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Abstract

When individuals learn facts (e.g., foreign language vocab-
ulary) over multiple sessions, the durability of learning is
strongly influenced by the temporal distribution of study
(Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006). Computa-
tional models have been developed to explain this phenomenon
known as the distributed practice effect. These models pre-
dict the accuracy of recall following a particular study sched-
ule and retention interval. To the degree that the models em-
body mechanisms of human memory, they can also be used
to determine the spacing of study that maximizes retention.
We examine two memory models (Pavlik & Anderson, 2005;
Mozer, Pashler, Lindsey, & Vul, submitted) that provide dif-
fering explanations of the distributed practice effect. Although
both models fit experimental data, we show that they make ro-
bust and opposing predictions concerning the optimal spacing
of study sessions. The Pavlik and Anderson model robustly
predicts that contracting spacing is best over a range of model
parameters and retention intervals; that is, with three study ses-
sions, the model suggests that the lag between sessions one
and two should be larger than the lag between sessions two
and three. In contrast, the Mozer et al. model predicts equal
or expanding spacing is best for most material and retention
intervals. The limited experimental data pertinent to this dis-
agreement appear to be consistent with the latter prediction.
The strong contrast between the models calls for further em-
pirical work to evaluate their opposing predictions.
Keywords: distributed practice effect; optimization; study
schedules

Introduction
In educational settings, individuals are often required to
memorize facts such as foreign language vocabulary words.
A question of great practical interest is how to retain knowl-
edge once acquired. Psychologists have identified factors in-
fluencing the durability of learning, most notably the tempo-
ral distribution of practice: when individuals study material
across multiple sessions, long-term retention generally im-
proves when the sessions are spaced in time. This effect,
known as the distributed practice or spacing effect, is typi-
cally studied via an experimental paradigm in which partici-
pants are asked to study items over two or more sessions, and
the time between sessions—the interstudy interval or ISI—
is varied. Retention is often evaluated via a cued recall test
at a fixed lag following the final study sessionthe retention
interval or RI (Figure 1).

Typical experimental results are shown in the data points
and dotted lines of Figures 2a (Glenberg, 1976) and 2b

(Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008). In both ex-
periments, participants studied material at two points in time,
with a variable ISI, and then were tested following a fixed
RI. The graphs show recall accuracy at test as a function of
ISI for several different RIs. The curves, which we will refer
to as spacing functions, typically show a rapid rise in mem-
ory retention as ISI increases, reach a peak, and then gradu-
ally drop off. From the spacing function, one can determine
the optimal ISI, the spacing of study that yields maximal re-
tention. The exact form of the spacing function depends on
the specific material to be learned and the RI. The distributed
practice effect is obtained over a wide range of time scales:
ISIs and RIs in the Glenberg study are on the order of seconds
to minutes, and in the Cepeda et al. study are on the order of
weeks to months. On the educationally relevant time scale
of months, optimally spaced study can double retention over
massed study. Thus, determining the optimal spacing of study
can have a tremendous practical impact on human learning.

Pavlik and Anderson (2005; 2008) used the ACT-R declar-
ative memory equations to explain distributed practice ef-
fects. ACT-R supposes a separate trace is laid down for each
study and that the trace decays according to a power function
of time. The key feature of the model that yields the dis-
tributed practice effect is that the decay rate of a new trace
depends on an item’s current memory strength at the point in
time when the item is studied. This ACT-R model has been
fit successfully to numerous experimental datasets. The solid
lines of Figure 2a show the ACT-R fit to the Glenberg data.

Mozer, Pashler, Lindsey, and Vul (submitted) have recently
proposed a model providing an alternative explanation of the
distributed practice effect. In this model, when an item is
studied, a memory trace is formed that includes the current
psychological context, which is assumed to vary randomly
over time. Probability of later recall depends in part on the
similarity between the context representations at study and
test. The key feature of this model that distinguishes it from
related past models (e.g., Raaijmakers, 2003) is that the con-
text is assumed to wander on multiple time scales. This
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Figure 1: Structure of a study schedule.
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Figure 2: Results from (a) Glenberg (1976) and (b) Cepeda et al. (2008) illustrative of the distributed practice effect. The dotted lines
correspond to experimental data. The solid lines in (a) and (b) are the ACT-R and MCM fits to the respective data. (c) A contour plot of recall
probability as a function of two ISIs from ACT-R with parameterization in Pavlik and Anderson (2008).

model, referred to as the multiscale context model (MCM),
has also been successfully fit to numerous empirical datasets,
including the Glenberg study. In Figure 2b, we show the
MCM prediction (solid lines) of the Cepeda et al. data.

Both ACT-R and MCM can be parameterized to fit data
post hoc. However, both models have been used in a predic-
tive capacity. Pavlik and Anderson (2008) have used ACT-R
to determine the order and nature of study of a set of items,
and showed that ACT-R schedules improved retention over
alternative schedules. Mozer et al. (submitted) parameter-
ize MCM with the basic forgetting function for a set of items
(the function relating recall probability to RI following a sin-
gle study session) and then predict the spacing function for
the case of multiple study sessions. Figure 2b is an example
of such a (parameter free) prediction of MCM.

Most experimental work involves two study sessions,
the minimum number required to examine the distributed-
practice effect. Consequently, models have mostly focused
on this simple case. However, naturalistic learning situations
typically offer more than two opportunities to study material.
The models can also predict retention following three or more
sessions. In this paper, we explore predictions of ACT-R and
MCM in order to guide the design of future experiments that
might discriminate between the models.

Study Schedule Optimization
A cognitive model of the distributed practice effect allows us
to predict recall accuracy at test for a particular study sched-
ule and RI. For example, Figure 2c shows ACT-R’s prediction
of recall probability for a study schedule with two variable
ISIs and an RI of 20 days, for a particular parameterization of
the model based on Pavlik and Anderson (2008). It is the two-
dimensional generalization of the kind of spacing functions
illustrated in Figures 2a and 2b. Recall probability, shown by
the contour lines, is a function of both ISIs. The star in Figure
2c indicates the schedule that maximizes recall accuracy.

Models are particularly important for study-schedule opti-
mization. It is impractical to determine optimal study sched-
ules empirically because the optimal schedule is likely to de-
pend on the particular materials being learned and also be-
cause the combinatorics of scheduling n + 1 study sessions

(i.e., determining n ISIs) make it all but impossible to explore
experimentally for n > 1. With models of the distributed prac-
tice effect, we can substitute computer simulation for exhaus-
tive human experimentation.

In real-world learning scenarios, we generally do not know
exactly when studied material will be needed; rather, we have
a general notion of a span of time over which the material
should be retained. Though not the focus of this paper, mod-
els of the distributed practice effect can be used to determine
study schedules that maximize retention not only for a partic-
ular prespecified RI, but also for the situation in which the RI
is treated as a random variable with known distribution. The
method used in this paper to determine optimal study sched-
ules can easily be extended to accomodate uncertain RIs.

Pavlik and Anderson ACT-R Model
In this section, we delve into more details of the Pavlik and
Anderson (2005; 2008) model, which is based on ACT-R
declarative memory assumptions. In ACT-R, a separate trace
is laid down each time an item is studied, and the trace decays
according to a power law, t−d , where t is the age of the mem-
ory and d is the power law decay for that trace. Following n
study episodes, the activation for an item, mn, combines the
trace strengths of individual study episodes:

mn = βs +βi +βsi + ln

(
n

∑
k=1

bkt−dk
k

)
,

where tk and dk refer to the age (in seconds) and decay asso-
ciated with trace k, and the additive parameters βs, βi, and βsi
correspond to participant, item, and participant-item factors
that influence memory strength, respectively. The variable bk
reflects the salience of the kth study session (Pavlik, 2007);
larger values of bk correspond to cases where, for example,
the participant self-tested and therefore exerted more effort.

The key claim of the ACT-R model with respect to the
distributed-practice effect is that the decay term on study trial
k depends on the item’s overall activation at the point when
study occurs, according to the expression:

dk(mk−1) = cemk−1 +α,

where c and α are constants. If spacing between study trials
is brief, the activation mk−1 is large and consequently the new



study trial will have a rapid decay, dk. Increasing spacing can
therefore slow memory decay of trace k, but it also incurs a
cost in that traces 1...k−1 will have substantial decay.

The model’s recall probability is related to activation by:

p(m) = 1/(1+ e
τ−m

s ),

where τ and s are additional parameters. The pieces of the
ACT-R model relevant to this paper include 3 additional pa-
rameters, for a total of 10 parameters, including: h, a transla-
tion of real-world time to internal model time, u, a descriptor
of the maximum benefit of study, and v, a descriptor of the
rate of approach to the maximum.

Pavlik and Anderson (2008) use ACT-R activation predic-
tions in a heuristic algorithm for scheduling the trial order
within a study session, as well as the trial type (i.e., whether
an item is merely studied, or whether it is first tested and then
studied). They assume a fixed intersession spacing. Thus,
their algorithm reduces to determining how to best allocate a
finite amount of time within a session.

Although they show a clear effect of the algorithm used
for within-session scheduling, we focus on the complemen-
tary issue of scheduling the lag between sessions. The ISI
manipulation is more in keeping with the traditional concep-
tualization of the distributed-practice effect. Fortunately, the
ACT-R model can be used for both within- and between-
session scheduling. To model between-session scheduling,
we assume—as is true in controlled experimental studies—
that each item to be learned is allotted the same amount of
study (or test followed by study) time within a session.

Pavlik and Anderson (2008) describe their within-session
scheduling algorithm as optimizing performance, yet we
question whether their algorithm is appropriately cast in
terms of optimization. They argue that maximizing proba-
bility of recall should not be the goal of a scheduling algo-
rithm, but that activation gain at test should be maximized so
as to encourage additional benefits (e.g., improved long-term
retention). We believe that had Pavlik and Anderson (2008)
sought simply to maximize probability of recall at test and
had more rigorously defined their optimization problem, they
would have seen results of the ACT-R within-session sched-
uler even better than what they achieved. In light of these
facts, we contend that our work is the first effort to truly opti-
mize memory retention via cognitive models.

Multiscale Context Model
One class of theories proposed to explain the distributed-
practice effect focuses on the notion of encoding variabil-
ity. According to these theories, when an item is studied, a
memory trace is formed that incorporates the current psycho-
logical context. Psychological context includes conditions of
study, internal state of the learner, and recent experiences of
the learner. Retrieval of a stored item depends partly on the
similarity of the contexts at the study and test. If psycholog-
ical context is assumed to fluctuate randomly, two study ses-
sions close together in time will have similar contexts. Conse-
quently, at the time of a recall test, either both study contexts

will match the test context or neither will. A longer ISI can
thus prove advantageous because the test context will have
higher likelihood of matching one study context or the other.

Raaijmakers (2003) developed an encoding variability the-
ory by incorporating time-varying contextual drift into the
Search of Associative Memory (SAM) model and used this
model to explain data from the distributed-practice literature.
The context consists of a pool of binary-valued neurons which
flip state at a common fixed rate. This behavior results in ex-
ponentially decreasing similarity between contexts at study
and test time as a function of the study-test lag.

In further explorations, we (Mozer et al., submitted) found
a serious limitation of SAM: Distributed-practice effects oc-
cur on many time scales (Cepeda et al., 2006). SAM can ex-
plain effects for study sessions separated by minutes or hours,
but not for sessions separated by weeks or months. The rea-
son is essentially that the exponential decay in context simi-
larity bounds the time scale at which the model operates.

To address this issue, we proposed a model with multi-
ple pools of context neurons. The pools vary in their rela-
tive size and the rate at which their neurons flip state. With
an appropriate selection of the pool parameters, we obtain a
model that has a power-law forgetting function and is there-
fore well suited for handling multiple time scales. The notion
of multiscale representations comes from another model of
distributed-practice effects developed by Staddon, Chelaru,
and Higa (2002) to explain rat habituation. We call our
model, which integrates features of SAM and Staddon et al.’s
model, the Multiscale Context Model (MCM).

MCM has only five free parameters. Four of these pa-
rameters configure the pools of context neurons, and these
parameters can be fully constrained for a set of materials to
be learned by the the basic forgetting function—the function
characterizing recall probability versus lag between a single
study opportunity and a subsequent test. Given the forget-
ting function, the model makes strong predictions concerning
recall performance at test time given a study schedule.

MCM predicts the outcome of four experiments by Cepeda
et al. (in press, 2008). These experiments all involved two
study sessions with variable ISIs and RIs. Given the ba-
sic forgetting functions for the material under study, MCM
accurately predicted the ISI yielding maximal recall perfor-
mance at test for each RI. Although MCM is at an early
stage of development, the results we have obtained are suf-
ficiently promising and robust that we find it valuable to ex-
plore the model’s predictions and to compare them to the
well-established ACT-R model.

Comparing Model Predictions
Having introduced the ACT-R model and MCM, we now turn
to the focus of this paper: obtaining predictions from the two
models to determine whether the models are distinguishable.
We focus on the most important, practical prediction that the
models can make: how to schedule study to optimize mem-
ory retention. We already know that the models make sim-



ilar predictions in empirical studies with two study sessions
(one ISI); we therefore turn to predictions from the models
with more than two sessions (two or more ISIs). Even if the
models make nonidentical predictions, they may make pre-
dictions that are quantitatively so similar the models will in
practice be difficult to distinguish. We therefore focus our ex-
plorations on whether the models make qualitatively different
predictions. Constraining our explorations to study schedules
with three study sessions (i.e., two ISIs), we test whether the
models predict that optimal study schedules have expanding,
contracting, or equal spacing, that is, schedules in which ISI
1 is less than, greater than, or equal to ISI 2, respectively. For
the sake of categorizing study schedules, we judge two ISIs to
be equal if they are within 30% of one another. The key con-
clusions from our experiments do not depend on the precise
setting of this criterion.

In all simulations, we used the Nelder-Mead Simplex
Method (as implemented in Matlab’s fminsearch) for find-
ing the values of ISI 1 and ISI 2 that yield the maximum recall
accuracy following a specified RI. Because this method finds
local optima, we used random restarts to increase the likeli-
hood of obtaining global optima. We observed some degen-
erate local optima, but for the most part, it appeared that both
models had spacing functions like those in Figures 2a and 2b
with a single optimum.

Our first exploration of the models’ spacing predictions
uses parameterizations of the models fit to the Glenberg
(1976) data (Figure 2a for ACT-R, not shown for MCM). Be-
cause the models have already been constrained by the exper-
imental data, which involved two study opportunities, they
make strong predictions concerning memory strength follow-
ing three spaced study opportunities. We used the models to
predict the (two) optimal ISIs for RIs ranging from ten min-
utes to one year. We found that both models predict contract-
ing spacing is optimal regardless of RI. The spacing func-
tions obtained from the models look similar to that in Figure
2c. Because the models cannot be qualitatively discriminated
based on the parameters fit to the Glenberg experiment, we
turn to exploring a wider range of model parameterizations.

Randomized Parameterizations

In this section, we explore the predictions of the models
across a wide range of RIs and model parameterizations, in
order to determine whether we can abstract regularities in the
models’ predictions that could serve to discriminate between
the models. In particular, we are interested in whether the op-
timality of contracting spacing predicted by both models for
the Glenberg paradigm and material is due to peculiarities of
that study, or whether optimality of contracting spacing is a
robust parameter-independent prediction of both models.

Methodology. We performed over 200,000 simulations for
each model. In our simulations, we systematically varied the
RIs from roughly 10 seconds to 300 days. We also chose ran-
dom parameter settings that yielded sensible behavior from
the models. We later expand on the notion of “sensible.”
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Figure 3: The distribution of qualitative spacing predictions of
ACT-R (upper panel) and MCM (lower panel) as a function of RI,
for random model variants. Each point corresponds to the percent-
age of valid model fits that produced a particular qualitative spacing
prediction.

For the ACT-R model, we draw the parameters βi, βs, βsi
from Gaussian distributions with standard deviations speci-
fied in Pavlik and Anderson (2008). The parameters h, c, and
α are drawn from a uniform distribution in [0, 1]. The study
weight parameter b is fixed at 1, which assumes test-practice
trials (Pavlik & Anderson, 2008). Remaining parameters of
the model are fixed at values chosen by Pavlik and Anderson
(2008). For MCM, we vary the four parameters that deter-
mine the shape of the forgetting function.

To ensure that the randomly generated parameterizations of
both models are sensible—i.e., yield behavior that one might
expect to observe of individuals studying specific materials—
we observe the forgetting function for an item studied once
and then tested following an RI, and place two criteria on the
forgetting function: (1) With an RI of one day, recall proba-
bility must be less than 0.80. (2) With an RI of thirty days, re-
call probability must be greater than 0.05. We thus eliminate
parameterizations that yield unrealistically small amounts of
forgetting and too little long-term memory.

Results. Results of our random-parameter simulations are
presented in Figures 3 and 4. The upper graphs of each fig-
ure are for the ACT-R model and the lower graphs are for
MCM. Figure 3 shows, as a function of the RI, the proportion
of simulations that yield contracting (red curve), expanding
(green curve), and equal (blue curve) optimal spacing. The
ACT-R model (Figure 3, upper) strongly predicts that con-



tracting spacing is optimal, regardless of the RI and model
parameters. In contrast, MCM (Figure 3, lower) suggests
that the qualitative nature of the optimal study schedule is
more strongly dependent on RI and model parameters. As
the RI increases, the proportion of expanding spacing pre-
dictions slowly increases and the proportion of equal spacing
predictions decreases; contracting spacing predictions remain
relatively constant. Over a variety of materials to be learned
(i.e., parameterizations of the model), MCM predicts that ex-
panding spacing becomes increasingly advantageous as the
RI increases.

Each scatter plot in Figure 4 contains one point per ran-
dom simulation, plotted in a log-log space that shows the val-
ues of the optimal ISI 1 on the x-axis and the optimal ISI
2 on the y-axis. In other words, each point is like the star
(point of optimal retention) of Figure 2c, plotted for a unique
parameterization and RI. The two solid diagonal lines repre-
sent the decision boundary between the different qualitative
spacing predictions. Points between the decision boundaries
are within 30% of each other (in linear space) and fall under
the label of equal spacing. Points above the upper diagonal
line are classified as expanding spacing, and points below the
lower diagonal line are classified as contracting spacing. The
color of the individual points specifies the corresponding RI.

The spacing functions produced by the ACT-R model are
fairly similar, which is manifested not only in the consistency
of the qualitative predictions (Figure 3, upper), but also the
optimal ISIs (Figure 4, upper). The relationship between
optimal ISI 1 and optimal ISI 2 appears much stronger for
the ACT-R model than for MCM, and less dependent on the
specific model parameterization. Not only do we observe a
parameter-independent relationship between the optimal ISIs,
but we also observe a parameter-independent relationship be-
tween the RI and each of the ISIs. The apparent linearity in
the upper panel of Figure 4 translates to a linear relationship
in log-log space between RI and each of the optimal ISIs. The
least-squares regression yields:

log10(ISI1) = 1.0164log10(RI)+0.5091
log10(ISI2) = 1.0237log10(RI)+0.9738

with coefficient of determination (ρ2) values of 0.89 and 0.90,
respectively. We emphasize that these relationships are pre-
dictions of a model, not empirical results. The only empirical
evidence concerning the relationship between RI and the op-
timal ISI is found in Cepeda et al. (2006), who performed a
meta-analysis of all cogent studies of the distributed-practice
effect, and observed a roughly log-log linear relationship be-
tween RI and optimal ISI for experiments consisting of two
study sessions (one ISI). Were this lawful relationship to ex-
ist, it could serve as an extremely useful heuristic for edu-
cators who face questions such as: If I want my students to
study this material so that they remember it for six months
until we return to the same topic, how should I space the two
classes I have available to cover the material?

In further contrast with ACT-R, MCM’s optimal ISI predic-
tions are strongly parameter dependent (Figure 4, lower). Is
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Figure 4: Optimal spacing predictions in log-space of ACT-R (up-
per figure) and MCM (lower figure) for random parameter settings
over a range of RIs. Each point corresponds to a parameter setting’s
optimal spacing prediction for a specific RI, indicated by the point’s
color. The black lines indicate the boundaries between expanding,
equal, and contracting spacing predictions.

this result problematic for MCM? We are indeed surprised by
the model’s variability, but there are no experimental data at
present to indicate whether such variability is observed in op-
timal study schedules for different types of material (as rep-
resented by the model parameters).

Although ACT-R shows greater regularity in its predictions
than MCM, as evidenced by the contrast between the upper
and lower panels of Figure 4, note that both models make op-
timal spacing predictions that can vary by several orders of
magnitude for a fixed RI. No experimentalist would be sur-
prised by the prediction of both models that optimal spacing
of study for a given RI is material-dependent, but this point
has not been acknowledged in the experimental literature, and
indeed, the study by Cepeda et al. (2008) would seem to sug-
gest otherwise: two different types of material yielded spac-
ing functions that appear, with the limited set of ISIs tested,
to peak at the same ISI.

Another commonality between the models is that both
clearly predict the trend that optimal ISIs increase with the
RI. This is evidenced in Figure 4 by the fact that the long
RIs (red points) are closer to the upper right corner than the
short RIs (blue points). Although the experimental litera-



ture has little to offer in the way of behavioral results using
more than two study sessions, experimental explorations of
the distributed-practice effect with just two study sessions do
suggest a monotonic relationship between RI and the optimal
ISI (Cepeda et al., 2006).

Discussion
In this paper, we have explored two computational models
of the distributed practice effect, ACT-R and MCM. We have
focused on the educationally relevant issue of how to space
three or more study sessions so as to maximize retention at
some future time. The models show some points of agree-
ment and some points of fundamental disagreement.

Both models have fit the experimental results of Glenberg
(1976). With the parameterization determined by this fit, both
models make the same basic prediction of contracting spacing
being optimal when three study sessions are involved. Both
models also agree in suggesting a monotonic relationship be-
tween the RI and the ISIs. Finally, to differing extents, both
models suggest that optimal spacing depends not only on the
desired RI, but also on the specific materials under study.

When we run simulations over the models’ respective pa-
rameter spaces, we find that the two models make remarkably
different predictions. ACT-R strongly predicts contracting
spacing is best regardless of the RI and materials. In con-
trast, MCM strongly predicts that equal or expanding spacing
is best, although it shows a greater dependence on both RI
and the materials than does ACT-R. This stark difference be-
tween the models gives us a means by which the models can
be evaluated. One cannot ask for any better set-up to pit one
model against the other in an experimental test.

In reviewing the experimental literature, we have found
only four published papers that involve three or more study
sessions and directly compare contracting versus equal or
contracting versus expanding study schedules (Foos & Smith,
1974; Hser & Wickens, 1989; Landauer & Bjork, 1978; Tsai,
1927). All four studies show that contracting spacing leads
to poorer recall at test than the better of expanding or equal
spacing. These findings are consistent with MCM and incon-
sistent with ACT-R. However, the findings hardly allow us to
rule out ACT-R, because it would not be surprising if a post-
hoc parameterization of ACT-R could be found to fit each of
the experimental studies.

Nonetheless, the sharp contrast in the predictive tenden-
cies of the two models (Figure 3) offers us an opportunity to
devise a definitive experiment that discriminates between the
models in the following manner. We conduct an experimental
study with a single ISI and parameterize both models via fits
to the resulting data. We then examine the constrained mod-
els’ predictions regarding three or more study sessions. If
ACT-R predicts decreasing spacing and MCM predicts equal
or increasing spacing, we can then conduct a follow-on study
in which we pit the predictions of two fully specified models
against one another. We (Kang, Lindsey, & Pashler, in prepa-
ration) have just begun this process using Japanese-English

vocabulary pairs that Pavlik and Anderson (2008) have mod-
eled extensively with ACT-R. Without extensive simulation
studies of the sort reported in this paper, one would not have
enough information on how the models differ to offer an ap-
proach to discriminate the models via experimental data.
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