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This paper describes a model of selective attention that is part of a connectionist object recognition sys-
tem called MORSEL MORSEL is capable of identifying multiple objects presented simultaneously on its 
"retina," but because of capacity limitations, MORSEL requires attention to prevent it from trying to do 
too much at once Attentional selection is performed by a network of simple computing units that con-
structs a variable-diameter "spotlight" on the retina, allowing sensory information within the spotlight 
to be preferentially processed. Simulations of the model demonstrate that attention is more critical for 
less familiar items and that attention can be used to reduce inter-item crosstalk The model suggests 
four distinct roles of attention in visual information processing, as well as a novel view of attentional 
selection that has characteristics of both early and late selection theories. 

Few would argue that the visual system is unlimited in its capacity for processing sensory informa-
tion. Some means of selective and sequential analysis is required. This is the primary function of atten-
tion: to control the amount and the temporal order of information flowing through the visual system. 
A n y complete model of visual information processing must thus address the issue of attention. In this 
paper, I describe an attentional mechanism designed for a connectionist model of two-dimensional object 
recognition called MORSEL (Mozer, 1987a, b). MORSEL is capable of identifying multiple objects 
presented simultaneously on its "retina," but because of capacity limitations, MORSEL requires an atten-
tional mechanism to prevent it from trying to do too much at once and making errors. 

Briefly, MORSEL (Figure l) consists of four components: (l) a set of processing modules that 
analyze objects along various attribute dimensions; (2) a network that constructs a consistent interpreta-
tion of the perceptual data provided by these modules (the pull-out net); (3) an attentional mechanism 
{am for short) that guides the efforts of the modules; and (4) a visual short-term, memory that holds 
object descriptions. T o illustrate the typical operation of the system, consider a simple example in 
which MORSEL is shown a display containing two colored letters, a red X and a blue T. These letters will 
cause a pattern of activity on MORSEL's retina, which serves as input to each of the processing modules 
as well as to the AM. The A M then focuses on one retinal region, say the location of the red X. Informa-
tion from that region is processed by each module. O n e module extracts shape information, identifying 
the object as an "x" or possibly a "y," another extracts color information, identifying the object as 
being red. The pull-out net then selects the most plausible interpretation of each module's output, in 
this case "x" and "red." The representation at this level of the system encodes attributes of the visual 
object without regard to location. Location information is recovered from the AM, which indicates the 
current location of focus. Shape, color, and location information are then bound together and stored in 
the short-term memory. Next, attention shifts to the blue T, and this process repeats. 

I have built a computer simulation of MORSEL with one module elaborated in detail — a letter and 
word recognition system called BURNET. BLIRNET has been trained to recognize letters and words in 
arbitrary retinal locations, and is able to recognize several items simultaneously, although interactions 
within the network limit the number of items that can be accurately processed. BLIRNET is a hierarchi-
cal multi-layered network. Its input layer is a retinotopic feature m a p arranged in a 3 6 X 6 spatial array, 
with detectors for five feature types at each point in the array (line segments at four orientations and 
line-segment terminator detectors). Letters of the alphabet are encoded as an activity pattern over a 
3 X 3 retinal region. BLIRNET's output layer contains letter-cluster detectors, which respond to single 
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Figure 1. A sketch of M O R S E L . Figure 2. T h e attentional mechanism and its relationship to 
BLIRNET. 

letters and bits of words, regardless of retinal location. The other processing modules of MORSEL have 
similar input-output properties: a retinotopic input of elementary features, and a location-independent 
output representation of high-level conjunctive features. 

THE ATTENTIONAL MECHANISM 

What might an attentional mechanism look like in the context of MORSEL? I propose a simple 
mechanism, one that directs a "spotlight" to a particular region of the retina (e.g., Crick, 1984; Eriksen 
& Hoffman, 1973; Posner, 1980; Treisman & Gelade, 1980). The attentional spotlight serves to enhance 
the activation of low-level retinotopic features within its bounds relative to those outside. As activity is 
propagated through BLIRNET and the other modules, the highlighted region maintains its enhanced 
status, so that in the output layer of the module, units appropriate for the attended item(s) tend to 
become most active as well. Consequently, these units will dominate the pull-out net competition, caus-
ing the attended item(s) to be selected. In this way, the A M allows preferential processing of attended 
stimuh. 

The Attentional Mechanism as a Filter 

The AM (Figure 2) is a set of units arranged in a retinotopic map in one-to-one correspondence 
with the input layer (denoted Lj) of BLIRNET. Activity in an A M unit indicates that attention is focused 
on the corresponding retinal location and serves to gate the flow of activity from L i to the second layer 
(denoted Lg) of BLIRNET. Specifically, the activity level of an L i unit in location {x,y) is transmitted to 
L2 with probability C+(l~C)''iy (the transmission probability), where â y is the activity level of the A M 
unit in location {x,y) and has range [0,1], and ^ is a scaling parameter with a value of approximately .25. 
As long as ^ is greater than zero, the A M serves only to bias processing; it does not absolutely inhibit 
activations from unattended regions (similar to the Norman and Shallice, 1985, model). 
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As one might expect, highly familiar stimuli outside the focus of attention can work their way 
through the system better than other stimuli. T o illustrate this point, BLIRNET was tested midway 
through training on an isolated letter recognition task. Some letters were recognized better than others: 
X was detected in every location and in the context of virtually any other simultaneously-presented 
letters, H was less consistently detected, and F even less so. Taking stability of detection to be an indi-
cation of familiarity, one might predict that performance on X should suffer less than performance on H, 
and H less than F, when attention is removed. This prediction is confirmed by Figure 3a. Performance 
here is measured as the ratio of the activation level of the target letter to the activation level of the 
maximally active nontarget letter, averaged over thirty presentations of the target. W h e n this ratio falls 
below 1.0, the target cannot be discriminated from the nontargets. X is discriminable as long as the 
transmission probability is greater than .1, H .3 and F .8. Thus, BLIRNET is able to recognize familiar 
stimuli based on fewer perceptual features than less familiar stimuli. In other words, focal attention is 
less criticaJ for highly familiar stimuli. 

To further illustrate the filtering properties of the AM, BLIRNET was tested on L and G presented 
simultaneously. Attention was varied from being fully divided (i.e., the transmission probability was 1.0 
for both letters) to being focused solely on the L (i.e., the transmission probability was 1.0 for L and 0.0 
for g). Figure 3b shows that by concentrating attention on L, its relatively weak response can be 
improved dramatically, although this improvement is matched by a corresponding decrement in the 
response to G. Thus, inter-item crosstalk is reduced by focusing attention on one item. (In this exam-
ple, the target:spurious activity ratio is not an absolute measure of discriminability. Because there are 
two stimuli, what matters for recognition are the two most active units. Even if a target has a ratio less 
than one, it m a y still be the second most active unit.) 

System Dynamics 

In the previous section, I described the manner in which a given AM state influences processing in 
MORSEL. In this section, I turn to the issue of how this state is computed. I begin by assuming external 
sources of knowledge are available that offer suggestions about where to focus. Sometimes these sugges-
tions will conflict with one another; the task of the A M is to resolve such conflicts and construct an 
attentional spotlight centered on the selected location. 

The AM units are interconnected to form a relaxation network that settles into states having a sin-
gle, convex region of activation. The activity of each unit is updated over time as follows: 

«,,('+!) 
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Figure 3. (a) Mean ratio of target activation to the maximum spurious (nontarget) activation for X, H, and F presented in loca-
tion (14,2) as a function of transmission probability, averaged over thirty presentations, (b) Mean ratio of target activation to 
the maximum spurious activation for L in location (11,2) and G in location (20,2) as a function of attention to the G, averaged 
over thirty presentations. 
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where a,y(< ) is the activity of AM unit in location {x,y) at time t , n and 6 are adjustable constants, 
extjy [t) is an external input to location {x,y) at time t , and f[x] is an identity function with saturation 
points at zero and one. The first term in the activation function encourages contiguous regions of 
activity by pushing each unit to take on the average value of itself and its eight spatial neighbors. (A 
neighbor is assumed to have activity level zero if it is outside the retinotopic array.) If /ix is 1/9, an 
exact average is computed; as a result, activation levels fade with increased distance from the center of 
activity. If n is larger, however, the boundary between active and inactive regions are sharpened, so 
that a unit will tend to be fully on if its neighbors are on or off otherwise. The second term in the 
activation function limits the total activity in the network by causing each unit to inhibit all others, 
with 6 controlling the degree of inhibition. If several discontinuous regions are simultaneously active, 
this term serves to suppress all but the most active region. The third term allows external sources of 
knowledge to drive activity in the network. 

Guiding the Spotlight 

These external knowledge sources can be dichotomized into two classes: data driven and conceptu-
ally driven. To consider a simple case of a "data driven" source, attention should be drawn to objects 
but not empty regions in the visual field. This property is incorporated into the A M by having each Z, i 
unit project to its corresponding A M unit (Figure 2). Similar connections to the A M should be made from 
the elementary feature maps of other modules, e.g., maps detecting color, texture boundaries, and 
motion. Through these connections, attention can be captured by such varied stimuli as an intense or 
flashing light, object motion, or an odd element against a homogeneous background. Further control is 
required, however: the mere presence of any feature should not cause an attentional shift willy nilly; 
attention is dependent on higher-level expectations and task demands. For example, in the task of 
detecting a "-" in a display of oriented hne segments, one would like for only the "-" features to trigger 
attention. I thus propose that higher levels of cognition {HLO) can modulate the effect of each feature 
type on the AM, allowing only the features of interest to capture attention. Mechanistically, this is not 
difficult to implement: H L C simply need to gate the connections from each feature type in L i (and 
other such feature maps) to the AM. 

Besides data-driven guidance, "conceptually-driven" guidance — direct control by HLC — is 
required in many situations, from reading, where text must be scanned from left to right, to a variety of 
experimental tasks where selection is based on location (e.g., a precue indicating the location of an 
upcoming target item). 

If items of interest in the visual field vary in size, so must the spotlight. Empirical evidence con-
firms this intuition (Eriksen & Yeh, 1985; Laberge, 1983). Thus, it seems critical that H L C be able to 
influence not only the locus of the spotlight but also its diameter. The spotlight diameter is modulated 
by the parameter 9. Consequently, I assume that 0 is dynamically regulated by H L C as a function of 
time and task. 

SIMULATION RESULTS 

I have implemented a simulation of the AM in which the human operator is allowed to specify the 
external inputs. Figure 4a presents a simple example in which two external inputs have been given, one 
at location (7,4) with value .2 and the other at (16,3) with value .3. Initially, activity levels of all A M 
units are reset to zero. Over time, the external inputs are copied into the activity of the corresponding 
A M units. Spotlights then begin to form around each stimulated location, but gradually activity in the 
region of (7,4) is suppressed, due to the fact that only one spotlight can be supported and the external 
input to (7,4) is smaller. By iteration 15, the network reaches equilibrium. Figure 4b shows another 
example with the same external inputs but 0 decreased from .02 to .01. The resulting spotlight is about 
twice as large as in Figure 4a. One might be tempted to conclude that 0 directly regulates the diameter 
of the spotlight, but the story is more complex, as the next example demonstrates. 

In Figure 4c, the external inputs specify two blob-like regions, not individual points of activation 
as in the previous examples. This input pattern was constructed by presenting the stimulus W E X M U J to 
BLIRNET (see Figure 4d), and counting the number of feature detectors active in each location of L i. 
This sort of an input pattern might arise naturally on the A M if each L i unit fed activity into its 
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Figure 4. (a) Activity pattern in the A M at equilibrium resulting from two external inputs (/i=.22, ̂ =.02). The activity level 
of each A M unit is represented by the size of the digit in the corresponding position. The digit itself represents the magnitude of 
the external input (actually, ten times the input), (b) Activations in the A M resulting from two external inputs (/i^.22, 
6=.0l). (c) Activations in the A M resulting from external inputs concentrated in two regions, with slightly more input to the 
left region (//=,22, d=.02). (d) Location of the stimulus W D C M U J that serves as input for Figures 4c and 4e. (e) Activa-
tions in the A M resulting from external inputs based on the \ and / features of the stimulus W I X M U J (/i=.22, 5 = .02). The 
location of the X is selected. 

corresponding AM unit (as discussed earlier). The initial AM activity then reflects all bottom-up sources 
of information: attention is broadly tuned to include all items in the visual field. O v e r time, however, 
attention "narrows" on the left region — the site of W D C . This region is selected because its net exter-
nal input is greater — 3.6 units of activity versus 3.5. 
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Although the same value of 6 was used in Figures 4a and 4c, the spotlight in Figure 4c is larger. It 
appears that 0 does not directly control the spotlight diameter. Roughly, 0 can be thought of as a meas-
ure of the maximum distance allowed between two points of external activity in order for them to be 
enclosed within the spotlight: the larger 0 is, the smaller the distance. This is a nice property of the 
system in that the spotlight should be on one object at a time, but it is unclear how to define the boun-
dary of an object; with WEX MUJ, is the entire stimulus an object, is just the WDC, the X, or perhaps 
only one stroke of the X? 0 provides one dimension along which an object's boundary can be character-
ized, namely, the maximum spacing between its components. 

A final example of the operation of the AM is presented in Figure 4e. I have simulated the situa-
tion in which WDC MUJ is presented to BLIRNET and the L j-AM connections are gated so that only the 
"\" and "/" feature maps trigger the AM. As a result, the letter X is selected. In this manner, higher 
levels of cognition can control which item will be selected, but only if the item has distinctive elemen-
tary features: pairs like W and M cannot be differentiated on the basis of elementary features. 

THE ROLE OF ATTENTION 

The AM serves MORSEL in four respects, suggesting the following roles of attention in visual infor-
mation processing. 

(l) Controlling order of read out. The AM allows MORSEL to selectively access information in the visual 
field by location. 

(2) Reducing crosstalk. When items are analyzed simultaneously by MORSEL, interactions within the 
processing modules cause interference among items. By focusing attention on one item at a time, 
crosstalk can be reduced. 

(3) Recovering location information. Remember that the output of BLIRNET — the letter-cluster 
representation — encodes the identity of a letter or word but not its retinal location; the operation 
of BLIRNET and the other modules factor out location information. However, because the current 
focus of attention reflects the spatial source of letter-cluster activations, the AM can convey the 
lost location information. 

(4) Coordinating processing performed by independent subsystems. Each processing module operates 
independently of the others. Consequently, it is imperative to ensure that the results from the 
various modules are grouped appropriately. The AM allows this by guiding processing resources of 
all modules to the same spatial region. This function of attention seems analogous to that sug-
gested by feature-integration theory (Treisman & Gelade, 1980). 

EARLY VERSUS LATE SELECTION: WHERE DOES THE AM FIT IN? 

A central issue in perceptual psychology over the past three decades has been the level at which 
attentional selection operates. Theories of attention can be dichotomized into two opposing views: 
early and late selection. Early-selection theories (Broadbent, 1958; Treisman, 1969) derive their name 
from the assertion that selection occurs early in the sequence of processing stages, prior to stimulus iden-
tification. In contrast, late-selection theories (e.g., Deutsch <fe Deutsch, 1963; Norman, 1968; Shiffrin & 
Schneider, 1977) posit that selection occurs late in processing, following stimulus identification. Addi-
tional properties go hand in hand with the central assumption of each theory (Pashler & Badgio, 1987). 
Early selection generally implies that (l) selection is based on low-level features such as stimulus loca-
tion or color, (2) the processing system is of quite limited capacity, and (3) stimulus identification is 
necessarily serial. In contrast, late selection generally imphes that (1) selection is based on high-level 
features such as stimulus identity, (2) the processing system is without capacity limitations, and (3) 
stimulus identification proceeds in parallel. 

The view of attention presented by MORSEL is neither strictly early nor late selection. It agrees 
with late-selection theories in suggesting that multiple display items can be processed in parallel to a 
high level of representation, even to the point of making simultaneous contact with semantic knowledge 
(which occurs in the pull-out net). Further, selection via the pull-out net can be based on high-level — 
semantic or orthographic — features; this is accomplished by priming semantic units or letter-cluster 
units in the pull-out net to bias the pull out process. In other respects, however, MORSEL embodies an 
early-selection theory. First, the AM is an early selection device. It operates on a low-level representa-
tion, much in the spirit of the filtering and attenuation operations proposed by early-selection theories. 
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Second, the processing capacity of MORSEL is limited. If multiple items are analyzed simultaneously, 
interactions among the items can lead to damaging crosstalk; and there is the further problem that 
information about the location of each item is lost. 

MORSEL thus shows characteristics of both early and late selection theories. Pashler and Badgio 
(1985, 1987) have proposed a similar hybrid view of attentional selection based on a large body of empir-
ical work. Their view seems entirely compatible with MORSEL and the AM. I find it both surprising and 
exciting that MORSEL is in such close accord with the conclusions of Pashler and Badgio. MORSEL was 
not designed specifically to address attentional issues, yet it makes strong predictions concerning the 
nature of attentional selection. Furthermore, the hybrid view of attentional selection presented here 
seems like a possible resolution to the longstanding debate between proponents of early and of late selec-
tion. 

In closing, I should note that Koch and Ullman (1985) have developed a related neurally-inspired 
model of the attentional spotlight. Their model is similar to the AM in that it consists of a topographic 
map in which units are activated to indicate the allocation of attention. Additionally, it operates by 
gating the flow of activity from a low-level input representation composed of elementary features. In 
Koch and Ullman's model, however, selection is performed by a simple winner-take-all network. This 
results in a single point of activity, as compared to the distributed activity pattern produced by the AM. 
Their model is thus unable to adjust the diameter of the attentional spotlight. A further drawback of 
the Koch and Ullman model is that it is embedded in a serial processing system, capable of processing 
only one item at a time. Without a system like BLIRNET, their model is merely an early selection device. 
This brings up the point that it is not the attentional mechanism itself that determines whether the sys-
tem as a whole is best characterized in terms of early or late selection, but rather how the attentional 
mechanism is integrated into the rest of the system. This is where MORSEL makes a distinct contribu-
tion to theories of attention. 
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