
CONTRIBUTED ARTICLE

Dynamic On-Line Clustering and State Extraction:
An Approach to Symbolic Learning

Sreerupa Das1 and Michael Mozer2

1Lucent Technologies, Bell Labs Innovations and2Department of Computer Science, University of Colorado

(Received10 April 1996;accepted16 September1997)

Abstract—Although recurrent neural nets have been moderately successful in learning to emulate finite-state machines
(FSMs), the continuous internal state dynamics of a neural net are not well matched to the discrete behavior of an FSM.
We describe an architecture, called DOLCE, that allows discrete states to evolve in a net as learning progresses.
DOLCE consists of a standard recurrent neural net trained by gradient descent and an adaptive clustering technique
that quantizes the state space. We describe two implementations of DOLCE. The first implementation, called DOLCEu,
uses an adaptive clustering scheme in an unsupervised mode to determine both the number of clusters and the partition-
ing of the state space as learning progresses. The second model, DOLCEs, uses a Gaussian Mixture Model in a
supervised learning framework to infer the states of an FSM. DOLCEs is based on the assumption that a finite set of
discrete internal states is required for the task, and that the actual network state belongs to this set but has been
corrupted by noise due to inaccuracy in the weights. DOLCEs learns to recover the discrete state with maximum a
posteriori probability from the noisy state. Simulations show that both implementations of DOLCE lead to a significant
improvement in generalization performance over earlier neural net approaches to FSM induction. The idea of adaptive
quantization is not just applicable to DOLCE but can be applied to other domains as well.q 1998 Elsevier Science Ltd.
All rights reserved

Keywords—DOLCE, Recurrent network, On-line clustering, Differentiable state extraction, Finite state automata.

1. INTRODUCTION

Researchers often try to understand the representations
that develop in the hidden layers of a neural network
during training. Interpretation is difficult because the
representations are typically highly distributed and
continuous. By ‘‘continuous’’, we mean that if one
constructed a scater plot over the hidden unit activity
space of patterns obtained in response to various inputs,
examination at any scale would reveal the patterns to be
broadly distributed over the space. Such continuous
representations are naturally obtained if the input space
and activation dynamics are continuous.

Continuous representations are not always appro-
priate. Many task domains might benefit fromdiscrete
representations—representations selected from a finite
set of alternatives. Example domains include finite-state

machine emulation, data compression, language and
higher congnition (involving discrete symbol processing),
and categorization. In such domains, standard neural net-
work learning procedures, which have a propensity to
produce continuous representations, may be inappropriate.
The research we describe involves designing an inductive
bias into the learning procedure in order to encourage the
formation of discrete internal representations.

In the recent years, various approaches have been
explored for learning discrete representations using neural
networks (McMillan, Mozer, & Smolensky, 1992; Mozer
& Bachrach, 1990; Mozer & Das, 1993; Schu¨tze, 1993;
Towell & Shavlik, 1992). However, these approaches are
domain specific, making strong assumptions about the
nature of the task. The research described here is a general
methodology that makes no assumption about the
domain to which it is applied, beyond the fact that dis-
crete representations are desirable.

2. FINITE STATE MACHINE INDUCTION

We illustrate the methodology using the domain of finite-
state machine (FSM) induction. An FSM defines a class

Neural Networks, Vol. 11, No. 1, pp. 53–64, 1998
q 1998 Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0893–6080/98 $19.00+.00

PII: S0893-6080(97)00113-5

Pergamon

53

Acknowledgements: This research was supported by NSF
Presidential Young Investigator award IRI-9058450, and McDonnell-
Pew Award # 97-18.

Requests for reprints should be sent to Sreerupa Das, Lucent Tech-
nologies, Bell Labs Innovations, 11900 North Pecos Street, Room
31K52, Denver, CO 80234, USA. Fax: (303) 538-6401; E-mail: rupa
@longs.dr.lucent.com

of symbol strings (also called a language). For example,
the language (10)* consists of all strings with one or
more repetitions of 10; 101010 is a positive example of
the language, 111 is a negative example. Figure 1 shows
an FSM for the language (10)*. The FSM consists of a
finite set of states and a function that maps the current
state and the current symbol of the string into a new state.

Certain states of the FSM are designated ‘‘accept’’ states,
meaning that if the FSM ends up in these states, the string
is a member of the language. The induction problem is to
infer an FSM that parsimoniously characterizes the posi-
tive and negative exemplars, and hence characterizes the
underlying language.

A generic recurrent network architecture, like the one
in Figure 2, could be used for FSM emulation and induc-
tion. A string is presented to the network, one symbol at a
atime. The input layer activity pattern indicates the
current symbol. Following the end of string presentation,
the network is trained to output whether or not the string
belongs to the language. Such an architecture, trained by
a gradient descent procedure, is able to learn to perform
this or related tasks (Elman, 1990; Giles, Miller, Chen,
Sun, & Lee, 1992; Pollack, 1991; Servan-Schreiber,
Cleeremans, & McClelland, 1991; Watrous & Kuhn,
1992).

If we take a closer look at the hidden unit activations
during training such an architecture, we see that the acti-
vation values are scattered widely in the activity space
during early phases of training. None the less, once the
network has been trained successfully, the activations
tend to achieve stable values. In order to perform the
task of correct classification, one might expect that the
hidden activity patterns at any point during the string
presentation would corresponds to a state of the under-
lying FSM. For example, when trained on strings from
the language (10)*, we would expect to see three distinct
activity values for the hidden units as the underlying
FSM consists of three states. As a consequence of

54 S. Das and M. Mozer

FIGURE 1. A finite state machine for the language (10)*.

FIGURE 2. A generic recurrent network architecture that could be
used for FSM induction. Each box corresponds to a layer of
units, and arrows depict complete connectivity between layers.
At each time step, a new symbol is presented on the input and
the input and hidden representations are integrated to form a
new hidden representation.

FIGURE 3. A scatter plot of hidden activity space of a generic recurrent network having two hidden units, trained on the language (10)*.
Each circle corresponds to a hidden state vector that occurs in the training set. The three clusters of hidden states correspond to the
three states in the inferred FSM.

successful training, the hidden unit activation values
indeed tend to form distinct clusters. Figure 3 shows a
typical scatter plot of the hidden activity space for a two-
hidden-unit network following training, and we see that
three distinct clusters have evolved as a result of training.
Roughly, these regions of hidden activity space can be
identified with states in the FSM; when presented with an
input string, the induced states appear to make transitions
that correspond to the transitions in the underlying FSM
(Figure 1).

However, because the hidden unit activities are con-
tinuous, state representations can drift from one state to
the other. This is most evident when input strings that are
presented are longer than those in the training set.
Figure 4 plots the same hidden activity space as in
Figure 3 but when presented with strings not contained
in the training set. Clearly, the three distinct clusters that
emerged during training, diffuse and blend with one
another when the test set is presented. Thus, although
this model is relatively successful in learning to emulate
FSMs, the continuous internal state dynamics of this net-
work are not well matched to the discrete behavior of
FSMs.

3. PRIOR RESEARCH

To achieve more robust dynamics, one might consider
quantizing the hidden state. Two approaches to quantiza-
tion have been explored previously. In the first, a net is
trained in the manner described above. After training, the
hidden state space is partitioned into disjoint regions and

each hidden activity pattern is then discretized by
mapping it to the center of its corresponding region
(Das & Das, 1991; Giles et al., 1992). The basic archi-
tecture is depicted in Figure 5. Das and Das (1991)
persued this approach using a clustering scheme to
define the regions. Giles et al. (1992) evenly segemented
the activation space, and each segment with non-zero
membership was considered a state.

In a second approach, quantization is enforcedduring
training by mapping the hidden state at each time step to
the nearest corner of a [0,1]n hypercube (Zeng, Good-
man, & Smythe, 1993). During the testing phase, a
hidden activity pattern is discretized by mapping it to
the center of the region to which it belongs.

Each of these approaches has its limitations. In the first
approach, because learning does not consider the latter
quantization, the hidden activity patterns that result from
learning may not lie in natural clusters. Consequently,
the quantization step may not group together activity
patterns that correspond to the same state. In the second
approach, the quantization process causes the error

55Dynamic On-Line Clustering and State Extraction

FIGURE 4. A scatter plot of the hidden activity space for a generic recurrent network trained on the language (10)*, when strings not
contained in the training set are presented. Whereas three distinct clusters emerged when the network is presented with strings in the
training set, the three clusters diffuse and blend with one another on test strings.

FIGURE 5. By quantizing hidden activity patterns during the
operation of the network, one can hope to rectify the problem
of drifting activations.

surface to have discontinuities and to be flat in local
neighborhoods of the weight space. Hence, gradient
descent learning algorithms cannot be used; instead,
even more heuristic approaches are required. To over-
come the limitations of these approaches, we have
pursued an approach in which quantization is an integral
part of the learning process.

4. DOLCE

Our approach incorporates aclustering moduleinto the
recurrent network architecture, as shown in Figure 6. The
hidden unit activities are processed by the clustering
module before being passed on to other layers of the
network. The clustering module attempts to map regions
in hidden activity space to a single point in the same
space, effectively partitioning or clustering the space.
As with the models described above, each region corre-
sponds to an induced state of the underlying state
machine. The regions are adaptive and dynamic, changing
over the course of learning. This architecture is called
DOLCE, for Dynamic On-Line Clustering and State
Extraction.

An architecture like DOLCE may be explored along
two dimensions: (1) the clustering algorithm used (e.g.,
the Forgy algorithm, a Gaussian mixture model, the Ball
& Hall, 1966 ISODATA algorithm, vector quantization
methods); and (2) whether supervised or unsupervised
training is used to identify the clusters. In unsupervised
mode, the performance error on the FSM induction task
has no effect on the operation of the clustering algorithm;
instead, an internal criterion characterizes goodness of
clusters. In supervised mode, the primary measure that
affects the goodness of a cluster is the performance error.
Regardless of the training mode, all clustering algorithms
incorporate a pressure to produce a small number of
clusters. Additionally, as we elaborate below, the algo-
rithms must allow for soft clustering during training, in
order to be integrated into a gradient-based learning
procedure.

We have explored two possibilities along the two
dimensions for incorporating the clustering module.
The first involves the use of Forgy’s algorithm in an
unsupervised mode; we call this model DOLCEu. The
second uses a Gaussian mixture model in a supervised
mode, where the mixture model parameters are adjusted
so as to minimize the performance error; we call this
model DOLCEs (preliminary results of this research
appear in Das and Mozer, 1994).

5. DOLCEU: INDUCING FINITE-STATE
MACHINES USING UNSUPERVISED LEARNING

The model DOLCEu continually quantizes the internal
state representation using an adaptive clustering scheme
that determines both the number of clusters and the par-
titioning of the state space during training. DOLCEu then

56 S. Das and M. Mozer

FIGURE 6. The basic architecture of DOLCE.

FIGURE 7. An outline of Forgy’s algorithm. The value of k indicates the number of clusters identified by the algorithm. The algorithm
begins with k ¼ 1, and c 1 equal to the centroid of all the patterns.

takes as its internal state an interpolation between the
actual and quantized states, gradually weighting the
interpolation more toward the quantized state as learning
progresses. We call thisa-projection, where a is the
weighting factor. Thus, in contrast to prior research,
DOLCEu graduallybecomes more discrete with training.

DOLCEu uses a variant of Forgy’s (Forgy, 1965)
clustering algorithm. The simplicity of Forgy’s algorithm
was the primary reason for preferring it over other ver-
satile but computationally intensive algorithms, such as
ISODATA. Figure 7 outlines the main steps in the
version of Forgy’s algorithm used in DOLCEu.

5.1. The Architecture

The basic neural network architecture for DOLCEu is the
same as in Figure 2. However, instead of having standard
connectivity between the input (including the context
layer) and the hidden layer, the connections into the
hidden layer in DOLCEu are of the second order
(inspired by Giles et al., 1992), meaning that the net
input to a hidden unit is described by the equation:

hi(t) ¼
∑

j

∑
k

wijkhj(t ¹ 1)xk

where hi(t) represents the activity of thei-th hidden unit
at timet, xk represents the activity of thek-th input unit,
andwijk represents the second order weight that connects
the pair hj(t-1) and i k to hi(t). The hidden layer is con-
nected to the output layer with standard first order
weights. The architecture also includes a clustering
module (Figure 8). All connections are feedforward
except for the ones that feedback from the hidden layer
to itself. At every time step, the hidden layer receives two
sources of input: (a) external input representing the cur-
rent symbol of the input string; and (b) internal input that
results froma-projection of the previous hidden state
(described in Section 5.2).

The task of the network is to infer the FSM underlying
a given set of positive and negative examples. Strings
from a regular language are presented, one symbol at a
time, as input. Once a complete string has been pre-
sented, the network’s target output isþ1 for positive
examples,¹1 otherwise. The usual sum squared differ-
ence between output and target provides the error signal
for a given string.

5.2.a-Projection

On-line clustering is incorporated in the network as
follows. During everyu epochs while training, the hidden
activity state is collected at each time step for each train-
ing string. The Forgy algorithm is then run on this set of
vectors to determine the appropriate number of clusters
and the partitioning of the state vectors into clusters. This
results in a cluster membership function that maps any
state,h, to a corresponding cluster, cluster(h). For the
nextu epochs, the cluster membership function is applied
to each hidden state at each timet, h(t), to determine its
corresponding partition, cluster(h(t)). The new hidden
state,ĥ(t), is found by interpolating the actual hidden
state and the centroid of the state’s cluster,ccluster(h(t)):

ĥ(t) ¼ (1¹ a)h(t) þ accluster(h(t)): (1)

This state is called thea-projected hidden state. The
parametera determines the degree to which DOLCEu

will quantize the states. At early stages of training,
when hidden states are volatile and relatively uninforma-
tive, the cluster centroids will be noisy and poor indica-
tors of the target internal states. Thus, as training
proceeds, it makes sense to increasea gradually, and
shift the weighting so as to prefer the quantized state
over the raw state. We seta based on the training
error:

a ¼ e¹fE,

whereE is the average error per string scaled to the range
[0,1] andf is a constant that determines how sensitive is
a with respect to the errorE. The value off was deter-
mined experimentally and set to 60 (the intensitivity of
values off is discussed later). For values much smaller
and larger than this range,a tends to become invariant of
E (a approaches 1 and 0 respectively), thus degrading the
performance.

5.3. Test Problems

The network was trained on a set of regular languages,
listed in Table 1, that are defined on the symbols 0 and 1.
These languages were first studied by Tomita (1982) and
later used by others, including Giles et al. (1992), Gori
et al. (1993), Pollack (1991), Watrous and Kuhn (1992).

57Dynamic On-Line Clustering and State Extraction

FIGURE 8. The architecture of DOLCE u.

TABLE 1
The Tomita languages

Language Definition

1 1*
2 (10)*
3 String does not contain 12nþ102mþ1 as a substring
4 String does not contain 000 as a substring
5 String contains an even number of 01’s and 10’s
6 Number of 0’s—number of 1’s is a multiple of 3
7 0*1*0*1*

A fixed training corpus of strings was randomly
generated for each language, with an equal number of
positive and negative examples. The maximum string
lenght varied from 5 to 10 symbols and the total number
of examples varied from 40 to 100, depending on the
difficulty of the induction task. Table 2 lists the maxi-
mum string length and the number of strings used to learn
the Tomita languages listed in Table 1.

5.4. Simulation Details

Because all languages had just two symbols, only one
input unit was needed; it took on the value 0 or 1 depend-
ing on the current input symbol. One output unit was
used to represent the judgement of whether or not a string
was a member of the language. For each language, we
started the simulation with two hidden units and
increased the number until there were enough hidden
units to learn the training data. The number of hidden
units that were necessary to learn the languages are listed
in Table 3.

Networks were initialized with random weights in the
range [0.25,¹ 0.25]. There are three parameters in
DOLCEu: T, f, andu. The values ofT and u were set
to 0.5 and 5 respectively. These magnitudes were
obtained by experimentation and small variations did
not affect DOLCEu’s performance. For example, Figure
9 shows the insensitivity of DOLCEu to the parameterf.

Each string was presented one symbol at a time, after
which DOLCEu was given a target output indicating
whether the string was a positive or negative example
of the language. Backpropagation of error through time
(Rumelhart et al., 1986) was used to train the network
weights. Training continued until DOLCEu converged on
a set of weights. Since the training examples were noise-
free (i.e., there were no misclassifications in the training
corpus), the errorE on the training set should go to zero
when DOLCEu has successfully learned. If this did not
happen on a particular training run, the simulations were
restarted with different initial random weights.

While discussing the training process, we point out
that due to the discontinuous nature of the expression

58 S. Das and M. Mozer

TABLE 2
Particulars about the training corpus

Language Maximum string
length

Total number of
examples

1 5 60
2 8 45
3 7 100
4 10 100
5 10 80
6 6 60
7 10 100

TABLE 3
Number of hidden units that were necessary to

learn the Tomita languages

Language Number of hidden units

1 2
2 3
3 4
4 4
5 3
6 3
7 4

FIGURE 9. Mean and standard deviation of generalization error (average of 10 runs) is plotted against choice of f for Tomita language 2.
For values of f in the order of 10 or less, the network does not converge on the training data, hence have been omitted from this graph.

for ĥ(t) in eqn (1), complete gradient descent could not
be performed through DOLCEu because gradient through
the clustering algorithm could not be computed. There-
fore, we only propagated error back through the portion
of thea-projected hidden state that came from the origi-
nal hidden state. We therefore assumed that any small
changes to the hidden state would not affect the cluster to
which a state belonged. The consequence of this assump-
tion is that as the network learns,a goes to 1, and less
error is propagated back through the net.

We describe the results from DOLCEu following the
discussion of a second variant of the DOLCE
architecture.

6. DOLCES: INDUCING FINITE-STATE
MACHINES USING SUPERVISED LEARNING

The basic neural network architecture of DOLCEs is the
same as that of DOLCEu, including the second order
weights connecting the input and the hidden layers. How-
ever, unlike DOLCEu’s unsupervised clustering scheme,
DOLCEs uses a Gaussian mixture model in conjunction
with supervised learning to quantize the hidden activity
space. Here we motivate the incorporation of a Gaussian
mixture model into DOLCEs, using an argument that
gives the approach a solid theoretical foundation. Several
assumptions underly the approach. First, we assume that
the task faced by DOLCEs is such that it requires a finite
set of internal ortrue states,C ¼ { c1,c2,…,cT}. This is
simply the premise that motivates this line of work.
Second, we assume that any observed hidden state—i.e.,
a hidden activity pattern that results from presentation of

a symbol sequence—belongs toC but has been cor-
rupted by noise due to inaccuracy in the network weights.
Third, we assume that this noise is Gaussian and
decreases as learning progresses (i.e., as the weights
are adjusted to better perform the task). These assump-
tions are depicted in Figure 10.

Based on these assumptions, we construct a Gaussian
mixture distribution that models the observed hidden
states:

p(hlC,j, q) ¼
∑T

i ¼ 1

qi

(2pj2
i)H=2e¹ lh ¹ ci l

2
=2j2

i

whereh denotes an observed hidden state,j i
2 the var-

iance of the noise that corrupts stateci, qi is the prior
probability that the true state isci, andH is the dimen-
sionality of the hidden state space. For pedagogical pur-
poses, assume for the time being that the parameters of
the mixture distribution—T, C, j, andq—are known; in
a later section we discuss how these parameters are
determined.

Given a noisy observed hidden state,h, DOLCEs com-
putes the maximum a posteriori (MAP) estimator ofh in
C. This estimator then replaces the noisy state and is used
in all subsequent computation. The MAP estimator,ĥ, is
computed as follows. The probability of an observed
stateh being generated by a given true statei is

p(hltrue statei) ¼ (2pj2
i)¹

H
2e¹ lh ¹ ci l

2
=2j2

i
:

Using Bayes’ rule, one can compute the posterior prob-
ability of true statei, given thath has been observed:

p(true stateilh) ¼
p(hltrue statei)qi∑
j

p(hltrue statej)qj

Finally, the MAP estimator is given bŷh ¼ cbest, where
best¼ argmaxip(true stateilh).

However, because the gradient descent training proce-
dure requires that DOLCEs’s dynamics be differentiable,
we use a ‘‘soft’’ version of MAP which involves using
h̄ ¼ Sicip(true state ilh) instead ofĥ and incorporate a
‘‘temperature’’ parameter intoj i. The justification and
motivation for this approach is described below.

An important parameter in the mixture model isT, the
number of true states (Gaussian bumps). BecauseT

59Dynamic On-Line Clustering and State Extraction

FIGURE 10. A typical example of a two dimensional hidden activ-
ity space. The true states needed to perform the task are c 1, c 2,
and c 3 (closed circles), while the observed hidden states (open
circles), assumed to be corrupted by noise, have a roughly Gaus-
sian distribution about the c i.

FIGURE 11. A schematic depiction of the hidden activity space before and after training. The horizontal plane represents the space. The
bumps indicate the component Gaussian probability densities that form the mixture model. Observed hidden states are represented by
open circles. With training, the Gaussian spreads decrease. The shorter spikes on the right represent the fact that some Gaussians
acquire near-zero priors and hence contribute little to the mixture model.

60 S. Das and M. Mozer

FIGURE 12. Scatterplot of hidden unit activities at various stages of training for DOLCE s learning the second Tomita language without the
on-line clustering. The two axes represent the activities of the two hidden units in the network One point is plotted for each time step of
each training example, for a total of 240 points, although many of these points are superimposed on one another. The four scatterplots
represent the network state after 150, 100, 5500, and 8000 training epochs.

61Dynamic On-Line Clustering and State Extraction

FIGURE 13. Scatterplot of hidden unit activities at various stages of training for DOLCE s learning Tomita language 2. The network is
started from the same initial conditions as in Figure 12. As in the previous figure, one point is plotted for each time step of each training
example, for a total of 240 points, although many of these points are superimposed on one another. The large open circles indicate the
cluster centers.

directly corresponds to the number of states in the target
FSM, if T is chosen too small, DOLCEs would not have
the capacity to emulate the FSM. Consequently, we setT
to a large value and include a technique, described
below, for eliminating unnecessary true states. (If the
initially selected T is not large enough, the training
procedure will not converge to zero error on the training
set, and the procedure can be restarted with a larger value
of T).

6.1. Training Methodology

The network weights and mixture model parameters—C,
j, and q—are adjusted by gradient descent in a cost
measure,C. This cost includes two components: (a) the
performance error,E, which is a squared difference
between the actual and target network output following
presentation of a training string, and (b) a complexity
cost, which is the entropy of the prior distribution,q:

C ¼ E ¼ l
∑

qi lnqi

wherel is a regularization parameter. The complexity

cost is minimized when only one Gaussian has a non-
zero prior, and maximized when all priors are equal.
Hence, the cost encourages unnecessary components to
drop out of the mixture model.

The particular gradient descent procedure used is a
generalization of backpropagation through time that
incorporates the mixture model. To better condition the
search space and to avoid a constrained search, optimiza-
tion is performed not overj and q but rather over
hyperparametersa and b, where j i

2 ¼ exp(ai)/b and
qi ¼ exp(¹bi

2/S jexp(¹bj
2). The expression forqi in

terms ofb was inspired by Nowlan and Hinton (1992).
The global parameterb scales the overall spread of the
Gaussians, which corresponds to the level of noise in the
model. As performance on the training set improves, we
assume that the network weights are coming to better
approximate the target weights, hence the level of
noise is decreasing. Thus,b is tied to the performance
error E. We have used various annealing schedules and
DOLCEs appears robust to this variation. In the results
below,b is set to 100/E. Note that asE → 0, b → ` and
the probability density under one Gaussina ath will

62 S. Das and M. Mozer

FIGURE 14. Examples of FSMs inferred by DOLCE for the seven Tomita languages. Each circle represents a state of the FSM. The circle
labeled S is the start state. Double circles represent accept states. A bold symbol on an arrow indicates the input causing the state
transition represented by the arrow.

become infinitely greater than the density under any
other; consequently, the soft MAP estimator,h̄, becomes
equivalent to the MAP estimator̂h, and the transformed
hidden state becomes discrete. A schematic depiction of
the probability landscape both before and after training is
depicted in Figure 11.

6.2. Simulation Details

As with DOLCEu, DOLCEs required a single input unit
representing the current input symbol—0 or 1—and one
output unit representing the grammaticality judgement.
DOLCEs was trained on the same set of languages
studied for DOLCEu.

The training procedure, the number of hidden units,
and the initial weight ranges were identical to the pre-
vious set of simulations with DOLCEu. At the start of
training, each Gaussian center,ci, is initialized to a
random location in the hidden state space. The standard
deviations of each Gaussian,j i, are initially set to a large
value. The priors,qi, are set to 1/T. The network weights
are set to initial values chosen from the uniform distribu-
tion in [¹0.25,0.25].

For each language, DOLCEs was trained with different
random initial weights. The learning rate and regulariza-
tion parameterl were chosen for each language by quick
experimentation with the aim of maximizing the likeli-
hood of convergence on the training set. The parameters
l used in the simulations was of the order 0.1, and the
learning rate was of the order 0.0001.

7. RESULTS

Figures 12 and 13 show scatter plots of the hidden activ-
ity space for typical simulations on the language (10)*.
The initial conditions are identical in the two Figures, but
on-line clustering has been removed from the simulation
depicted in Figure 12. The Figures show that DOLCEs

helps distinct clusters to evolve over time. A very similar
pattern occurs with DOLCEu (not shown). DOLCE is
also able to converge on compact state representations;
compare the lower right plots in Figures 12 and 13. Once
the network was trained, the state representations could
be inferred from the activity patterns of the induced
clusters. The transitions among states were inferred by
walking a trained network through input patterns that
forced it to make all possible transitions. Once the states
as well as their transitions were identified, it was trivial to
extract the induced FSM. Examples of FSMs inferred by
DOLCE are depicted in Figure 14. Approximately 60–
70% of the times the simulations converged on a set of
weights that yielded zero training error. Occasionally,
runs would get stuck in a local optimum and the error
would stabilize to a non-zero value, in which case the
runs would be restarted.

We have performed a comparative study of DOLCE
with the three other approaches on the Tomita languages:

a generatic recurrent network, as shown in Figure 2,
which used no clustering (referred to by the abbreviation
NC); a version with rigid quantization during trainint
(RQ), comparable to the approach taken by Zeng et al.
(1993); and a version in which the unsupervised Forgy
algorithm was used to quantize the hidden state follow-
ing training (LQ) (Figure 5), comparable to the earlier
work of Das and Das (1991). In these alternative
approaches, we used the same architecture as DOLCE
except for the clustering procedure. We selected learning
parameters to optimize performance on the training set,
ran ten replications for each language, replaced rungs
which did not converge, and used the same training
sets for all architectures.

Figure 15 compares the generalization performance of
DOLCEu (DU) and DOLCEs (DS) to the NC, RQ, and
LQ approaches. Generalization performance was tested
using 3000 strings not part of the training set, half posi-
tive examples and half negative. Both versions of
DOLCE outperformed the alternative neural network
approaches, and DOLCEs consistently outperformed
DOLCEu.

63Dynamic On-Line Clustering and State Extraction

FIGURE 15. Each bar graph shows generalization performance
on one of the Tomita languages for five alternative neural net-
work approaches: no clustering (NC), rigid quantization (RQ),
learn then quantize (LQ), DOLCE in unsupervised mode using
Forgy’s algorithm (DU), DOLCE in supervised mode using a mix-
ture model (DS). The vertical axis shows the number of misclas-
sifications for the 3000 test strings. Each bar is the average result
across ten replications with different inital weights. The error
bars represent one standard deviation of the mean.

8. CONCLUSIONS

We have described an approach for incorporating bias
into a learning algorithm in order to encourage discrete
representations to emerge during training. This approach
is quite general and can be applied to any domain in
which discrete representations are desirable, not just
FSM induction and grammaticality judgement. Also,
this approach is not specific to recurrent networks; it
would work equally well with feedforward networks.
Although the technique of incorporating bias appears
very attractive and seems to work well on simple
problems, it remains to be seen how well it performs
on real-world problems. Nonetheless, we believe that if
a task is sufficiently well understood and the nature of the
problem domain can be clearly identified, it is safe to say
that incorporating the knowledge in an appropriate way
can only help in the learning process.

REFERENCES

Ball, G., & Hall, D. (1966).ISODATA: a novel method of data analysis
and pattern classification. Technical report. Menlo Park, CA:
Stanford Research Institute.

Das, S., & Das, R. (1991). Induction of discrete state-machine by
stabilizing a continuous recurrent network using clustering.Com-
puter Science and Informatics, 21(2), 35–40. Special Issue on
Neural Computing.

Das, S., & Mozer, M. (1994). A hybrid clustering/gradient descent
architecture for finite state machine induction. In J. Cowan, G.
Tesauro, & J. Alspector (Eds.),Advances in Neural Information
Processing Systems, Vol. 6. San Mateo, CA: Morgan Kaufmann,
pp. 19–26.

Elman, J. (1990). Finding structure in time.Cognitive Science, 14(2),
179–212.

Forgy, E. (1965). Cluster analysis of multivariate data: efficiency versus
interpretability of classifications.Biometrics, 21, 768.

Giles, C., Miller, C.B., Chen, H., Sun, G., & Lee, Y. (1992). Learning
and extracting finite state automata with second-order recurrent
neural network.Neural Computation, 4(4), 393–405.

Gori, M., Maggini, M., & Soda, G. (1993).Insertion of finite state
automata into recurrent radial basis function networks. Technical
Report DSI 17/93. Florence, Italy: Department of Systems and
Informatics, University of Florence.

McMillan, C., Mozer, M., & Smolensky, P. (1992). Rule induction
through integrated symbolic and subsymbolic processing. In J.
Moody, S. Hanson, & R. Lippmann (Eds.),Advances in Neural
Information Processing Systems, Vol. 4. San Mateo, CA: Morgan
Kaufmann, pp. 969–967.

Mozer, M., & Bachrach, J. (1990). Discovering the structure of a
reactive environment by exploration.Neural Computation, 2(4),
447–457.

Mozer, M., & Das, S. (1993). A connectionist symbol manipulator that
discovers the structure of context-free languages. In C. Giles, S.
Hanson, & J. Cowan (Eds.),Advances in Neural Information Pro-
cessing Systems, Vol. 5. San Mateo, CA: Morgan Kaufmann, pp.
863–870.

Nowlan, S., & Hinton, G. (1992). Simplifying neural networks by soft
weight-sharing.Neural computation, 4(4), 473.

Pollack, J. (1991). The induction of dynamical recognizers.Machine
Learning, 7(2/3), 123–148.

Rumelhart, D., Hinton, G., & Williams, R. (1996). Learning internal
representations by error propagation. InParallel distributed pro-
cessing, Chapter 8. Cambridge, MA: MIT Press.

Schütze, H. (1993). Word space. In C. Giles, S. Hanson, & J. Cowan
(Eds.),Advances in Neural Information Processing Systems, Vol. 5.
San Mateo, CA: Morgan Kaufmann, pp. 895–902.

Servan-Schreiber, D., Cleeremans, A., & McClelland, J. (1991). Graded
state machines: the representation of temporal contingencies in
simple recurrent network.Machine Learning, 7(2/3), 161–193.

Tomita, M. (1982). Dynamic construction of finite-state automata from
examples using hill-climbing. InProceedings of the Fourth Annual
Conference of the Cognitive Science Society, pp. 105–108.

Towell, G., & Shavlik, J. (1992). Interpretation of artificial neural net-
works: mapping knowledge-based neural networks into rules. In D.
Touretzky (Ed.), Advances in Neural Information Processing
Systems, Vol. 2, San Mateo, CA: Morgan Kaufmann, pp. 977–984.

Watrous, R., & Kuhn, G. (1992). Induction of finite state languages
using second-order recurrent networks. In J. Moody, S. Hanson,
& R. Lippmann (Eds.),Advances in Neural Information Processing
Systems, Vol. 4. San Mateo, CA: Morgan Kaufmann, pp. 309–316.

Zeng, Z., Goodman, R., & Smythe, P. (1993). Learning finite state
machines with self-clustering recurrent networks.Neural
Computation, 5(6), 976–990.

64 S. Das and M. Mozer

