
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Today

- More HMMs \qquad
- Urns and Balls
- Forward-Backward \qquad
\qquad
\qquad
\qquad
\qquad
9/21/15 Speech and Language Procossing- Juratsky and Martin

Hidden Markov Models

\qquad

- States $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{N}}$;
- Observations $\mathrm{O}=\mathrm{o}_{1}, \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{N}}$

Each observation is a symbol from a vocabulary $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, .\right.$. v_{v} \}

- Transition probabilities
- Transition probability matrix $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$

$$
a_{i j}=P\left(q_{t}=j \mid q_{t-1}=i\right) \quad 1 \leq i, j \leq N
$$

\qquad

- Observation likelihoods
- Output probability matrix $B=\left\{b_{i}(k)\right\}$ \qquad

$$
b_{i}(k)=P\left(X_{t}=o_{k} \mid q_{t}=i\right)
$$

- Special initial probability vector π \qquad

$$
\pi_{i}=P\left(q_{1}=i\right) \quad 1 \leq i \leq N
$$

9/21/15
Speech and Language Procossing - Juratatsy and Martin

3 Problems

- Given this framework there are 3 problems that we can pose to an HMM
- Given an observation sequence and a model, what is the probability of that sequence?
- Given an observation sequence and a model, what is the most likely state sequence?
- Given an observation sequence, infer the best model parameters for a partial model

Problem 1

- The probability of a sequence given a model... \qquad
Computing Likelihood: Given an HMM $\boldsymbol{\lambda}=(A, B)$ and an observation sequence O, determine the likelihood $P(O \mid \lambda)$.
- Used in model development... How do I know if some change I made to the model is making it better
- And in classification tasks
- Word spotting in ASR, language identification, speaker identification, author identification, etc.
- Train one HMM model per class
- Given an observation, pass it to each model and compute P(seq|model). \qquad
\qquad
/21/15 Speech and Language Procossing - Juratsky and Martin

Problem 2

- Most probable state sequence given a model and an observation sequence

Decoding: Given as input an HMM $\lambda=(A, B)$ and a sequence of ob servations $O=o_{1}, o_{2}, \ldots, o_{T}$, find the most probable sequence of states $Q=q_{1} q_{2} q_{3} \ldots q_{T}$.

- Typically used in tagging problems, where the tags correspond to hidden states \qquad
- As we' ll see almost any problem can be cast as a sequence labeling problem
- Viterbi solves problem 2 \qquad
\qquad

Problem 3

- Infer the best model parameters, given a skeletal model and an observation sequence...
- That is, fill in the A and B tables with the right numbers...
- The numbers that make the observation sequence most likely
- Useful for getting an HMM without having to hire annotators...

9/21/15 Speech and Language Procossing - Juratsky and Martin

Solutions

- Problem 1: Forward
- Problem 2: Viterbi
- Problem 3: EM
- Or Forward-backward (or Baum-Welch)

The Viterbi Algorithm

Forward

- Given an observation sequence return the probability of the sequence given the model...
- Well in a normal Markov model, the states and the sequences are identical... So the probability of a sequence is the probability of the path sequence
- But not in an HMM...

Forward

- Efficiently computes the probability of an
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9/21/15 \qquad observed sequence given a model

- P(sequence|model) \qquad
- Nearly identical to Viterbi; replace the MAX with a SUM \qquad
\qquad
\qquad
\qquad
\qquad

Forward

function FORWARD (observations of len T, state-graph of len N) returns forward-prob
\qquad
\qquad
create a probability matrix forward $[N+2, T]$
for each state s from 1 to N do
initialization step
recursion step
or each time step t from 2 to T do for each state s from 1 to N do
forward $[s, t] \leftarrow \sum_{s^{\prime}-1}^{N}$ forward $\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s} * b_{s}\left(o_{t}\right)$ forward $\left[q_{F}, \mathrm{~T}\right] \leftarrow \sum^{N}$ forward $[s, T] * a_{s, q_{F}} \quad$; termination step return forward $\left[q_{F}, T\right]$
/21/15 \qquad Speech and Language Procossing - Juratkky and Martin \qquad

Urn Example

- A genie has two urns filled with red and blue balls. The genie selects an urn and then draws a ball from it (and replaces it). The genie then selects either the same urn or the other one and then selects another ball..
- The urns are hidden \qquad
- The balls are observed
\qquad
\qquad

Urn

- Based on the results of a long series of draws...
- Figure out the distribution of colors of balls in each urn
- Observation probabilities (B table)
- Figure out the genie' s preferences in going from one urn to the next
- Transition probabilities (A table)

Urns and Balls

- Pi: Urn 1: 0.9; Urn 2: 0.1
- A | | Urn 1 | Urn 2 |
| :--- | ---: | ---: |
| Urn 1 | 0.6 | 0.4 |
| Urn 2 | 0.3 | 0.7 |
- B

	Urn 1	Urn 2
Red	0.7	0.4
Blue	0.3	0.6

922115 Speech and Language Procossing - Juratsky and Matin

Urns and Balls

- Let's assume the input (observables) is Blue Blue Red (BBR)
- Since both urns contain red and blue balls any path of length 3 through this machine
 could produce this output \qquad
\qquad
9/21/15

Urns and Balls

Viterbi: Says 111 is the most likely state sequence

111	$(0.9 * 0.3) *(0.6 * 0.3) *(0.6 * 0.7)=0.0204$

$112(0.9 * 0.3) *(0.6 * 0.3) *(0.4 * 0.4)=0.0077$
$121 \quad(0.9 * 0.3)^{*}\left(0.4^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)=0.0136$
$122(0.9 * 0.3) *(0.4 * 0.6) *(0.7 * 0.4)=0.0181$

> | 2 | 1 |
| :--- | :--- | 1

9/21/15
Speech and Language Procossing - Juratsky and Matin

Urns and Balls

Forward: P(BBR| model) $=.0792 \quad \sum$
$111 \quad(0.9 * 0.3) *(0.6 * 0.3) *(0.6 * 0.7)=0.0204$
$112(0.9 * 0.3) *(0.6 * 0.3) *(0.4 * 0.4)=0.0077$
$121 \quad(0.9 * 0.3) *(0.4 * 0.6) *(0.3 * 0.7)=0.0136$
$122(0.9 * 0.3) *(0.4 * 0.6) *(0.7 * 0.4)=0.0181$

21	1
2	$\left(0.1^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)^{*}\left(0.6^{*} 0.7\right)=0.0052$
22	$\left(0.1^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)^{*}\left(0.4^{*} 0.4\right)=0.0020$
222	$\left(0.1^{*} 0.6\right)^{*}\left(0.7^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)=0.0052$

9/21/15

\qquad
\qquad
What if I told you I lied about the numbers in the model (Priors, A,B). I just made them up. \qquad
\qquad
\qquad
\qquad
\qquad
/21/15 Speech and Language Procossing. Juratky and Matin

Urns and Balls

- But... we just saw that don' know the
\qquad actual path the input took, its hidden!
- So prorate the counts from all the possible
\qquad paths based on the path probabilities the model gives you \qquad
- Basically do what Forward does
- But you said the numbers were wrong \qquad
- Doesn't matter; use the original numbers then replace the old ones with the new ones.

\qquad

Another View

- We can view all those products as a lattice
- That is, unwind the state machine in time

Blue
9/21/15 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Urns and Balls

Blue Blue Red
1 1 1
1

First, what exaciv is this probabiliv?	
211	$(0.1 * 0.6) *(0.3 * 0.7) *(0.6 * Q Z)=0.0052$

$212(0.1 * 0.6) *(0.3 * 0.7) *(0.4 * 0.4)=0.0020$
$221(0.1 * 0.6)^{*}(0.7 * 0.6) *(0.3 * 0.7)=0.0052$
$222(0.1 * 0.6) *(0.7 * 0.6) *(0.7 * 0.4)=0.0070$
9/21/15
Speech and Language Procossing - Juratsky and Matin

Urns and Balls

- So the probability of passing through 1->2 is the weighted sum of the paths taken through that transition given the observations
- $(.0077 * 1)+(.0136 * 1)+(.0181 * 1)+(.0020 * 1)$ = . 0414
- But, that's not the probability we want, it needs to be divided by the probability of leaving Urn 1 total.
- There's only one other way out of Urn 1 (going back to urn1)
- So let' s reestimate Urn1-> Urn1

9/21/15

Uris and Balls		
	lity of passing through 1 of the paths taken throu rvations $136 * 1)+(.0181 * 1)+(.0020 * 1$ the probability we want, probability of leaving Ur other way out of Urn mate Urn1-> Urn1	
9/21/15	Speect and tangusge Proossisg - Juratis and Matin	30

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Urns and Balls

Blue Blue Red

111	$(0.9 * 0.3) *(0.6 * 0.3) *(0.6 * 0.7)=0.0204$
1	

$112(0.9 * 0.3) *(0.6 * 0.3) *(0.4 * 0.4)=0.0077$

121	$(0.9 * 0.3) *(0.4 * 0.6) *(0.3 * 0.7)=0.0136$
122	$(0.9 * 03)(0.4 * 0) *.(0.7 * .4)=0.0181$

$122(0.9 * 0.3) *(0.4 * 0.6) *(0.7 * 0.4)=0.0181$

211	$(0.1 * 0.6) *(0.3 * 0.7) *(0.6 * 0.7)=0.0052$
212	$(0.10 .6)(0.3 * 0.7)$

$212(0.1 * 0.6) *(0.3 * 0.7) *(0.4 * 0.4)=0.0020$
$221(0.1 * 0.6) *(0.7 * 0.6) *(0.3 * 0.7)=0.0052$ \qquad
$222(0.1 * 0.6) *(0.7 * 0.6) *(0.7 * 0.4)=0.0070$
9/21/15
Speech and Language Procossing - Juratsky and Martin

Urns and Balls

- That's
- (2*.0204)+(1*.0077)+(1*.0052) = . 0537
- Again, not what we need but we're \qquad closer... we just need to normalize using those two numbers.

Urns and Balls

- The 1->2 transition probability is $.0414 /(.0414+.0537)=0.435$
- The 1->1 transition probability is
\qquad $.0537 /(.0414+.0537)=0.565$
- So in re-estimation the 1->2 transition went up from .4 to .435 and the $1->1$ transition went down from 6 to .565

9/21/15 Speech and Language Procossing- Juratsky and Martin

EM Re-estimation

- Not done yet. No reason to think those
\qquad
\qquad values are right. They're just more right than they used to be.
- So do it again, and again and....
- Until convergence
\qquad
- Convergence does not guarantee a global optima, just a local one \qquad
- As with Problems 1 and 2, you wouldn't actually compute it this way. Enumerating \qquad all the paths is infeasible.

922115 Speech and Language Procossing - Juratkky and Martin

Break

\qquad

- First quiz will be on October 6 \qquad
- Finite state automata/Morphology
- N-Gram models \qquad
- HMMs/POS tagging
- Naïve Bayes/Logistic regression \qquad
- Text classification/Sentiment analysis
- Office hours \qquad
- Tuesday 11-12:30 and Friday 9:30 to 11

9/21/15 Speech and Language Procossing - Juratsky and Martin

Forward-Backward

Learning: Given an observation sequence O and the set of possible states in the HMM, learn the HMM parameters A and B.

- Baum-Welch = Forward-Backward Algorithm (Baum 1972)
- Is a special case of the EM or ExpectationMaximization algorithm
- The algorithm will let us train the transition probabilities $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$ and the emission probabilities $B=\left\{b_{i}\left(o_{t}\right)\right\}$ of the HMM

Intuition for re-estimation of \mathbf{a}_{ij}

- We will estimate $\hat{\mathrm{a}}_{\mathrm{ij}}$ via this intuition:
$\hat{a}_{i j}=\frac{\text { expected number of transitions from state } i \text { to state } j}{\text { expected number of transitions from state } i}$
- Numerator intuition:
- Assume we had some estimate of probability that a given transition $i \rightarrow j$ was taken at time t in a observation sequence.
- If we knew this probability for each time t, we could sum over all t to get expected value for $\mathrm{i} \rightarrow \mathrm{j}$

9/21/15 Speech and Language Procossing - Juratsky and Martin

Intuition for re-estimation of \mathbf{a}_{ij} \qquad

9/21/15

Re-estimating $\mathbf{a}_{\mathbf{i j}}$

$\hat{a}_{i j}=\frac{\text { expected number of transitions from state } i \text { to state } j}{\text { expected number of transitions from state } i}$

- The expected number of transitions from state i to state j is the sum over all t of ξ
- The total expected number of transitions out of state i is the sum over all transitions out of state i
- Final formula for reestimated a_{ij}

$$
\hat{a}_{i j}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_{t}(i, j)}
$$

9/21/15 Speech and Language Procossing - Juratsky and Martin

The Forward-Backward Alg

function FORWARD-BACKWARD (observations of len T, output vocabulary V, hidden state set Q) returns $H M M=(A, B)$ \qquad
initialize A and B
iterate until convergence \qquad
E-step
$\gamma_{t}(j)=\frac{\alpha_{t}(j) \beta_{t}(j)}{\alpha_{T}\left(q_{F}\right)} \forall t$ and j
$\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)}{\alpha_{T}\left(q_{F}\right)} \forall t, i$, and j
M-step
$\hat{a}_{i j}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_{t}(i, k)} \quad \hat{b}_{j}\left(v_{k}\right)=\frac{\sum_{t=1 s . t . O_{t}=v_{k}}^{T} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}$
return $A, B \quad$ Speech and Language Procossing - Juratsky and Mattin

Summary: Forward-Backward Algorithm

1) Intialize $\Phi=(A, B)$
2) Compute α, β, ξ using observations \qquad
3) Estimate new $\Phi^{\prime}=(A, B)$
4) Replace Φ with Φ ' \qquad
5) If not converged go to 2 \qquad
\qquad
\qquad
9/21/15

POS Example

- For practical applications we don't usually start with random numbers in the initial tables
- And we don't really run to convergence
- In POS
- Use a dictionary to limit observation probabilities to allowable tag assignments
- Use rough ordering of likely probabilities in initial assignments \qquad
- Use a small amount of supervised data to get transition probabilities \qquad
\qquad

Next time

- Read Chapter 7 from the draft 3Ed.
- Naïve Bayes and logistic regression for text classification and sentiment analysis
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9/24/15 \qquad Speech and Language Procossing - Juratsky and Matin 44

