PUBLISHED AS:

Mozer, M. C. (1990). Discovering faithful “Wickelfeature” representations in a connectionist network. Proceedings of the
Twelfth Annual Conference of the Cognitive Society (pp. 356—363). Hillsdale, NJ: Erlbaum.

University of Colorado, Boulder

CU Scholar

Computer Science Technical Reports Computer Science

Spring 3-1-1990

Discovering Faithful "Wickelfeature'
Representations in a Connectionist Network ; CU-

CS-463-90

Michael C. Mozer
University of Colorado Boulder

Follow this and additional works at: https://scholar.colorado.edu/csci_techreports

Recommended Citation

Mozer, Michael C., "Discovering Faithful 'Wickelfeature' Representations in a Connectionist Network ; CU-CS-463-90" (1990).
Computer Science Technical Reports. 44S.
https://scholar.colorado.edu/csci_techreports/445

This Technical Report is brought to you for free and open access by Computer Science at CU Scholar. It has been accepted for inclusion in Computer

Science Technical Reports by an authorized administrator of CU Scholar. For more information, please contact cuscholaradmin@colorado.edu.

Discovering Faithful *Wickelfeature’ Representations
in a Connectionist Network

Michael C. Mozer

CU-CS-463-90 March 1990

Michael C. Mozer

Department of Computer Science
and Institute of Cognitive Science
University of Colorado

Boulder, CO 80309-0430

e-mail: mozer@boulder.colorado.edu

Thanks to Jeff Elman and Yoshiro Miyata for their insightful comments and assistance. The graphical displays of network states are due to
Miyata’s SunNet simulator. Dave Rumelhart and Jay McClelland were kind enough to provide me with the phonological encoding and classifica-
tion of verbs from their simulation work. This research was supported by Contracts N00014-85-K-0450 NR 667-548 and N00014-85-K-0076

with the Office of Naval Research, a grant from the System Development Foundation, and a Junior Faculty Development Award from the Univer-
sity of Colorado.

Mozer Learning Wickelfeature Representations
March 19, 1990 2

Abstract

A challenging problem for connectionist models is the representation of varying-length sequences,
e.g., the sequence of phonemes that compose a word. One representation that has been proposed involves
encoding each sequence element with respect to its local context; this is known as a Wickelfeature
representation. Handcrafted Wickelfeature representations suffer from a number of limitations, as
pointed out by Pinker and Prince (1988). However, these limitations can be avoided if the representation
is constructed with a priori knowledge of the set of possible sequences. This paper proposes a specialized
connectionist network architecture and learning algorithm for the discovery of faithful Wickelfeature
representations — ones that do not lose critical information about the sequence to be encoded. The archi-
tecture is applied to a simplified version of Rumelhart and McClelland’s (1986) verb past-tense model.

Mozer Learning Wickelfeature Representations
March 19, 1990 3

A challenging problem for connectionist models is the manipulation and representation of varying-
length sequences. Consider the problem of representing a sequence of symbols, say letters. Using sym-
bolic, LISP-like structures, this is straighforward: A short string like ARM can be represented as (A R M),
and a longer string like FIREARM can be represented by concatenating extra symbols onto the list — (F I
R E A RM). However, using connectionist activity patterns to represent these strings is a more complex
matter. The activity pattern must indicate not only what the symbols are, but their positions in the string.
This suggests the straightforward idea of reserving a processing unit for for every possible symbol in
every position, but this scheme requires knowing the maximum length of the sequence in advance. It also
suffers from the serious difficulty that two sequences containing common subsequences may appear quite
different. For example, using the notation x/n to refer to a unit that is activated by the symbol x in posi-
tion n, activity patterns corresponding to { A/1, R/2, M/3 } and { F/1, 1/2, R/3, E/4, A/5, R/6, M/7 } have no
overlap. The common subsequence ARM is not represented by an overlap in the activity patterns because
ARM appears in a different position in each string. Overlap between similar activity patterns is critical in
connectionist representations because it determines how a connectionist network will generalize to novel
instances: if a network responds a certain way to ARM, one might like it to respond similarly to
FIREARM, yet the position-specific letter encoding will not facilitate this.

Any representation of sequences should satisfy four criteria.

e The representation must be faithful (Smolensky, 1987), meaning that a one-to-one mapping
exists between sequences and activity patterns. This requirement may be relaxed somewhat in
the context of a particular task: The representation need only be sufficient to perform the desired
input-output mapping. If two sequences have exactly the same consequences in all situations,
there is no need to encode them distinctly. Task-irrelevant features do not have to be captured in
the representation.)

e The representation must be capable of encoding sequences of varying lengths with a fixed
number of units.

e The representation must be capable of encoding relationships between elements of a sequence.

e The representation should provide a natural basis for generalization. It is on this ground that the
position-specific encoding fails.

Wickelgren (1969) has suggested a representational scheme that seems to satisfy these criteria and
has been applied successfully in several connectionist models (Mozer, 1990; Rumelhart & McClelland,
1986; Seidenberg, 1990). The basic idea is to encode each element of a sequence with respect to its local
context. For example, consider the phonetic encoding of a word. Wickelgren proposed context-sensitive
phoneme units, each responding to a particular phoneme in the context of a particular predecessor and
successor. I will call these units Wickelphones, after the terminology of Rumelhart and McClelland. If
the word explain had the phonetic spelling /eksplAn/, it would be composed of the Wickelphones €
eKs» KSp> sPb> plA’ 1Ans and on_ (where the dash indicates a word boundary). Assuming one Wickelphone
unit for every such triple, activation of a word would correspond to a distributed pattern of activity over
the Wickelphone units. With a fixed number of Wickelphone units, it is possible to represent arbitrary
strings of varying length. Generally, this representation is faithful. In such cases, the unordered set of
Wickelphones is sufficient to allow for the unambiguous reconstruction of the ordered string.

Rumelhart and McClelland devised a more compact and distributed encoding of phoneme
sequences that depended on features of the phonemes rather than the phonemes themselves. Units in this
Wickelfeature representation encode triples of phonemic features (such a "voiced" or "dental").

Mozer Learning Wickelfeature Representations
March 19, 1990 4

Smolensky (1987) provides a formalism that allows the Wickelphone and Wickelfeature encodings to be
viewed in a uniform representational framework, as tensor products of feature vectors. In the remainder
of this paper, I use the term "Wickelfeature" to denote a context-sensitive encoding of features of
sequence elements or of the elements themselves, thereby subsuming the term "Wickelphone" and allow-
ing the representation to be applied to arbitrary sequences.

Pinker and Prince (1988; Prince & Pinker, 1988) point to several serious limitations of handcrafted
Wickelfeature representations, in particular the representation used by Rumelhart and McClelland in their
model of learning past tenses of English verbs. One critical limitation is that if the class of sequences to
be represented contain repeated subsequences of length two or more, the resulting representation is ambi-
guous. For example, the set of Wickelfeatures { .Ag, sBa, pAps oB. } could correspond to the sequence
ABAB or to ABABAB or an infinite number of other such strings. Similarly, the set { A, ABx BXas
xAB> ABy, gYA» YARs AB. } could correspond either to sequence ABXABYAB or ABYABXAB. Thus, the
Wickelfeature representation can lose order information.

There are potential ways around these problems. One quick solution is to represent more contex-
tual information in the Wickelfeatures. If a Wickelfeature consists of v sequence elements rather than
just three, confusions arise only if the strings contain repeated subsequences of length v—1 or greater. As
v grows, however, the representation becomes more and more localist and loses the advantages that we
set out to attain. Another solution is to have the Wickelfeature units be activated in a graded fashion, not
all-or-nothing. This would allow a unit to signal the number of instances of that Wickelfeature in a
sequence, which handles the ABAB problem. Alternatively, the amount of activity could correspond to
the position in a sequence; in the ABXABYAB example, the 4By unit could be less active than the \By
unit, indicating its primacy in the sequence.

Hand coding Wickelfeature representations of this sort gets quite tricky. In this paper, I report on
an alternative approach using connectionist learning algorithms to discover Wickelfeature-like represen-
tations. The advantage of leaving the job to learning is that whatever representations the system
develops, they are assured of being sufficient for the domain at hand, i.e., they will satisfy the faithfulness
criterion mentioned above. A further advantage of using learning is that by discovering only domain-
relevant Wickelfeatures, the overall representation can be more compact. For instance, a system whose
task is to encode English letter strings as Wickelfeatures will not develop a pKep unit.

A network architecture to learn Wickelfeatures

The approach I have taken involves training a network to map input sequences to target output pat-
terns through a layer of units that learn to respond as Wickelfeatures. It does not much matter what the
output patterns are; they could be localist representations of the sequences, responses to the sequence, or
perhaps sequences themselves. Figure 1 shows a schematic drawing of an architecture that performs this
mapping. The input layer represents a small window on the sequence. At any time, the input layer views
several consecutive elements of the sequence — three elements in the Figure. Presenting a complete
sequence to the network involves sliding the sequence through the window. More concretely, time is
quantized into discrete steps, and at each time step, the sequence is advanced by one position in the input
window. Once the entire sequence has been presented, the output units should respond appropriately.
The output layer is activated by the context layer, the purpose of which is to remember those elements of
the input sequence that are critical for performing the input-output mapping. At each time step, units in
the context layer integrate their current values with the new input to form a new context representation.

Mozer Learning Wickelfeature Representations
March 19, 1990 5

OUTPUT

&—— sequence

Figure 1. A three-layered recurrent network consisting of input, context, and output units. Each labeled box indicates a set of
processing units. The arrows indicate complete connectivity from one layer to another.

The context layer thus forms a static internal representation of the dynamic input sequence. The
goal of learning, of course, is for this to become a Wickelfeature representation. The use of a sliding
input window does part of the job: At each time, the context units can only see a local "chunk" of the
sequence. This allows the context units to detect local conjunctions of sequence elements, or conjunc-
tions of features of sequence elements. Once activated by a pattern in the input, the context units should
remain on. Thus, it seems sensible to have self-connected context units, but not to connect each context
unit to each other, using an activation function like:

c;(t+1) =d;c;(t) + s[net;(t)] ,

where c; (¢) is the activity level of context unit i at time ¢, d; is a decay weight associated with the unit, s
is a sigmoid squashing function, and net; (¢) is the net input to the unit:

net;(t) = Xw;x;(t),
J

x;(t) being the activity of input unit j at time ¢, w;; the connection strength from input unit j to context
unit ;. Thus, a context unit adds its current activity, weighted by the decay factor, to the new input at
each time. The decay factor allows old information to fade over time if d; is less than one.

To summarize, the Wickelfeature-learning architecture differs from a generic recurrent architecture
for temporal sequence recognition in three respects: (1) the input layer consists of a small temporal win-
dow holding several elements of the input sequence; (2) connectivity in the context layer is restricted to
one-to-one recurrent connections; and (3) integration over time in the context layer is linear.

A training algorithm for the Wickelfeature architecture

The standard procedure for training a recurrent network with temporally-varying inputs using the
back-propagation algorithm is to "unfold" the network in time (Rumelhart, Hinton, & Williams, 1986),
transforming the recurrent network into a feedforward network. The unfolding procedure requires that
each unit remember a temporal history of its activation values and is computation intensive. For the
Wickelfeature architecture, however, the unfolding procedure can be avoided, as described by Mozer
(1989). To summarize the result, consider a sequence with s elements and an architecture with a v -
element window. The number of time steps, ¢, required to slide the sequence through the window is sim-
ply s-v+1. Consequently, at time ¢ the network receives a target vector over the output units and an

Mozer Learning Wickelfeature Representations
March 19, 1990 6

error £ can be computed. Using the ordinary back propagation procedure, the error derivative with
respect to each context unit i,

oE
dei (1)
can be computed. The weight update rule for the recurrent connections, d;, is then:

Ad; = —£d; (t)o;(2),

8(t) =

where a; (¢) is defined by the recurrence relation
a; (1) = ¢; (v-1) + d; o; (x-1)

with boundary value ¢;(0) = 0. Similarly, the weight update rule for the input-context connections, Wiis
is:

Awj; = —e8;(1)Bji (1),
where B;(0) = 0 and

Bji (v) = s'[net; (Wx; (v) + d; Bj; (x-1).

Thus, explicit back propagation in time is not necessary. Bachrach (1988), Gori, Bengio, and De Mori
(1989), and Williams and Zipser (1989) have independently discovered the idea of computing an activity
trace during the forward pass as an alternative to back propagation in time. However, this is the first use
of the architecture for the purpose of learning Wickelfeature-like representations.

Simulation results

Implementation details

In the simulations to be reported, an additional parameter z; — called the zero point, was added to
the context-unit activation function, for reasons described by Mozer (1989). The complete activation
function is:

c;(t+1) =d;c;(t) + s[net; (t)] + z; ,
where the value of z; is determined by gradient descent as for the other parameters.

The initial input-context and context-output connection strengths were randomly picked from a
zero-mean gaussian distribution and normalized such that the L1 norm of the fan-in (incoming) weight
vector was 2.0. The z; were initially set to -0.5, and the d; picked from a uniform distribution over the
interval .99-1.01. The weights were updated only after a complete presentation of the training set (an
epoch). Momentum was not used. Learning rates were adjusted dynamically for each set of connections
according to a heuristic described by Mozer (1989).

Learning Wickelfeatures

Starting with a simple example, the network was trained to identify four sequences: _DEAR_,
DEAN, BEAR_, and _BEAN_. Each symbol corresponds to a single sequence element and was
represented by a random binary activity pattern over three units. The input layer was a two-element
buffer through which the sequence was passed. For _DEAR_, the input on successive time steps consisted
of _D, DE, EA, AR, R_. The input layer had six units, the context layer two, and the output layer four.
The network’s task was to associate each sequence with a corresponding output unit. To perform this

Mozer Learning Wickelfeature Representations
March 19, 1990 7

task, the network must learn to discriminate D from B in the first letter position and N from R in the fourth
letter position. This can be achieved if the context units learn to behave as Wickelfeature detectors. For
example, a context unit that responds to the Wickelfeatures _D or DE serves as a B-D discriminator; a unit
that responds to R_ or AR serves as an N-R discriminator. Thus, a solution can be obtained with two con-
text units.

Fifty replications of the simulation were run with different initial weights. The task was learned in
a median of 488 training epochs, the criterion for a correct response being that the output unit with the
largest value was the appropriate one. Figure 2 shows the result of one run. The weights are grouped by
connection type, with the input-context connections in the upper-left array, followed by the decay connec-
tions (d;), zero points (z;), and context-output connections. Each connection is depicted as a square
whose area indicates the relative weight magnitude, and shading the weight sign — black is positive,
white is negative. The sizes of the squares are normalized within each array such that the largest square
has sides whose length is equal to that of the vertical bars on the right edge of the array. The absolute
magnitude of the largest weight is indicated by the number in the upper-right corner. Because normaliza-
tion is performed within each array, weight magnitudes of different connection types must be compared
with reference to the normalization factors. The units within each layer are numbered. The weights feed-
ing into and out of context unit 1 have been arranged along a single row, and the weights of context unit 2
in the row above. Bias terms (i.e., weight lines with a fixed input of 1.0) are also shown for the context
and output units.

For the activity levels in the lower half of the figure, there are four columns of values, one for each
sequence. The input pattern itself is shown in the lowest array. Time is represented along the vertical
dimension, with the first time step at the bottom and each succeeding one above the previous. The input
at each time reflects the buffer contents. Because the buffer holds two sequence elements, note that the
second element in the buffer at one time step (the activity pattern in input units 4-6) is the same as the
first element of the buffer at the next (input units 1-3). Above the input pattern are, respectively, the con-
text unit activity levels after presentation of the final sequence element, the output unit activity levels at
this time, and the target output values. The activity level of a unit is proportional to the area of its
corresponding square. If a unit has an activity level of 0, its square has no area — an empty space. The
squares are normalized such that a "unit square" — a square whose edge is the length of one of the verti-
cal bars — corresponds to an activity level of 1. While the input, output, and target activity levels range
from 0 to 1, the context activity levels can lie outside these bounds, and are, in fact, occasionally greater
than 1.

With these preliminaries out of the way, consider what the network has learned. At the completion
of each sequence, the context unit activity pattern is essentially binary. Context unit 1 is off for BEAN_
and _BEAR_, and on for _DEAN_ and _DEAR_; thus, it discriminates B and D. Context unit 2 is off for
BEAN and _DEAN_, and on for _BEAR_ and _DEAR_; thus it discriminates N and R. However, the
context units do not behave in a straightforward way as Wickelfeatures. If context unit 1 were sharply
tuned to, say, _D, the input-context weights should serve as a matched filter to the input pattern _D. This
is not the case: the weights have signs -+--+- but the _D input pattern is 110011. Nor is context unit 1
tuned to the DE, whose input pattern is 011010. Instead, the unit appears to be tuned equally to both pat-
terns. By examining the activity of the unit over time, it can be determined that the unit is activated
partly by _D and partly by DE but by no other input pattern. This makes sense: _D and DE are equally
valid cues to the sequence identity, and as such, evidence from each should contribute to the response.
To get a feel for why the detector responds as it does, note that _D (110011) is distinguished from B
(110001) by activity in unit 5; DE (011010) from BE (001010) by activity in unit 2. The weights from
inputs 2 and 5 to context unit 1 are positive, allowing the unit to detect D in either context. The other

Mozer
March 19, 1990

to context

L !
1 2 3 4
tarqget
" BT
1 4

2 3
output

. " |
1 2
context

asll EulnE B

4, 5
wt from input

Learning Wickelfeature Representations

100 o

A B

6‘47) .

decay

1 2 3 1 2 3
target target
» | | . | LI
1 2 3 4 1 2 3 4
output output
context context

HE HEEE | |
H N |
| |
H B |
LI

BEAR. DEAN

4 l 4

8

2 3
target

-

2 3
output

Figure 2. The DEAR/DEAN/BEAR/BEAN problem. The upper half of the figure shows learned weights in the network, the lower
half activity levels in response to each of the four input sequences.

Mozer Learning Wickelfeature Representations
March 19, 1990 9

weights are set so as to prevent the unit from responding to other possible inputs. Thus, the unit selects
out key features of the Wickelfeatures _D and DE that are not found in other Wickelfeatures. As such, it
behaves as a _DE Wickelfeature detector, and context unit 2 similarly as a AR_ detector.

Generalization testing supports the notion that the context units have become sensitive to these
Wickelfeatures. If the input elements are permuted to produce sequences like AR_BE, which preserves
the Wickelfeatures AR_ and _BE, context unit responses are similar to those of the original sequences.
However, with permutations like _RB_, _DAER_, and DEAR (without the end delimiters), which destroy
the Wickelfeatures AR_ and _BE, context unit responses are not contingent upon the D, B, N, and R.
Thus, the context units are responding to these key letters, but in a context-dependent manner.

Learning the regularities of verb past tense

In English, the past tense of many verbs is formed according to a simple rule. Regular verbs can be
divided into three classes, depending on whether the past tense is formed by adding /°d/ (an "ud" sound),
/t/, or /d/. Examples of the classes are /dEpend/ (depend), /fAs/ (face), and /dEscrIb/ (describe), respec-
tively. Each string denotes the phonetic encoding of the verb in italics, and each symbol a single
phoneme. The phoneme notation and the examples have been borrowed from Rumelhart and McClelland
(1986). The rule for determining the class of a regular verb is as follows.

If the final phoneme is dental (/d/ or /t/), add /°d/;
else if the final phoneme is an unvoiced consonant, add /t/;
else (the final phoneme is voiced), add /d/.

A network was trained to classify the twenty examples of each class. Each phoneme was encoded
by a set of four trinary acoustic features (see Rumelhart & McClelland, 1986, Table 5). The input layer
of the network was a two-element buffer, so a verb like /kamp/ appeared in the buffer over time as _k, ka,
am, mp, p_. The underscore is a delimiter symbol placed at the beginning and end of each string. The
network had eight input units (two time slices each consisting of four features), two context units, and
three output units — one for each verb class.

In fifteen replications of the simulation, the network performed at 90% within 100 epochs, learned
the training set perfectly in under 1000 epochs. A verb was considered to have been categorized correctly
if the most active output unit specified the verb’s class. The network has learned the underlying rule, as
evidenced by perfect generalization to novel verbs. Typical weights learned by the network are presented
in Figure 3, along with the output levels of the two context units in response to twenty verbs. These
verbs, though not part of the training set, were all classified correctly.

The response of the context units is straightforward. Context unit 1 has a positive activity level if
the final phoneme is a dental (/d/ or /t/), negative otherwise. Context unit 2 has positive activity if the
final phoneme is unvoiced, near zero otherwise. These are precisely the features required to discriminate
among the three regular verb classes. In fact, the classification rule for regular verbs can be observed in
the context-output weights (the rightmost weight matrix in Figure 3). Connections are such that output
unit 1, which represents the "add /*d/" class, is activated by a final dental phoneme; output unit 2, which
represents the "add /t/" class, is activated by a final non-dental unvoiced phoneme; and output unit 3,
which represents "add /d/" class, is activated by a final non-dental voiced phoneme.

Note that the decay weights in this simulation are small in magnitude; the largest is .02. Conse-
quently, context units retain no history of past events, which is quite sensible because only the final
phoneme determines the verb class. This fact makes verb classification a simple task: it is not necessary
for the context units to hold on to information over time. Simulations were also conducted giving the

to context

Mozer
March 19, 1990

o =M - - =

& |
1 _partisipAt_ ’
H |
kelekt_
Bt |
1 2
_tksept__
b N
1 2
~j~st
|
" Eimindt_

D..n,

a

4 5, 8
wt from input

]

dEfend
]
1

IEkord
]
1 _ekspand_
|

bind
]
1 _~tend_

Learning Wickelfeature Representations
10

bias

[{114

[1128 ~ 3 10.02 N om o,esgm .
=
o -l L] WO D

bias

decay zero pt "t to ém‘pu’f

_maC _tran

O
d BN

p~bliS _smll_

~ Il
-

develop _k~mblIn_

N.
n

ekspres _verE_

Y .
L4

1
promis _SIn_

Figure 3. The regular verb problem. The upper half shows learned weights in the network, the lower half shows the final activity
levels of the context units in response to a variety of verbs. Verbs in the first column all end with /t/, in the second column with
/d/, in the third column with an unvoiced consonant, and the fourth column with a voiced consonant or vowel.

Mozer Learning Wickelfeature Representations
March 19, 1990 11

network the same verb classification task, but reversing the order of the phonemes; instead of /dEpend/,
/dnepEd/ was presented. In this problem, the relevant information comes at the start of the sequence and
must be retained until the sequence is completed. Nonetheless, the network is able to learn the task.
Interestingly, a more standard network architecture was unsuccessful at learning the task.

Large verb simulation

To study a more difficult task, the regular-verb categorization problem was extended to a larger
corpus of verbs. As before, the task was to classify each verb according to the manner in which its past
tense is formed. The complexity of the task was increased by including both regular and irregular verbs,
136 training instances altogether, and a total of thirteen response categories — three for regular forms and
ten for irregular (see Mozer, 1989, for examples of these categories). The categories are based loosely on
a set suggested by Bybee and Slobin (1982).

The corpus of verbs was borrowed from the Rumelhart and McClelland (1986) model. The model,
designed to account for children’s acquisition of verb past tenses, produces the past tense of a verb given
its infinitive form as input. The representation used at both input and output ends is a handcrafted Wick-
elfeature encoding of the verb, built into the model. The purpose of this simulation is to demonstrate that
a network, given a sequence of phonemes, can learn a representation like that presupposed by Rumelhart
and McClelland’s model.

The task is difficult. The verb classes contain some internal regularities, but these regularities are
too weak to be used to uniquely classify a verb. For instance, all verbs in category 3 end in a /d/ or /t/, but
so do verbs in categories 4, 5, and 11. Whether a verb ending in /d/ or /t/ belongs in category 3 or one of
the other categories depends on whether it is regular, but there are no simple features signaling this fact.
Further, fine discriminations are necessary because two outwardly similar verbs can be classified into dif-
ferent categories. Swim and sing belong to category 10, but swing to category 12; ring belongs to
category 10, but bring to category 8; set belongs to category 4, but ger to category 11. Because the
category to which a verb belongs is somewhat arbitrary, the network must memorize a large number of
special cases.

The network architecture was similar to that used in the regular verb example. The input layer was
a two-phoneme buffer, and the encoding of phonemes was the same as before. The output layer consisted
of thirteen units, one for each verb class, and the context layer contained 25 units.

In ten replications of the simulation, the network learned to select the correct category in about 500
epochs. At intermediate stages of learning, verbs are sometimes "overregularized", as when the past tense
of eat was considered to be eated. Overgeneralization occurs in other respects, as when sif was misclassi-
fied in the category of verbs whose past tense is the same as the root — presumably by analogy to ki and
Jit and set. Interpretation of the behavior of individual context units is difficult, but by examining similar
input sequences that are classified differently, e.g., /riN/ and /briN/, one can pinpoint context units
responsible for certain behaviors.

These simulations demonstrate the feasibility of constructing faithful Wickelfeature-like represen-
tations using connectionist learning procedures, instead of having to craft the representations by hand.
Further, the simulations show that intrinsically temporal or sequential input can be dealt with as such,
instead of as static patterns. This is a necessary first step in the modeling of language and speech
processes.

Mozer Learning Wickelfeature Representations
March 19, 1990 12

References

Bachrach, J. (1988). Learning to represent state. Unpublished master’s thesis, University of
Massachusetts, Amherst.

Bybee, . L., & Slobin, D. I. (1982). Rules and schemas in the development and use of the English past
tense. Language, 58, 265-289.

Gori, M., Bengio, Y., & Mori, R. de (1989). BPS: A learning algorithm for capturing the dynamic
nature of speech. In Proceedings of the First International Joint Conference on Neural Networks,
Volume 2 (pp. 417-423).

Mozer, M. C. (1989). A focused back-propagation algorithm for temporal pattern recognition. Complex
Systems, 3.

Mozer, M. C. (1990). In The perception of multiple objects: A connectionist approach. Cambridge,
MA: MIT Press/Bradford Books.

Pinker, S., & Prince, A. (1988). On language and connectionism. Cognition, 28, 73-193.
Prince, A., & Pinker, S. (1988). Wickelphone ambiguity. Cognition, 30, 189-190.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error
propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing:
Explorations in the microstructure of cognition. Volume I: Foundations (pp. 318-362). Cambridge,
MA: MIT Press/Bradford Books.

Rumelhart, D. E., & McClelland, J. L. (1986). On learning the past tenses of English verbs. In J. L.
McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the
microstructure of cognition. Volume II: Psychological and biological models (pp. 216-271).
Cambridge, MA: MIT Press/Bradford Books.

Seidenberg, M. S. (1990). Word recognition and naming: A computational model and its implications.
In W. D. Marslen-Wilson (Ed.), Lexical representation and process. Cambridge, MA: MIT Press.

Wickelgren, W. (1969). Context-sensitive coding, associative memory, and serial order in (speech)
behavior. Psychological Review, 76, 1-15.

Williams, R. J., & Zipser, D. (1989). Experimental analysis of the real-time recurrent learning
algorithm. Connection Science, 1, 87-111.

