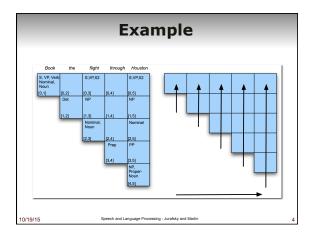
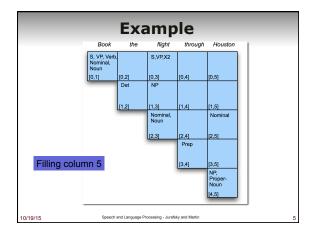
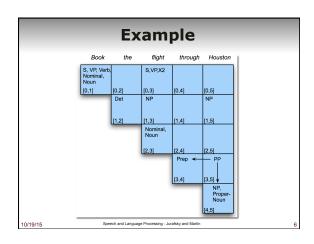
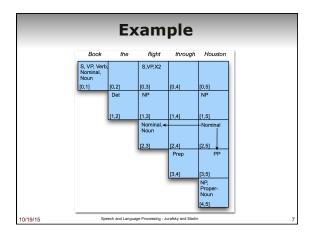
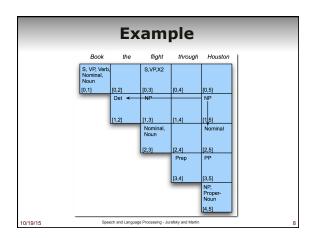

Natural Language Processing

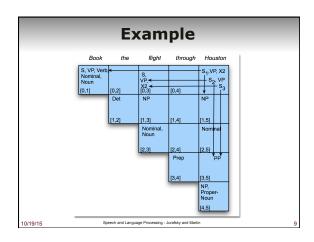

Lecture 14—10/20/2015 Jim Martin

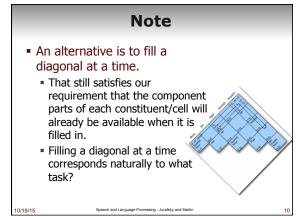

Speech and Language Processing - Jurafsky and Martin

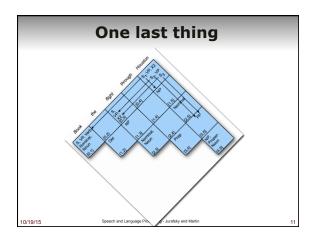


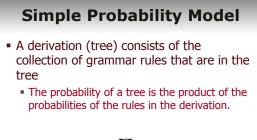




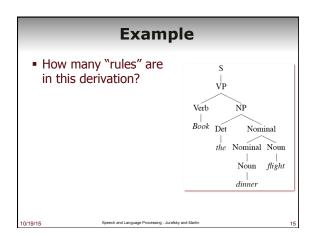


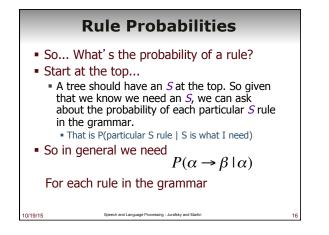


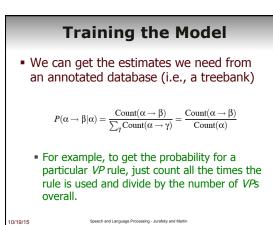


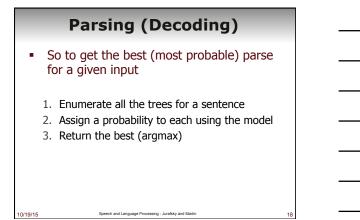

Getting the Best Parse

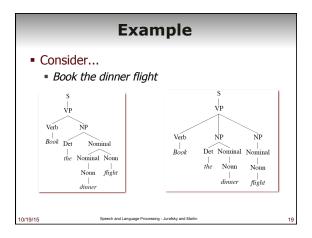
- CKY ends with a table packed with all the possible parses (anchored by an S in [0,n])
- It can not select the "right" parse out of all the possible parses
 - Even if we knew what "right means"
- If we interpret "right" to mean "most probable" parse" we get our old friend

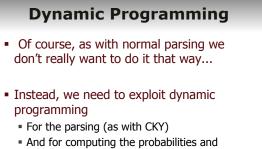

Speech and Language Processing - Jurafsky and Martin


Argmax P(Parse|Words)





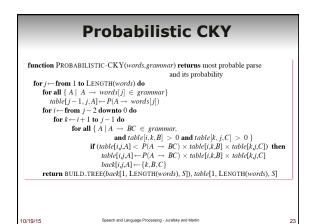

$$P(T,S) = \prod_{node \in T} P(rule(n))$$

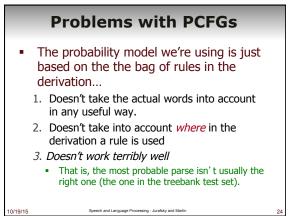


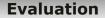


Examples									
 The 	ese tr	e	es consi	st of	f the fol	lo	wing ru	les.	
		R	ules	Р		R	ules	P	
	S		VP	.05	S		VP	.05	
	VP NP		Verb NP Det Nominal	.20 20	VP NP		Verb NP NP Det Nominal	.10 .20	
	* * *		Nominal Noun	1.000	NP		Nominal	.15	
	Nominal	\rightarrow	Noun	.75	Nominal			.75	
	Verb		book	.30	Nominal Verb		Noun book	.75	
	Det		the	.60	Det		the	.50	
	Noun		dinner	.10	Noun		dinner	.10	
	Noun	\rightarrow	flights	.40	Noun	\rightarrow	flights	.40	
$P(T_{left})$	() = .05	5*.	20 * .20 * .20	* .75 * .	30 * .60 * .10	*.4	$0 = 2.2 \times 1$	0^{-6}	1
			10 * .20 * .15					-	
• (Iright	r) = .0.		10.0120.010.		15 - 150 + 100		o + o = 0.	10	
			0						
10/19/15			Speech and Languag	e Processino	g - Jurafsky and Martin				2

 And for computing the probabilities and returning the best parse (as with Viterbi and HMMs)


Speech and Language Processing - Jurafsky and Martin



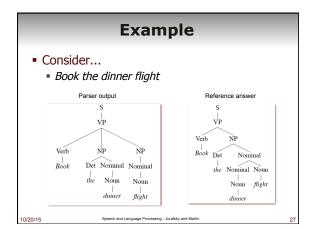

- Alter CKY so that the probabilities of constituents are stored in the table as they are derived
 - Probability of a new constituent A derived from the rule $A \rightarrow BC$:

• $P(A \rightarrow B C \mid A) * P(B) * P(C)$

- Where P(B) and P(C) are already in the table given the way that CKY operates
- What we store is the MAX probability over all the A rules for a given cell [i,j]

- How do we measure how well a parser is working
 - Assume we have a training/dev set from a treebank so we have "reference" answers for some set of trees.
- We could look for straight accuracy across a test set of sentences
 - How many sentences received the exactly correct parse?

Evaluation

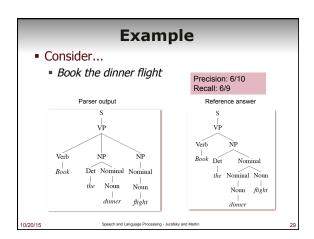

That's too depressing

10/20/15

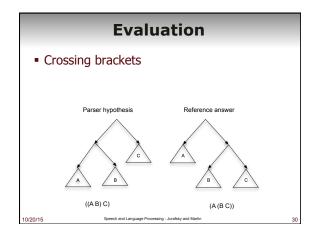
10/20/15

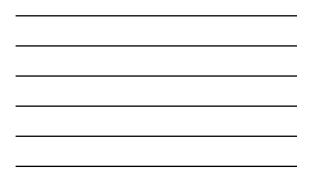
- And not informative enough --- we might be making useful changes to the system and not see any improvement given this metric
 - The trees are getting better, but they're still not right.
- A better metric looks at the contents of the reference tree and the hypothesis

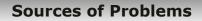
Speech and Language Processing - Jurafsky and Martin

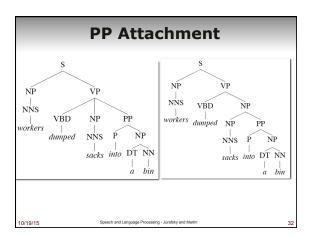

Evaluation

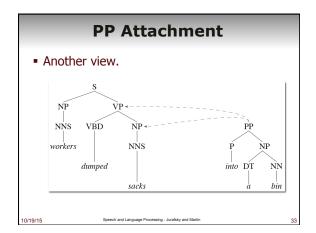
- Precision
 - What fraction of the sub-trees in our parse match corresponding sub-trees in the reference answer
 - How much of what we're producing is right?
- Recall


10/20/15

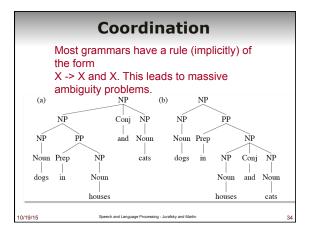

- What fraction of the sub-trees in the reference answer did we actually get?
 - How much of what we should have gotten did we get?


Speech and Language Processing - Jurafsky and Martin




- Attachment ambiguities
 - PP attachment

10/19/15


Coordination problems

Better Statistical Parsing

- We'll look at two approaches to overcoming these shortcomings
 - 1. Rewriting the grammar to better capture the dependencies among rules
 - Integrate lexical dependencies into the model
 And come up with the independence assumptions needed to make it work.

Speech and Language Processing - Jurafsky and Martin