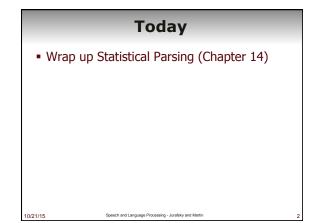
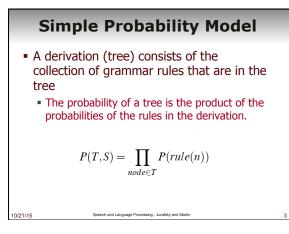
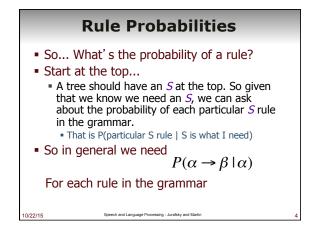
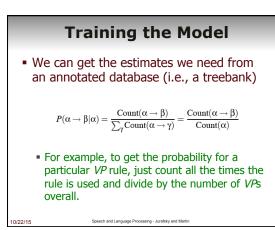
Natural Language Processing

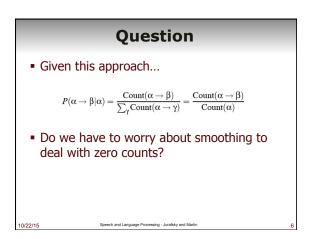
Lecture 17—10/22/2015 Jim Martin

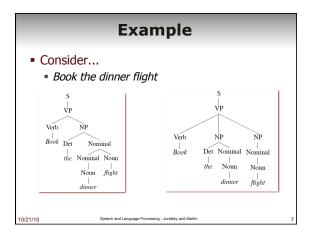




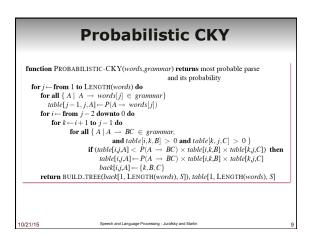








Examples								
• These trees consist of the following rules.								
		R	ules	Р		R	ıles	P
	S		VP	.05	S		VP	.05
	VP	\rightarrow	Verb NP	.20	VP		Verb NP NP	.10
	NP	\rightarrow	Det Nominal	.20	NP	\rightarrow	Det Nominal	.20
	Nominal	\rightarrow	Nominal Noun	.20	NP	\rightarrow	Nominal	.15
	Nominal	\rightarrow	Noun	.75	Nominal	\rightarrow	Noun	.75
					Nominal	\rightarrow	Noun	.75
	Verb	\rightarrow	book	.30	Verb	\rightarrow	book	.30
	Det	\rightarrow	the	.60	Det	\rightarrow	the	.60
	Noun	\rightarrow	dinner	.10	Noun	\rightarrow	dinner	.10
	Noun	\rightarrow	flights	.40	Noun	\rightarrow	flights	.40
$P(T_{left}) = .05 * .20 * .20 * .20 * .75 * .30 * .60 * .10 * .40 = 2.2 × 10-6P(T_{right}) = .05 * .10 * .20 * .15 * .75 * .75 * .30 * .60 * .10 * .40 = 6.1 × 10-7$								
10/21/15 Speech and Language Processing - Jurafsky and Martin								



Problems with Basic PCFGs

- The probability model we're using is just based on the the bag of rules in the derivation...
 - 1. Doesn't take the actual words into account in any useful way.
 - 2. Doesn't take into account *where* in the derivation a rule is used

Speech and Language Processing - Jurafsky and Martin

3. Doesn't work terribly well

10/21/15

10/21/15

10/21/15

• That is, the most probable parse isn't usually the right one (the one in the treebank test set).

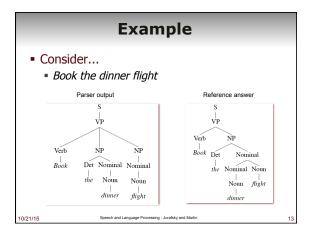
Evaluation

- First, how do we measure how well a parser is working?
 - Assume we have a training/dev set from a treebank so we have "reference" answers for some set of trees.
- We could look for straight accuracy across a test set of sentences
 - How many sentences received exactly the correct parse?

Speech and Language Processing - Jurafsky and Martin

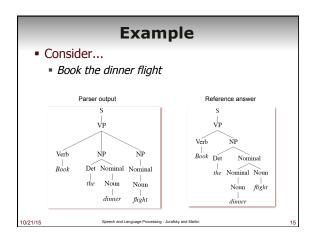
Evaluation

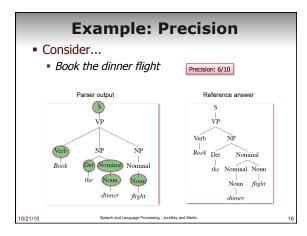
- That's too depressing
- And not informative enough --- we might be making useful changes to the system and not see any improvement given this metric
 - The trees are getting better, but they're still not right.
- A better metric looks at the contents of the reference tree and the hypothesis tree

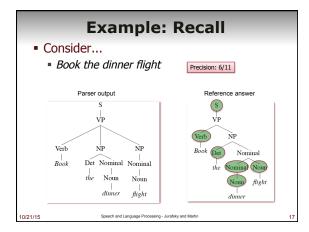


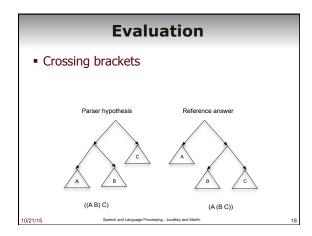
Evaluation Precision What fraction of the sub-trees in the hypothesis match corresponding sub-trees in the reference answer? How much of what we're producing is right? Recall What fraction of the sub-trees in the reference answer did we actually get? How much of what we should have gotten did we actually get?

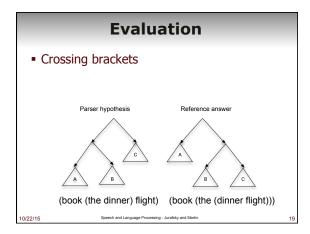
Speech and Language Processing - Jurafsky and Mart





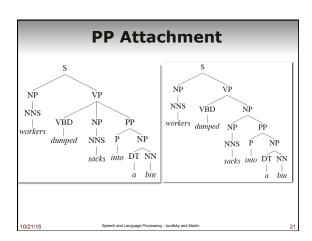


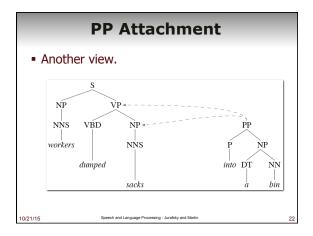


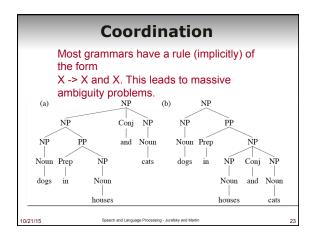


Sources of Difficulty for PCFGs Attachment ambiguities PP attachment Coordination problems

Speech and Language Processing - Jurafsky and Martin







- We'll look at two approaches to overcoming these shortcomings
 - 1. Rewriting the grammar to better capture the dependencies among rules
 - 2. Integrate lexical dependencies into the model
 - 1. And come up with the independence assumptions needed to make it work.

Speech and Language Processing - Jurafsky and Marti

Solution 1: Rule Rewriting

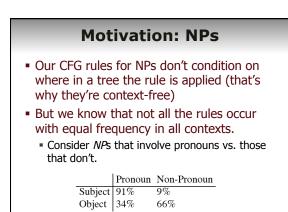
- The grammar rewriting approach attempts to better capture local tree information by rewriting the grammar so that the rules capture the regularities we want.
 - By splitting and merging the non-terminals in the grammar
 - Example: split NPs into different classes... that is, split the NP rules into separate rules

Speech and Language Processing - Jurafsky and Martin

10/21/15

10/21/15

10/21/15



Speech and Language Processing - Jurafsky and Martin

66%

Example: NPs

- So that comes down to NP --> Pronoun
- Gets replaced with something like NP_Subj --> Pronoun
 - NP_Obj --> Pronoun

Separate rules, with different counts in the treebank and therefore different probabilities

Rule Rewriting

Three approaches

10/21/15

10/21/15

1. Use linguistic knowledge to directly rewrite rules by hand

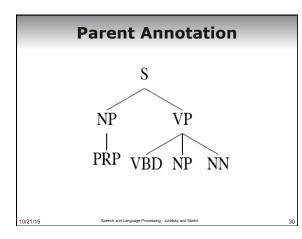
1. NP_Obj and the NP_Subj approach

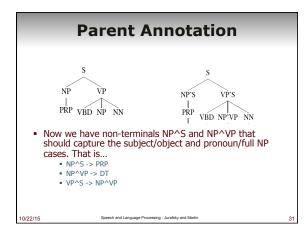
- Automatically rewrite the rules using locall context to capture some of what we want
 Ie. Incorporate context into a context-free approach
- Search through the space of all rewrites for the grammar that maximizes the probability of the training set

Speech and Language Processing - Jurafsky and Martin

Local Context Approach Condition the rules based on parent nodes Splitting based on tree-context captures some

of the linguistic intuitions we saw with the NP example





Auto Rewriting

- If this is such a good idea we may as well apply a learning approach to it.
- Start with a grammar (perhaps a treebank grammar)
- Search through the space of splits/merges for the grammar that in some sense maximizes parsing performance on the training/development set.

Speech and Language Processing - Jurafsky and Martin

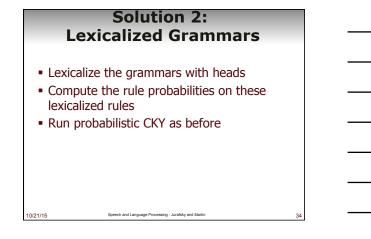
Auto Rewriting

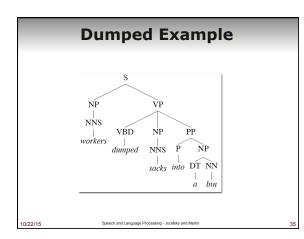
Basic idea...

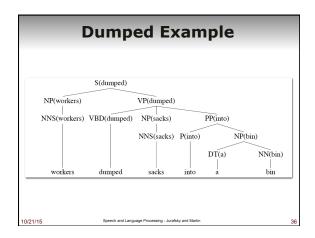
10/21/15

10/21/15

- Split every non-terminal into two new nonterminals across the entire grammar (X becomes X1 and X2).
- Duplicate all the rules of the grammar that use X, dividing the probability mass of the original rule almost equally.
- Run EM to readjust the rule probabilities
- Perform a merge step to back off the splits that look like they don't really do any good.







How?

- We used to have
 VP -> V NP PP P(this rule|VP)
 That's the count of this rule divided by the number of VPs in a treebank
- Now we have fully lexicalized rules...
 VP(dumped)-> V(dumped) NP(sacks)PP(into) P(r|VP ^ dumped is the verb ^ sacks is the head of the NP ^ into is the head of the PP)
 To get the counts for that just count and divide

Speech and Language Processing - Jurafsky and Martin

Use Independence

- When stuck, exploit independence and collect the statistics you can...
- There are a large number of ways to do this...
- Let's consider one generative story: given a rule we'll
 - 1. Generate the head

10/21/15

10/21/15

- 2. Generate the stuff to the left of the head
- 3. Generate the stuff to the right of the head

Speech and Language Processing - Jurafsky and Martin

Example

- So the probability of a lexicalized rule such as
 - VP(dumped) \rightarrow V(dumped)NP(sacks)PP(into)
- Is the product of the probability of
 - "dumped" as the head of a VP
 - With nothing to its left
 - "sacks" as the head of the first right-side thing
 - *"into"* as the head of the next right-side element
 - And nothing after that

Example

• That is, the rule probability for

 $P(VP(dumped, VBD) \rightarrow$

VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))

is estimated as

10/21/15

10/21/15

10/21/15

 $P_H(VBD|VP, dumped) \times P_L(STOP|VP, VBD, dumped)$

- $\times P_{R}(NP(sacks,NNS)|VP,VBD,dumped)$
- $\times P_R(PP(into, P)|VP, VBD, dumped)$
- $\times P_R(STOP|VP, VBD, dumped)$

Framework

Speech and Language Processing - Jurafsky and Martin

- That's just one simple model
 Collins Model 1
- You can imagine a gazzillion other assumptions that might lead to better models
- You just have to make sure that you can get the counts you need

Speech and Language Processing - Jurafsky and Martin

• And that it can be used/exploited efficiently during decoding

Last Point

- Statistical parsers are getting quite good, but its still quite silly to expect them to come up with the correct parse given only syntactic information.
- But its not so crazy to think that they can come up with the right parse among the top-N parses.
- Lots of current work on
 Re-ranking to make the top-N list even better
- What's the problem with this argument?

Finally

- In case someone hasn't pointed this out yet, the lexicalization stuff is a thinly veiled attempt to incorporate semantics into the syntactic parsing process...
 - Duhh..,. Picking the right parse requires the use of semantics.

Speech and Language Processing - Jurafsky and Martin

43

• Which we'll get to real soon now.