Natural Language Processing

Lecture 11-9/29/2015

Jim Martin

Who wrote which Federalist papers?

- 1787-8: anonymous essays try to convince New York to ratify U.S Constitution: Jay, Madison, Hamilton.
- Authorship of 12 of the letters in dispute
- 1963: solved by Mosteller and Wallace using Bayesian methods

Male or female author?

- 1. By 1925 present-day Vietnam was divided into three parts under French colonial rule. The southern region embracing Saigon and the Mekong delta was the colony of Cochin-China; the central area with its imperial capital at Hue was the protectorate of Annam...
- Clara never failed to be astonished by the extraordinary felicity of her own name. She found it hard to trust herself to the mercy of fate, which had managed over the years to convert her greatest shame into one of her greatest assets....
 Argamon, N. Koppel, J. Fine, A. R. Shimoni, 2003. "Gender, Genre, and Writing Style in Formal Writige Tocks," Text, volume 23 metro 7, 96, 232–36

Positive or negative movie review?

- Interval and the second sec
- Full of zany characters and richly applied
- satire, and some great plot twists
- this is the greatest screwball comedy ever filmed
 It was pathetic. The worst part about
- It was pathetic. The worst part about it was the boxing scenes.

Text Classification

- Assigning subject categories, topics, or genres
- Spam detection
- Authorship identification
- Age/gender identification
- Language Identification
- Sentiment analysis
- Deception detection

Text Classification

Input:

- a document d
- a fixed set of classes $C = \{c_1, c_2, ..., c_j\}$
- Output: a predicted class c ∈ C

Classification Methods: Hand-coded rules

- Rules based on combinations of words or other features
 - spam: black-list-address OR ("dollars" AND"have been selected")
- Accuracy can be highIf rules carefully refined by expert
- But building and maintaining these rules is expensive

Supervised Machine Learning

Input:

- a document d
- a fixed set of classes $C = \{c_1, c_2, ..., c_j\}$
- A training set of *m* hand-labeled documents (*d*₁, *c*₁),...,(*d*_m, *c*_m)
- Output:
 - a learned classifier $\gamma: d \rightarrow c$

Supervised Machine Learning

- Any kind of classifier
 - Naïve Bayes
 - Logistic regression
 - Support-vector machines
 - k-Nearest Neighbors

• ...

Supervised Machine Learning

- Any kind of classifier
 - Naïve Bayes
 - Logistic regression
 - Support-vector machines
 - k-Nearest Neighbors
 - ...

Naïve Bayes Intuition

- Simple ("naïve") classification method based on Bayes rule
- Relies on very simple representation of document
 - Bag of words

Bag of Words Classifier					
	seen	2			
1	sweet	1) - c		
Y	whimsical	1)=C		
1	recommend	1			
	happy	1	Ð		
	•••	•••	Ð		
			v		

Naïve Bayes Independence Assumptions

 $P(x_1, x_2, ..., x_n | c)$

- Bag of Words assumption: Assume position doesn't matter
- **Conditional Independence**: Assume the feature probabilities $P(x_i | c_j)$ are independent given the class *c*.

 $P(x_1,...,x_n | c) = P(x_1 | c) \bullet P(x_2 | c) \bullet P(x_3 | c) \bullet ... \bullet P(x_n | c)$

Multinomial Naïve Bayes

$$C_{\text{MAP}} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

 $c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c_j) \prod_{x \in X} P(x \mid c)$

Applying Naive Bayes to
rext Classification
positions
$$\leftarrow$$
 all word positions in test document

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} | c_{j})$$

Learning the Naïve Bayes Model
• First attempt: maximum likelihood estimates
• simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}}$$

$$\hat{P}(w_i | c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

Naïve Bayes and Language Modeling

- Naïve bayes classifiers can use any sort of feature, not just the words
 - URL, email address, dictionaries, network features
- But if, as in the previous slides
 We use only word features
 - And we use **all** of the words in the text (not a subset)
- Then
 - Naïve bayes has an important similarity to language modeling.

Each class = a unigram language model						
AssAss	signing each signing each	word: sentei	P(wo nce: P	rd c) (s c)=) П Р(v	vord c)
Clas	s pos					
0.1	I		love	this	fun	film
0.1	love	<u> </u>				
0.01	this	0.1	0.1	.05	0.01	0.1
0.05	fun					
0.1	film					
				P(s pos	= 0.0000005

sec 13.2.1 Naïve Bayes as a Language Model					
Which a to s?	class assigns t	he higher probability			
Model pos	Model neg				
0.1 I 0.1 love 0.01 this 0.05 fun 0.1 film	0.2 I 0.001 love 0.01 this 0.005 fun 0.1 film	I love this fun film 0.1 0.1 0.01 0.05 0.1 0.2 0.001 0.01 0.005 0.1 P(s pos) > P(s neg)			

		Doc	Words	Class
$\hat{P}(c) = \frac{N_c}{c}$	Training	1	Chinese Beijing Chinese	с
N		2	Chinese Chinese Shanghai	С
		3	Chinese Macao	с
$\hat{P}(w c) = \frac{count(w,c)+1}{c}$		4	Tokyo Japan Chinese	j
count(c)+ V	Test	5	Chinese Chinese Chinese Tokyo Japan	?
P(c)= P(j)=			Choosing a class: $P(c d5) = \frac{3/4 * (3/7)^3 * 1/14 *}{\approx 0.0003}$	1/14
$\begin{array}{l} \mbox{Conditional Probabili} \\ P(Chinese[c] = (5+1) \ (\ell) \\ P(Tokyo[c] = (0+1) \ / \\ P(Japan]c) = (0+1) \ / \\ P(Japan]c) = (1+1) \ / \\ P(Tokyo[l] = (1+1) \ / \\ P(Japan]) = (1+1) \ / \ / \ (1+1) \ / \ (1+1) \ / \ (1+1) \ / \ / \ (1+1) \ / \ (1+1) \ / \ (1+1) \ / \ (1+1) \ / \ (1+1) \ / \ (1+1) \ / \ (1+1) \ / \ / \ (1+1) \ / \ (1+1) \ / \ / \ (1+1) \ / \ / \ (1+1) \ / \ (1+1) \ / \ (1+1) \ / \$	ties: (8+6) = 6/1 (8+6) = 1/ (8+6) = 1/ (3+6) = 2/9 (3+6) = 2/9 (3+6) = 2/9 (3+6) = 2/9	14 = 3/1 14 14	7 P(j d5) ∝ 1/4 * (2/9) ³ * 2/9 * . ≈ 0.0001	2/9

Machine Learning

 This model is now essentially a sum of weighted features + a bias term

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} \log P(c_{j}) + \sum_{i \in positions} \log P(x_{i} \mid c_{j})$$

 Moving on we can move away from just word-based features, and find better ways to set the weights

Speech and Language Processing - Jurafsky and Martin

9/29/15