to place the human data side-by-side with the simulation results. Although the six sets of
tasks were chosen by Wolfe to represent key experiments in the literature, most are abstractions
of the original experimental tasks because the retina of GS—and its descendent EGS—is greatly
simplified and cannot accommodate the stimulus arrays used in human studies. Thus, Wolfe never
intended to quantitatively model specific experimental studies.)

We briefly describe the six tasks. The first four involve displays of a homogeneous color, and search
for a target orientation among distractors of different orientations.Task Aexplores search for a
vertical (defined as0◦) target among homogeneous distractors of a different orientation. The graph
plots the slope of the line relating display size to response latency, as a function of the distractor
orientation. Search slopes become more efficient as the target-distractor similarity decreases.Task
B explores search for a target among two types of distractors as a function of display size. The
distractors are100◦ apart, and the target is40◦ and60◦ from the distractors, but in one case the
target differs from the distractors in that it is the only nearly vertical item, allowing pop out via the
vertical feature detector. Note that pop out is not wired into EGS, but emerges because EGS identifies
vertical-feature activity as a reliable predictor of the target.Task Cexamines search efficiency for
a target among heterogeneous distractors, for two target orientations and two degrees of target-
distractor similarity. Search is more efficient when the target and distractors are dissimilar. (EGS
obtains results better matched to the human data than GS.)Task Dexplores an asymmetry in search:
it is more efficient to find a tilted bar among verticals than a vertical among tilted. This effect arises
from the same mechanism that yielded efficient search in task B: a unique feature is highly activated
when the target is tilted but not when it is vertical. And search is better guided to features that are
present than to features that are absent in EGS, due to theρ priors. Task Einvolves conjunction
search. The target is a red vertical among green vertical and red tilted distractors. The red item’s
tilt can be either90◦ (i.e., horizontal) or40◦. Both distractor environments yield inefficient search,
but—consistent with human data—conjunction searches can vary in their relative difficulty.

Task Fexamines search efficiency for a red vertical among red60◦ and yellow vertical distractors,
as a function of the ratio of the two distractor types. The result shows that search can be guided:
response times become faster as either the target color or target orientation becomes sparse, because
a relatively unique feature serves as a reliable cue to the target. Figure 3a depicts how EGS adapts
differently for the extreme conditions in which the distractors are mostly vertical (dark bars) or
mostly red (light bars). The bars representE[ρi0]; the lower the value, the more a feature is viewed as
reliably discriminating targets and distractors. (E[ρi1] is independent of the experimental condition.)
When distractors are mostly vertical, the red feature is a better cue, and vice versa. The standard
explanation for this phenomenon in the psychological literature is that subjects operate in two stages,
first filtering out based on the more discriminative feature, and then serially searching the remaining
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Figure 2: Simulation results on six sets of tasks, labeled A–F, for GS (thin lines, 1st and 3d columns)
and EGS (thick lines, 2nd and 4th columns). Simulation details are explained in the text.

items. EGS provides a single-stage account that does not need to invoke specialized mechanisms for
adaptation to the environment, because all attentional control is adaptation of this sort.

To summarize, EGS predicts the key factors in visual search that determine search efficiency. Most
efficient search is for a target defined by the presence of a single categorical feature among homo-
geneous distractors that do not share the categorical feature. Least efficient search is for target and
distractors that share features (e.g., T among L’s, or red verticals among red horizontals and green
verticals) and/or when distractors are heterogeneous.

Wolfe, Cave, & Franzel (1989) conducted an experiment to demonstrate that people can benefit
from guidance. This experiment, which oddly has never been modeled by GS, involves search for a
conjunction target defined by a triple of features, e.g., a big red vertical bar. The target might be pre-
sented among heterogeneous distractors that share two features with it, such as a big red horizontal
bar, or distractors that share only one feature with it, such as a small green vertical bar. Performance
in these two conditions, denoted T3-D2 and T3-D1, respectively, is compared to performance in
a standard conjunction search task, denoted T2-D1, involving targets defined by two features and
sharing one feature with each distractor. Wolfe et al. reasoned that if search can be guided, saliency
at a location should be proportional to the number of target-relevant features at that location, and the
ratio of target to distractor salience should bex/y in condition Tx-Dy. Becausex > y, the target is
always more salient than any distractor, but GS assumes less efficient search due to noise corruption
of the saliency map, thereby predicting search slopes that are inversely related tox/y. The human
data show exactly this pattern, producing almost flat search slopes for T3-D1. EGS replicates the
human data (Figure 3b) without employing GS’s arbitrary assumption that prioritization is corrupted
by noise. Instead,x/y reflects the amount of evidence available on each trial about features that dis-
criminate targets from distractors. Essentially, EGS suggests thatx/y determines the availability of
discriminative statistics in the environment. Thus, the limitation is on learning, not on performance.
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Figure 3: (a) Values
of E[ρi0] in task F. (b)
EGS performance on
the triple-conjunction
task of Wolfe, Cave, &
Franzel (1989) vertical red
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5 Discussion

We presented a model, EGS, that guides visual search via statistics collected over the course of
experience in a task environment. The primary contributions of EGS are as follows. First, EGS is a
significantly more elegant and parsimonious theory than its predecessors. In contrast to EGS, GS is a
complex model under the hood with many free parameters and heuristic assumptions. We and other
groups have spent many months reverse engineering GS to determine how exactly it works, because
published descriptions do not have the specificity of an algorithm. Second, to explain human data,
GS and its ancestors are “retarded” by injecting noise or arbitrarily limiting gains. Although it may
ultimately be determined that the brain suffers from these conditions, one would prefer theories
that cast performance of the brain as ideal or rational. EGS achieves this objective via explicit
assumptions about the generative model of the environment embodied by cognition. In particular,
the dumbing-down of GS and its variants is replaced in EGS by the claim that environments are
nonstationary. If the environment can change from one trial to the next, the cognitive system does
well not to turn up gains on one feature dimension at the expense of other feature dimensions. The
result is a sensible trade off: attentional control can be rapidly tuned as the task or environment
changes, but this flexibility restricts EGS’s search efficiency when the task and environment remain
constant. Third, EGS suggests a novel perspective on attentional control, and executive control more
generally. All other modern perspectives we are aware of treat control asoptimization, whereas in
EGS, control arises directly from statisticalinferenceon the task environment. Our current research
is exploring the implications of this intriguing perspective.
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