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We choose where to look over 170,000 times per day, approxi-
mately three times per wakeful second. The frequency of these
saccadic eye movements belies the complexity underlying each
individual choice. Experience factors into the choice of where to
look, and can be invoked to rapidly redirect gaze in a context and
task-appropriate manner. Yet, remarkably little is known about
how individuals learn to direct their gaze given the current context
and task. To address this gap in our understanding of search behav-
ior, we designed a new task in which participants search a novel
scene for a target whose location was drawn stochastically on each
trial from a fixed prior distribution. To focus on how participants
learned this distribution, we made the target invisible on a blank
screen, and the participants were rewarded when they fixated
on the target location. In just a few trials, participants rapidly
found the hidden targets by looking near previously rewarded
locations and avoiding previously unrewarded locations. Learning
trajectories were well characterized by a simple reinforcement-
learning (RL) model that maintained and continually updated a
reward map of locations. The RL model made further predictions
concerning sensitivity to recent experience that were confirmed
by the data. The asymptotic performance of both the participants
and the RL model approached optimal performance characterized
by an ideal-observer theory. These two complementary levels of
explanation show how experience in a novel environment drives
visual search in humans, and may extend to other forms of search
such as animal foraging.

ideal observer | oculomotor | reinforcement learning | saccades |
search

Our daily activities depend on successful search strategies for
finding objects in our environment. Visual search is ubiquitous
in routine tasks: finding one’s car in a parking lot, house keys on
a cluttered desk, or the button you wish to click on a computer
interface. When searching common scene contexts for a target
object, individuals rapidly glean information about where targets
are typically located (1-9). This ability to use the “gist” of an
image (3, 4) enables individuals to perform flexibly and efficiently
in familiar environments. Add to that the predictable sequence
of eye movements that occurs when someone is engaged in a
manual task (10) and it becomes clear that despite the large body
of research on how image salience guides gaze (2, 11), learned
spatial associations are perhaps just as important for effectively
engaging our visual environment (10, 12, 13). Ironically, however,
little research has been directed to how individuals learn to
direct gaze in a context and task-appropriate manner in novel
environments.

Research relevant to learning where to look comes from
the literature on eye movements, rewards and their expected
value. Like all motor behavior, saccades are influenced by reward,
occurring at shorter latency for more valued targets (14). In fact,
finding something you seek may be intrinsically rewarding (15).

Refining the well-known canonical main sequence relationship
between saccade amplitude and velocity, the value of a saccade
target can alter details of themotor plan executed either speeding
or slowing the saccade itself depending upon the value of that
target for the subject (16, 17). This result is especially interesting
in light of the research indicating that the low-level stimulus fea-
tures, which have an expected distribution of attracting fixations
(18), are different (19) and perhaps also differently valuable (20)
depending on their distance from the current fixation location.
Taken together these results underscore the complex interplay
of external and internal information in guiding eye movement
choice.

Two early foundational studies from Buswell (21) and Yarbus
(22), foreshadowed modern concepts of a priority or salience
map by showing that some portions of an image are fixated with
greater likelihood than others. Both researchers also provided
early evidence that this priority map effectively changes depend-
ing on the type of information sought. Yarbus observed that the
patterns of gaze that followed different scene-based questions or
tasks given to the observer were quite distinct, suggesting that the
observer knew where to find information in the scene to answer
the question and looked specifically to areas containing that
information when it was needed. Henderson and colleagues (23)
have replicated this result for the different tasks of visual search
and image memorization. However Wolfe and colleagues (24),
using a slightly different question and task paradigm, failed to find
evidence that saccade patterns were predictive of specific mental
states. Regardless of specific replications of Yarbus’ demonstra-
tion, it is clear that scene gist—context specific information about
where objects are typically found—emerges very quickly, and
guides target search of a scene with a known context (4). For ex-
ample, when shown a street scene, an observer would immediately
know where to look for street signs, cars and pedestrians (Fig.
1A).

Castelhano and Heaven (9) have also shown that in addition
to scene gist itself, learned spatial associations guide eye move-
ments during search. Subjects use these learned associations as
well as other context-based experience, such as stimulus proba-
bility, and past rewards and penalties (25-27) to hone the aim of
a saccadic eye movement. A recent review and commentary from
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Fig. 1. Visible and hidden search tasks. (A) An experienced pedestrian has
prior knowledge of where to look for signs, cars and sidewalks in this street
scene. (B) Ducks foraging in a large expanse of grass. (C) A representation
of the screen is superimposed with the hidden target distribution that is
learned over the session as well as sample eye traces from three trials for
participant M. The first fixation of each trial is marked with a black dot. The
final and rewarded fixation is marked by a shaded gray-scale dot. (D) The
region of the screen sampled with fixation shrinks from the entire screen
on early trials (blue circles; 87 fixations over the first 5 trials) to a region
that approximates the size and position of the Gaussian-integer distributed
target locations (squares, color proportional to the probability as given in
A) on later trials (red circles; 85 fixations from trials 32-39).Fixation position
data is from participant M.

Wolfe and colleagues explores the notion of “semantic” guidance
in complex, naturalistic scenes (28) as providing knowledge of
the probability of finding a known object in a particular part
of a scene. This perspective relates work on scene gist together
with more classic visual search tasks, offering a framework for
considering how individuals might use past experience to direct
gaze in both real-world scenes as well as in the contrived scenarios
of our laboratories.

Quite distinct from the literature on visual search is the
literature on another sort of search that is commonly required of
animals and people: foraging. Foraging agents seek food, which is
often hidden in the environment in which they search (Fig. 1B).
The search for hidden food rewards changes not only with the
position of the reward, but also with the size of the distribution
of rewards (29). Other work has cast foraging behavior in terms
of optimal search (30). What distinguishes foraging from visual
search tasks is that visual search tasks have visible cues that
drive search, in addition to contextual information that specifies
probable target location. In order to make visual search more like
foraging, we can strip the visible cues from visual search. A visual
search task devoid of visual cues would allow us to determine
whether there are underlying commonalities between these two
types of search and whether general principles of search might
emerge from such an investigation.

The reinforcement-learning framework has become widely
accepted for modeling performance in tasks involving a series of
movements leading to reward (31, 32). In addition, for organisms
across many levels of complexity, reinforcement learning has
been shown to be an excellent framework to consider adaptive

Fig. 2. Learning curves for hidden target search task. (A) The distance
between the mean of the fixation cluster for each trial to the target
centroid, averaged across participants, is shown in blue and green indicates
the result of 200 simulations of the reinforcement-learning model for each
participant’s parameters. The standard error of the mean is given for both.
The ideal observer prediction is indicated by the black dotted line. (B) The
standard deviation of the eye position distributions or “search spread” is
shown for the average of all participants (blue) and the RL model (green)
with standard error of the mean. The dashed line is the ideal observer
theoretical optimum in each case, assuming perfect knowledge of the target
distribution. (C) The median number of fixations made to find the target
on each trial is shown (blue) along with the RL model prediction (green) of
fixation number. The standard error of the mean is shown for both.

behavior in complex and changing environments (33, 34). Here
we describe performance in our task in terms of a reinforcement-
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Table 1. Performance at asymptote of learning for participants,
the ideal-observer theory, and a reinforcement-learning model

Target Spread
Condition (°)

Mean distance
from target
centroid to
fixations (°) on
trials 31-60

Search
spread (°)
on trials
31-60

Participant data 0.75 1.97 1.14
2.00 4.08 2.80
2.75 4.39 3.70

Ideal Observer Theory 0.75 0.70 0.56
2.00 3.36 2.68
2.75 4.74 3.78

Reinforcement-
learning
Model

0.75 3.21 1.56

2.00 4.46 2.61
2.75 6.07 4.29

Data, theory, and model statistics for the mean fixation distance and
search spread for 0.75°, 2.0°, and 2.75° target distribution conditions.

Fig. 3. Sequential effects in the human data and predictions of the RL
model. (A) For each subject, we plot the mean sequential intertrial distance
(the distance between the final fixation on trial n and the first fixation on
trial n+1 whentrial n yields a reward) versus the permuted intertrial distance
(the distance between the final fixation on a trial and the first fixation of
another randomly drawn trial). Each circle denotes a subject, and the circle
color indicates the target-spread condition (blue: σ = 0.75, red: σ = 2.00,
green: σ = 2.75). Consistent with the model prediction (B), the sequential
intertrial distance is reliably shorter for than permuted intertrial distance,
as indicated by the points lying above the diagonal. All intertrial distances
are larger in the model, reflecting a greater degree of exploration than in
the participants, but this mismatch is orthogonal to the sequential effects.
(C) The effect of previous trials on search in the current trial is plotted as a
function of the number of trials back. An exponential fit to the data is shown
in green.

learning (RL) perspective. Participants’ learning trajectories were
well characterized by a simple RL model that maintained and
continually updated a reward map of locations. The RL model
made further predictions concerning sensitivity to recent expe-
rience that were confirmed by the data. The asymptotic perfor-
mance of both the participants and the RL model approached
optimal performance characterized by an ideal-observer theory
assuming perfect knowledge of the static target distribution and
independently chosen fixations. These two complementary levels
of explanation show how experience in a novel environment
drives visual search in humans.

Fig. 4. Length distributions of saccades in the hidden target task. A turning
point algorithm applied to raw eye movement data yields a distribution
of step sizes for all participants (see SI Materials and Methods for details).
Very small “fixational” eye movements comprise the left side of the plot
and large larger saccadic jumps on the right for three different sizes of
target distribution. The points and lines (Loess fits with 95% confidence
interval shading) for each search distribution size, all share a similar shape,
particularly a bend at step sizes approaching 1 degree of visual angle.

Results

Humans Rapidly Learn to Find Hidden Targets. In visual search,
previous experiments failed to isolate completely the visual ap-
pearance of a target from the learned location of the reward; in
all cases a visual indication of a target, or amemory of amoments-
ago visible target (26) and its surroundings were available to guide
the movement. To understand how participants learn where to
look in a novel scene or context where no relationship exists
between visual targets and associated rewards or penalties, we
designed a new search task in which participants were rewarded
for finding a hidden target, similar to the scenario encountered
by a foraging animal (Fig. 1C).

Participants repeatedly searched a single unfamiliar scene
(context) for a target. However, to study the role of task knowl-
edge in guiding search apart from the visual cues ordinarily
used to identify a target, the target was rendered invisible. The
participants’ task was to explore the screen with their gaze and
find a hidden target location that would sound a reward tone
when fixated. Unbeknownst to each participant, the hidden target
position varied from trial to trial and was drawn from a Gaussian
distribution with a centroid and spread (target mean and stan-
dard deviation, respectively) that was held constant throughout a
session (see Fig. 1C).

At the start of a session, participants had no prior knowledge
to inform their search; their initial search was effectively “blind”.
As the session proceeded participants accumulated information
from gaining reward or not at fixation points and improved their
success rate by developing an expectation for the distribution of
hidden targets and using it to guide future search (Fig. 1D).

After remarkably few trials, participants gathered enough
information about the target distribution to direct gaze effi-
ciently near the actual target distribution, as illustrated by one
participant’s data in Fig. 1C,D. We observed a similar pattern of
learning for all participants: early fixations were broadly scattered
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throughout the search screen; after approximately a dozen trials,
fixations narrowed to the region with high target probability.

A characterization of this effect for all participants is shown
in Fig. 2A. The average distance from the centroid of the target
distribution to individual fixations in a trial drops precipitously
over roughly the first dozen trials. Fig. 2A shows this distance for
all participants in the 2° target spread condition. The asymptotic
distance from centroid increased monotonically with the target
spread (Table 1).

A measure of search spread is the standard deviation of the
set of fixations in a trial. The search spread was initially broad
and narrowed as the session progressed, as shown in Fig. 2B for
all participants in the 2° target-spread condition. The asymptotic
search spread monotonically increased with the target-spread
condition (Table 1). These data suggest that participants esti-
mated the spread of the hidden target distribution and adjusted
their search spread accordingly. Also, the median number of fix-
ations that participants made to find the target (on target-found
trials) decreased rapidly within a session to reach an asymptote
(Fig. 2C).

Humans Approach Ideal Observer Performance. We now
consider the behavior of participants once performance stabi-
lized. Taking trials 31-60 to reflect asymptotic behavior, we exam-
ined the efficiency of human search in comparison to a theoretical
optimum. An ideal observer was derived for the HTST assuming
that fixations are independent of one another, and that the tar-
get distribution is known, and the expected number of trials is
minimized. The dashed lines in Figs. 2A-C mark ideal observer
performance. Ideal search performance requires a distribution
of planned fixation “guesses” that is √2 broader than the target
distribution itself (35, 36). As seen in Figs. 2B,C, the performance
of participants hovered around this ideal search distribution after
about a dozen trials. In Fig. 2A, the mean for the human data
from trials 31-60 trend higher than the theory suggests, but the
theory presumes stationarity of the target distribution. However,
individuals must be responsive to nonstationarities in natural
environments and this responsivity yields an increase in uncer-
tainty (37) consistent with observed human performance. Across
different target distribution spreads, the ideal-observer statistics
qualitatively matched those of the human participants (Table 1),
and the quantitative match was excellent for 2.00° and 2.75°.

Reinforcement Learning Model Matches Human Learning.
In addition to the ideal-observer theory, which characterizes
the asymptotic efficiency of human search, we developed a
complementary, mechanistic account that captured the learn-
ing, individual differences, and dynamics of human behavior.
Reinforcement-learning theory, motivated by animal learning
and behavioral experiments (38), suggests a simple and intuitive
model that constructs a value functionmapping locations in space
to expected reward. The value function is updated after each
fixation based on whether or not the target is found, and is used
for selecting saccade destinations that are likely to be rewarded.

We augmented this intuitive model with two additional as-
sumptions: First, each time a saccade is made to a location,
the feedback obtained generalized to nearby spatial locations;
second, we incorporated a proximity bias that favored shorter
saccades. A preference for shorter saccades was present in the
data (Fig. S4), and has been noted by other researchers (22,
39), some of whom have shown that it can override knowledge
that participants have about the expected location of a target
(40). Incorporating a proximity bias into the model changed the
nature of the task because the choice of the next fixation became
dependent on the current fixation. Consequently, participants
must plan fixation sequences instead of choosing independent
fixations.

Wemodeled the task using temporal differencemethods (31),
which are particularly appropriate for Markovian tasks in which

sequences of actions lead to reward (see SI Materials and Methods
for details). Themodel’s free parameters were fit to each subject’s
sequence of fixations for each of the first 20 trials. Given these
parameters, themodel was run in generativemode from a de novo
state to simulate the subject performing the task.

Fig. 2 shows the mean performance of the model side-by-
side with the mean human performance. The model also pre-
dicted an asymptotic search spread that increased with the tar-
get spread (Table 1), consistent with the participants' aggregate
performance. Similar to the human performance observed in Fig.
2A, the RLmodel approaches, but does not reach, the theoretical
asymptote. Like the human participants, RL model is responsive
to nonstationarity in the distribution, whereas the ideal observer
theory assumes that the distribution is static. In addition, the
model accounted for individual differences (see SI Materials and
Methods ). Because the model had emergent dynamics and the
data used to fit the model were quite different in nature from
the statistics derived from the model, the observed consistency
between participants and simulation suggests that the model is
more than an existence proof of a mechanism, but could provide
insight into the biological mechanisms of learning (41).

Fig. 2 suggests that participants acquire the target distribution
in roughly a dozen trials and then their performance is static.
However, in the RL model the value function is adjusted after
each fixation, unabated over time. A signature of this ongoing
adjustment is a sequential dependency across trials – specifically,
a dependency between one trial’s final fixation and the next
trial’s initial fixation. Dependencies were indeed observed in the
data throughout a session (Fig. 3A), as predicted by the model
(Fig. 3B) and explained some of the trial-to-trial variability in
performance (Fig. 2 and SI Materials and Methods ). Participants
were biased to start the next trial’s search near found target
locations from recent trials. The influence of previous trials de-
creases exponentially, with the previous two or possibly three
trials back possibly influencing the current trial’s saccade choice
(Fig. 3C). This exponential damping of previous trials’ influence
is approximated by the memoryless case (35), allowing both the
RL model and ideal planner to coexist asymptotically.

Bimodal Distribution of Saccade Lengths. Our motivation
in designing the hidden target search task was to link the visual
search and foraging literatures. Performance in our task had
features analogous to those found in the larger context of animal
foraging (Fig. 4). While individual trials look like Lévy flights—a
mixture of fixation and sporadic large excursions—that are known
to be optimal in some cases of foraging behavior (42-44) the
length distribution of all straight line segments is not Lévy like,
but separates into two distinct length scales like the intermittent
search popularized by Bénichou (30). The shorter length scale,
fixations less than about 1°, corresponds to a local power law
search with a very steep exponent, making it a classic random
walk that densely samples the local space. That local search is
combined with the larger, but rarer, saccades represented by the
peaked hump at step sizes larger than 1°. These are the distinct
choices from the planned distribution described already, i.e., the
guess distribution, or value function. The distinctive knee shape
in Fig. 4 is similar to that found in other demanding visual search
tasks (35), as well as intermittent foraging by a wide range of
animals (30, 43).

Discussion

Human search performance can be put into the more general
context of animal foraging, which has close connections with
reinforcement-learning models (34) and optimal search theory
(29). The hidden target search task introduced here has allowed
us to separate the influence of external cues from internal prior
information for seeking rewards in a novel environment (45).
Our experimental results on how the distribution of hidden tar-
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gets was learned through experience were well described by a
reinforcement-learning model and the asymptotic performance
approached the theoretical bound froma theory of optimal search
behavior. The primate oculomotor system has been well studied,
which will make it possible to uncover the neural mechanisms
underlying the learning and performance of the hidden target
task, which may be shared with other search behaviors.

In our hidden target search task, participants explored a novel
environment and quickly learned to align their fixations with the
region of space over which invisible targets were probabilistically
distributed. After about a dozen trials, the fixation statistics came
close tomatching those obtained by an ideal-observer theory. This
near-match allowed us to cast human performance as optimal
memory-free searchwith perfect knowledge of the target distribu-
tion. As a complement to the ideal-observer theory that addresses
asymptotic performance, we developed a mechanistic account
of trial-to-trial learning from reinforcement. Our reinforcement-
learning (RL) model characterized the time course of learning,
attained an asymptote near ideal-observer performance, and tied
the problem of visual search to a broader theory of motivated
learning.

Natural environments. The ideal-observer and
reinforcement-learning frameworks provide the foundation
for a broader theoretical perspective on saccade choice during
natural vision, in which people learn to search in varied contexts
for visible targets, where visual features of the scene are clearly
essential. In a Bayesian framework, the subjects in our task
learned the prior distribution of the hidden targets. In a natural
environment, the prior distribution would be combined with
visual information to determine the posterior distribution, from
which saccadic targets are generated.

Naturalistic environments are non-stationary. For example,
an animal foraging for food may exhaust the supply in one
neighborhood and have to move on to another. A searcher must
be sensitive to such changes in the environment. Sequential
dependencies (Fig. 3) are a signature of this sensitivity (37, 46,
47): recent targets influence subsequent behavior, even after the
searcher has seemingly learned the target distribution, as re-
flected in asymptotic performance. Sequential dependencies were
predicted by theRLmodel, which generated behavior remarkably
close to the participants as a group, and also captured individual
idiosyncrasies (see SI Materials and Methods). Sensitivity to non-
stationary environments can explain why our participants and the
RL model attained an asymptotic search distribution somewhat
further from the target centroid than is predicted by an ideal-
observer theory premised on stationarity.

Neural Basis of Search. The neurobiology of eye movement
behavior offers an alternative perspective on the similarities of
visual search behavior and foraging. The question of where to
look next has been explored neurophysiologically, and cells in
several regions of the macaque brain appear carry signatures
of task components required for successful visual search. The
lateral interparietal area (LIP) and the superior colliculus are two
brain regions that contain a priority map representing locations of
relevant stimuli that could serve as the target of the next saccade.
Recordings in macaque area LIP and the SC have shown that this
priority map integrates information from both external (“bottom-
up”) and internal (“top-down”) signals in visual search tasks (48,
49).

Recently, Bisley and colleagues have used a foraging-like vi-
sual search task to show that area LIP cells differentiated between
targets and distracters, and kept a running estimate of likely sac-
cade goal payoffs (50). Area LIP neurons integrate information
from different foraging-relevant modalities to encode the value
associated with a movement to a particular target (51, 52) The
neural mechanisms serving patch stay-leave foraging decisions

have recently been characterized in a simplified visual choice task
(53), providing a scheme for investigations of precisely how prior
information and other task demands mix with visual information
available in the scene. Sub-threshold microstimulation in area
LIP (54) or the SC (55) also biases the selection saccades toward
the target in the stimulated field. Taken together, these results
suggest that area LIP and the SC might be neural substrates
mediating the map of likely next saccade locations in our task,
akin to the value map in our RL model.

We asked how subjects learn to choose valuable targets in
a novel environment. Recent neurophysiological experiments in
the basal ganglia provide some suggestions on how prior infor-
mation is encoded for use in choosing the most valuable saccade
target in a complex environment (56). Hikosaka and colleagues
have identified signals related to recently learned, and still labile,
value information for saccade targets in the head of the caudate
nucleus and more stable value information in the tail of the
caudate and substantia nigra, pars reticulata (SNr) (5757). As
the cells carrying this stable value information appear to project
preferentially to the SC, these signals are well-placed to influ-
ence saccade choices through a fast and evolutionarily conserved
circuit for controlling orienting behavior. These results provide
a neurophysiological basis for understanding how experience is
learned and consolidated in the service of the saccades we make
to gather information about our environment approximately 3
times each second.

Conclusions. In our eye movement search task, subjects
learn to choose saccade goals based on prior experience of re-
ward that is divorced from specific visual features in a novel
scene. The resulting search performance was well described by
a reinforcement-learning model similar to that used previously
to examine both foraging animal behavior and neuronal firing
of dopaminergic cells. In addition, the search performance ap-
proached the theoretical optimum for performance on this task.
By characterizing how prior experience guides eye movement
choice in novel contexts and integrating it with both model and
theory, we have created a framework for considering how prior
experience guides saccade choice during natural vision.

Methods
We defined a spatial region of an image as salient by associating it with
reward to examine how participants used their prior experience of finding
targets to direct future saccades. We took advantage of the fact that the
goal of saccadic eye movements is to obtain information about the world
and asked human participants to “conduct an eye movement search to find a
rewarded target location as quickly as possible.” Participants (N=7) were also
told that they would learn more about the rewarded targets as the session
progressed and that they should try to find the rewarded target location as
quickly as possible. The rewarded targets had no visual representation on the
screen and were thus invisible to the subject. The display screen was the same
on each trial (either a blank mean grey or 1/f noise surrounded by mean grey)
within a session and provided no information about the target location. The
location and the spread (σ= 0.75°, 2.0°, and 2.75°) of the rewarded target
distribution were varied with each session. Each trial began with a fixation
cross on a blank screen. After the subject acquired the fixation cross with
her gaze and maintained fixation for 300 ms, the fixation cross disappeared,
leaving the search screen, which was either blank or 1/f “pink” noise. No
quantitative difference in the pattern of fixations was observed between the
conditions across subjects, so the two conditions were collapsed here. Gaze
position was monitored in real time. When a subject’s gaze fell within 2° of
a hidden target for at least 50 ms success was signaled with a reward tone
and the promise of greater compensation, but no visual feedback. If after 20
seconds of search the target was not acquired, the trial ended with no tone.
More details about observers, stimuli, equipment, and procedure are given
in SI Materials and Methods.

ACKNOWLEDGEMENTS: Wish to thank Krista Kornylo and Natalie Dill for
technical assistance. This work was supported in part by NSF grant #SBE
0542013 to the Temporal Dynamics of Learning Center, an NSF Science of
Learning Center (LC, JS, MM, TS), a Blasker Rose-Miah grant from the San
Diego Foundation (LC), ONR MURI Award No.: N00014-10-1-0072 (JS, TS),
and Howard Hughes Medical Institute (TS)..

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

Footline Author PNAS Issue Date Volume Issue Number 5

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680



Submission PDF

1. Castelhano MS & Heaven C (2011) Scene context influences without scene gist: Eye
movements guided by spatial associations in visual search. Psychon Bull Rev.

2. Castelhano MS, Mack ML, & Henderson JM (2009) Viewing task influences eye movement
control during active scene perception. J Vis 9(3):6 1-15.

3. Yarbus AL (1967) Eye Movements and Vision (Plenum, New York).
4. Oliva A & Torralba A (2006) Building the gist of a scene: the role of global image features in

recognition. Prog Brain Res 155:23-36.
5. Torralba A, Oliva A, Castelhano MS, & Henderson JM (2006) Contextual guidance of eye

movements and attention in real-world scenes: the role of global features in object search.
Psychol Rev 113(4):766-786.

6. Potter MC (1975) Meaning in visual search. Science 187(4180):965-966.
7. Itti L & Koch C (2000) A saliency-based search mechanism for overt and covert shifts of

visual attention. Vision Res 40(10-12):1489-1506.
8. Neider MB & Zelinsky GJ (2006) Scene context guides eye movements during visual search.

Vision Res 46(5):614-621.
9. Rayner K, Castelhano MS, & Yang J (2009) Eye movements when looking at unusual/weird

scenes: are there cultural differences? J Exp Psychol Learn Mem Cogn 35(1):254-259.
10. VoML&Henderson JM (2010) The time course of initial scene processing for eyemovement

guidance in natural scene search. J Vis 10(3):14 11-13.
11. Castelhano MS & Heaven C (2010) The relative contribution of scene context and target

features to visual search in scenes. Atten Percept Psychophys 72(5):1283-1297.
12. HayhoeM&Ballard D (2005) Eye movements in natural behavior.Trends Cogn Sci 9(4):188-

194.
13. Parkhurst DJ & Niebur E (2003) Scene content selected by active vision. Spat Vis 16(2):125-

154.
14. Tatler BW&Vincent BT (2009) The prominence of behavioural biases in eye guidance.Visual

Cognition 17(6-7):1029-1054.
15. Chun MM & Jiang Y (1998) Contextual cueing: implicit learning and memory of visual

context guides spatial attention. Cogn Psychol 36(1):28-71.
16. Milstein DM & Dorris MC (2007) The influence of expected value on saccadic preparation.

J Neurosci 27(18):4810-4818.
17. Xu-WilsonM, ZeeDS,& Shadmehr R (2009) The intrinsic value of visual information affects

saccade velocities. Exp Brain Res 196(4):475-481.
18. Shadmehr R (2010) Control of movements and temporal discounting of reward. Curr Opin

Neurobiol 20(6):726-730.
19. Shadmehr R, Orban de Xivry JJ, Xu-Wilson M, & Shih TY (2010) Temporal discounting of

reward and the cost of time in motor control. J Neurosci 30(31):10507-10516.
20. Reinagel P & Zador AM (1999) Natural scene statistics at the centre of gaze. Network

10(4):341-350.
21. Tatler BW, Baddeley RJ, & Vincent BT (2006) The long and the short of it: spatial statistics

at fixation vary with saccade amplitude and task.Vision Res 46(12):1857-1862.
22. Acik A, Sarwary A, Schultze-Kraft R, Onat S, & Konig P (2010) Developmental Changes in

Natural Viewing Behavior: Bottom-Up and Top-DownDifferences between Children, Young
Adults and Older Adults. (Translated from eng) Front Psychol 1:207.

23. Buswell GT (1935) How people look at pictures: a study of the psychology of perception in art
(University of Chicago Press, Chicago, IL).

24. Greene MR, Liu T, &Wolfe JM (2012) Reconsidering Yarbus: a failure to predict observers'
task from eye movement patterns.Vision Res 62:1-8.

25. Schutz AC, Trommershauser J, & Gegenfurtner KR (2012) Dynamic integration of infor-
mation about salience and value for saccadic eye movements. Proc Natl Acad Sci U S A
109(19):7547-7552.

26. Stritzke M & Trommershauser J (2007) Eye movements during rapid pointing under
risk.Vision Res 47(15):2000-2009.

27. Geng JJ & Behrmann M (2005) Spatial probability as an attentional cue in visual search.
Percept Psychophys 67(7):1252-1268.

28. Wolfe JM, VoML, Evans KK, &GreeneMR (2011) Visual search in scenes involves selective
and nonselective pathways. Trends Cogn Sci 15(2):77-84.

29. Charnov EL (1976) Optimal Foraging, The Marginal Value Theorum. Theoretical Population
Biology 9(2):129-136.

30. Bénichou O, Coppey M, Moreau M, Suet P-H, & Voituriez R (2005) Optimal Search
Strategies for Hidden Targets. Phys. Rev. Lett. 94(198101):1-4.

31. Sutton RS (1988) Learning to predict by the method of temporal differences. Machine
Learning 3:9-44.

32. Montague PR & Sejnowski TJ (1994) The predictive brain: temporal coincidence and
temporal order in synaptic learning mechanisms. Learn Mem 1(1):1-33.

33. Lee D, Seo H, & Jung MW (2012) Neural Basis of Reinforcement Learning and Decision
Making. Annu Rev Neurosci 35:287-308.

34. Niv Y, Joel D, Meilijson I, & Ruppin E (2002) Evolution of Reinforcement Learning in
Uncertain Environments: A Simple Explanation for Complex Foraging Beaviors. Adaptive
Behavior 10(1):5-24.

35. Snider J (2010) Optimal random search for a single hidden target. Physical Review E 83(1):13.
37. Yu AJ & Cohen JD (2009) Sequential effects: Superstition or rational behavior? . Advances

in Neural Information Processing Systems, (MIT Press, Cambridge, MA), pp 1873-1880.
38. Sutton RS & Barto AG (1998) Reinforcement learning : an introduction (MIT Press, Cam-

bridge, Mass.) pp xviii, 322 p.
39. Rayner K (1998) Eyemovements in reading and information processing: 20 years of research.

Psychol Bull 124(3):372-422.
40. Araujo C, Kowler E, & Pavel M (2001) Eye movements during visual search: the costs of

choosing the optimal path. Vision Res 41(25-26):3613-3625.
41. Schultz W, Dayan P, & Montague PR (1997) A neural substrate of prediction and reward.

Science 275(5306):1593-1599.
42. Humphries NE, et al. (2010) Environmental context explains Levy and Brownian movement

patterns of marine predators. Nature 465(7301):1066-1069.
43. James A, Plank MJ, & Edwards AM (2011) Assessing Lévy walks as models of animal

foraging. Journal of the Royal Society Interface:1-15.
44. Viswanathan GM, et al. (1999) Optimizing the success of random searches. Nature

401(6756):911-914.
45. Adams GK, Watson KK, Pearson J, & Platt ML (2012) Neuroethology of decision-making.

Curr Opin Neurobiol 22(6):982-989.
46. Fecteau JH & Munoz DP (2003) Exploring the consequences of the previous trial. Nat Rev

Neurosci 4(6):435-443.
47. Wilder MH, Mozer MC, & Wickens CD (2011) An integrative, experience-based theory of

attentional control. J Vis 11(2).
48. Bisley JW&GoldbergME (2010) Attention, intention, and priority in the parietal lobe.Annu

Rev Neurosci 33:1-21.
49. Fecteau JH & Munoz DP (2006) Salience, relevance, and firing: a priority map for target

selection. Trends Cogn Sci 10(8):382-390.
50. MirpourK,Arcizet F,OngWS,&Bisley JW (2009)Been there, seen that: a neuralmechanism

for performing efficient visual search. J Neurophysiol 102(6):3481-3491.
51. Klein JT, Deaner RO, & Platt ML (2008) Neural correlates of social target value in macaque

parietal cortex. Curr Biol 18(6):419-424.
52. Platt ML & Glimcher PW (1999) Neural correlates of decision variables in parietal cortex.

Nature 400(6741):233-238.
53. Hayden BY, Pearson JM, & Platt ML (2011) Neuronal basis of sequential foraging decisions

in a patchy environment. Nat Neurosci 14(7):933-939.
54. Mirpour K, OngWS, & Bisley JW (2010)Microstimulation of posterior parietal cortex biases

the selection of eye movement goals during search. J Neurophysiol 104(6):3021-3028.
55. Carello CD & Krauzlis RJ (2004) Manipulating intent: evidence for a causal role of the

superior colliculus in target selection. Neuron 43(4):575-583.
56. Nakahara H &Hikosaka O (2012) Learning to represent reward structure: a key to adapting

to complex environments. Neurosci Res 74(3-4):177-183.
57. YasudaM, Yamamoto S, & Hikosaka O (2012) Robust representation of stable object values

in the oculomotor Basal Ganglia.J Neurosci 32(47):16917-16932.

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

6 www.pnas.org --- --- Footline Author

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816


