

Today

- More on HMMs
- 3 HMM problems and algorithms
- Decoding (Viterbi)
- Forward/Backward
- EM, (Forward-Backward or Baum-Welch)

Hidden Markov Models

- States $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{N}}$;
- Observations $\mathrm{O}=\mathrm{o}_{1}, \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{N}}$
- Each observation is a symbol from a vocabulary $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{v}}\right\}$
- Transition probabilities
- Transition probability matrix $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$

$$
a_{i j}=P\left(q_{t}=j \mid q_{t-1}=i\right) \quad 1 \leq i, j \leq N
$$

- Observation likelihoods
- Output probability matrix $\mathrm{B}=\left\{\mathrm{b}_{\mathrm{i}}(\mathrm{k})\right\}$

$$
b_{i}(k)=P\left(X_{t}=o_{k} \mid q_{t}=i\right)
$$

- Special initial probability vector π

$$
\pi_{i}=P\left(q_{1}=i\right) \quad 1 \leq i \leq N
$$

9/21/15

9/21/15
\qquad

HMMs for Ice Cream

- You are a climatologist in the year 2799 studying global warming
- You can't find any records of the weather in Baltimore for summer of 2007
- But you find Jason Eisner's diary which lists how many ice-creams Jason ate every day that summer
- Your job: figure out how hot it was each day

Eisner Task

- Given
- Ice Cream Observation Sequence: 1,2,3,2,2,2,3...
- Produce:
- Hidden Weather Sequence: H,C,H,H,H,C, C...

- Let' s just do 131 as the sequence
- How many underlying state (hot/cold) sequences are there?

HHH
HHC
HCH
HCC
CCC
CCH
CHC
CHH

- How do you pick the right one?
Argmax P(sequence | 13 1)
/21/15
\qquad
\qquad
\qquad
\qquad
\qquad

Ice Cream HMM

Let's just do 1 sequence: CHC

$$
\begin{array}{|l}
\text { Cold as the initial state } \\
\text { P(Cold|Start) } \\
\hline \hline
\end{array}
$$

$$
\text { Observing a } 1 \text { on a cold day }
$$

P(1| Cold)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
9/21/15

Question

- If there are 30 or so tags in the Penn set
\qquad
- And the average sentence is around 20 words... \qquad
- How many tag sequences do we have to enumerate to argmax over in the worst \qquad case scenario?
\qquad

3 Problems

- Given this framework there are 3 problems \qquad that we can pose to an HMM
- Given an observation sequence, what is the probability of that sequence given a model?
- Given an observation sequence and a model, what is the most likely state sequence?
- Given an observation sequence, find the best \qquad model parameters for a partially specified
\qquad model
\qquad

Problem 1

- The probability of a sequence given a model...

Computing Likelihood: Given an HMM $\lambda=(A, B)$ and an observation sequence O, determine the likelihood $P(O \mid \lambda)$.

- Used in model development... How do I know if some change I made to the model is making things better?
- And in classification tasks
- Word spotting in ASR, language identification, speaker identification, author identification, etc.
- Train one HMM model per class
- Given an observation, pass it to each model and compute P(seq|model).

9/21/15 Speech and Language Procossing - Juratsky and Martin

Problem 2

- Most probable state sequence given a model and an observation sequence
Decoding: Given as input an HMM $\lambda=(A, B)$ and a sequence of observations $O=o_{1}, o_{2}, \ldots, o_{T}$, find the most probable sequence of states $Q=q_{1} q_{2} q_{3} \ldots q_{T}$.
- Typically used in tagging problems, where the tags correspond to hidden states
- As we'll see almost any problem can be cast as a sequence labeling problem \qquad
\qquad
9/21/15 Speech and Language Procossing- Juratsky and Matin

Problem 3

- Infer the best model parameters, given a partial model and an observation sequence...
- That is, fill in the A and B tables with the right numbers...
- The numbers that make the observation sequence most likely
- Useful for getting an HMM without having to hire annotators...
- That is, you tell me how many tags there are and give me a boatload of untagged text, and I can give you back a part of speech tagger.
9/21/15 Spreach and Langusage Procossing - Juratsy gnd Matin

Solutions

- Problem 2: Viterbi
- Problem 1: Forward
- Problem 3: Forward-Backward
- An instance of EM

9/21/15

Problem 2: Decoding

- Ok, assume we have a complete model that can give us what we need. Recall that we need to get

$$
\hat{t}_{1}^{n}=\underset{t_{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right) \mid
$$

- We could just enumerate all paths (as we did with the ice cream example) given the input and use the model
to assign probabilities to each.
- Not a good idea.
- Luckily dynamic programming helps us here
/21/15 Speech and Language Procossing- Juratky and Matin

Intuition

- Consider a state sequence (tag sequence) that ends at some state j (i.e., has a particular tag T at the end)
- The probability of that tag sequence can be broken into parts
- The probability of the BEST tag sequence up through j-1
- Multiplied by
- the transition probability from the tag at the end of the j-1 sequence to T.
- And the observation probability of the observed word given tag T

Viterbi

- Create an array
- Columns corresponding to observations
- Rows corresponding to possible hidden states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob and path to each cell, (not all paths)

9/21/15 Speech and Language Procossing - Juratsky and Martin 19

The Viterbi Algorithm

function VITERBI(observations of len T,state-graph of len N) returns best-path create a path probability matrix viterbi $[N+2, T]$
for each state s from 1 to N do
viterbi $[s, 1] \leftarrow a_{0, s} * b_{s}\left(o_{1}\right)$
backpointer $[\mathrm{s}, 1] \leftarrow 0$
for each time step t from 2 to T do \quad; recursion step
for each state s from 1 to N do
viterbi $[\mathrm{s}, \mathrm{t}] \leftarrow \max _{s^{\prime}=1}^{N} \operatorname{viterbi}\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s} * b_{s}\left(o_{t}\right)$
backpointer $[\mathrm{s}, \mathrm{t}] \stackrel{\operatorname{argmax}}{N}$ viterbi $\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s}$
viterbi $\left[q_{F}, \mathrm{~T}\right] \leftarrow \max _{s=1}^{N}$ viterbi $[s, T] * a_{s, q_{F}} \quad$; termination step
backpointer $\left[q_{F}, \mathrm{~T}\right] \stackrel{N}{\underset{s-1}{N}} \underset{\sim}{\operatorname{argmax}}$ viterbi $[s, T] * a_{s, q_{F}} \quad$; termination step
return the backtrace path by following backpointers to states back in time from backpointer $\left[q_{F}, T\right]$

9/21/15 seech and Language Procossing - Juratsky and Matin

Problem 1: Forward

- Given an observation sequence return the probability of the sequence given the model...
- Well in a normal Markov model, the states and the sequences are identical... So the probability of a sequence is the probability of the path sequence
- But not in an HMM... Remember that any number of sequences might be responsible for any given observation sequence.

Forward

- Efficiently computes the probability of an
\qquad observed sequence given a model
- P(sequence|model)
\qquad
\qquad
- Nearly identical to Viterbi; replace the MAX with a SUM \qquad
\qquad
\qquad
\qquad
\qquad

Ice Cream Example

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
9/21/15
Speech and Language Procossing - Juratsky and Martin

Forward

function FORWARD (observations of len T, state-graph of len N) returns forward-prob
\qquad
\qquad
create a probability matrix forward $[N+2, T]$
for each state s from 1 to N do
initialization step
; recursion step
or each time step t from 2 to T do for each state s from 1 to N do
forward $[s, t] \leftarrow \sum_{s^{\prime}-1}^{N}$ forward $\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s} * b_{s}\left(o_{t}\right)$ forward $\left[q_{F}, \mathrm{~T}\right] \leftarrow \sum^{N}$ forward $[s, T] * a_{s, q_{F}}$ termination step return forward $\left[q_{F}, T\right]$

9/21/15 \qquad Speech and Language Procossing - Juratsky and Matin

Problem 3: Learning the Parameters

- First an example to get the intuition down \qquad
- We'll do Forward-Backward next time

[^0]
Urn Example

- A genie has two urns filled with red and blue balls. The genie selects an urn and then draws a ball from it (and replaces it). The genie then selects either the same urn or the other one and then selects another ball...
- The urns are hidden \qquad
- The balls are observed

9/21/15 Speech and Language Procossing - Juratsky and Martin

Urn

- Based on the results of a long series of draws...
- Figure out the distribution of colors of balls in each urn
- Observation probabilities (B table)
- Figure out the genie's preferences in going from one urn to the next
- Transition probabilities (A table)

Urns and Balls

- Pi: Urn 1: 0.9; Urn 2: 0.1
- A | | Urn 1 | Urn 2 |
| :--- | ---: | ---: |
| Urn 1 | 0.6 | 0.4 |
| Urn 2 | 0.3 | 0.7 |
- B

	Urn 1	Urn 2
Red	0.7	0.4
Blue	0.3	0.6

9/21/15

Urns and Balls

- Let's assume the input (observables) is Blue Blue Red (BBR)
- Since both urns contain red and blue balls any path of length 3 through this machine could produce this output

Urns and Balls

Blue Blue Red

| 1 | 1 |
| :--- | :--- | 1

211	$(0.1 * 0.6) *(0.3 * 0.7) *(0.6 * 0.7)=0.0052$
2.2	$(0.1 * 0.6)$

212	$(0.1 * 0.6) *(0.3 * 0.7) *(0.4 * 0.4)=0.0020$
2	$(0.1 * 0.6)$

221	$(0.1 * 0.6) *(0.7 * 0.6) *(0.3 * 0.7)=0.0052$

$222(0.1 * 0.6) *(0.7 * 0.6) *(0.7 * 0.4)=0.0070$
$92 / 115$

Urns and Balls

Viterbi: Says 111 is the most likely state sequence

111	$(0.9 * 0.3) *(0.6 * 0.3) *(0.6 * 0.7)=0.0204$
1.2	$(0.9 * 0.3) *(0.6 * 0.3) *(0.4 * 0.4)=0.0077$

$112(0.9 * 0.3) *(0.6 * 0.3) *(0.4 * 0.4)=0.0077$
$121(0.9 * 0.3) *(0.4 * 0.6) *(0.3 * 0.7)=0.0136$

122	$(0.9 * 0.3) *(0.4 * 0.6) *(0.7 * 0.4)=0.0181$

$$
\begin{array}{|l|l|}
\hline 211 & \left(0.1^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)^{*}\left(0.6^{*} 0.7\right)=0.0052 \\
\hline 212 & \left(0.1^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)^{*}\left(0.4^{*} 0.4\right)=0.0020 \\
\hline 221 & \left(0.1^{*} 0.6\right)^{*}\left(0.7^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)=0.0052 \\
\hline 222 & \left(0.1^{*} 0.6\right)^{*}\left(0.7^{*} 0.6\right)^{*}\left(0.7^{*} 0.4\right)=0.0070 \\
\hline
\end{array}
$$

\qquad

Urns and Balls

Forward: P(BBR| model) $=.0792 \quad \sum$

| 1 | 1 |
| :---: | :--- | 1

211	$\left(0.1^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)^{*}\left(0.6^{*} 0.7\right)=0.0052$
212	$\left(0.1^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)^{*}\left(0.4^{*} 0.4\right)=0.0020$
221	$\left(0.1^{*} 0.6\right)^{*}\left(0.7^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)=0.0052$
222	$\left(0.1^{*} 0.6\right)^{*}\left(0.7^{*} 0.6\right)^{*}\left(0.7^{*} 0.4\right)=0.0070$

9/21/15

Urns and Balls

- EM
- What if I told you I lied about the numbers in the model (Priors,A,B). I just made them up.
- Can I get better numbers just from the input sequence?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
9/21/15 Speech and Language Procossing - Juratsky and Martin

Urns and Balls

- Yup \qquad
- Just count up and prorate the number of times a given transition is traversed while \qquad processing the observations inputs.
- Then use that pro-rated count to re-estimate \qquad the transition probability for that transition
\qquad
\qquad
\qquad

Urns and Balls

- But... we just saw that don' t know the actual path the input took, its hidden!
- So prorate the counts from all the possible paths based on the path probabilities the model gives you
- Basically do what Forward does
- But you said the numbers were wrong
- Doesn' t matter; use the original numbers then replace the old ones with the new ones.

9/21/15 Speech and Language Procossing - Juratsky and Martin
$\left.\begin{array}{l}\text { Let' s re-estimate the Urn1->Urn2 transition } \\ \text { and the Urn1->Urn1 transition (using Blue Blue } \\ \text { Red as training data). } \\ \text { speechand Language Procossing - Juratsky and Matin }\end{array}\right]$

Urns and Balls

Blue Blue Red	
111	$(0.9 * 0.3) *(0.6 * 0.3) *(0.6 * 0.7)=0.0204$
112	(0.9*0.3)*(0.6*0.3)*(0.4*0.4)=0.0077
121	$(0.9 * 0.3) *(0.4 * 0.6) *(0.3 * 0.7)=0.0136$
122	$(0.9 * 0.3) *(0.4 * 0.6) *(0.7 * 0.4)=0.0181$
First, what exacil is this probabiliv? -	
211	$(0.1 * 0.6) *(0.3 * 0.7) *(0.6 * * 2)=0.0052$
212	$(0.1 * 0.6) *(0.3 * 0.7) *(0.4 * 0.4)=0.0020$
221	$(0.1 * 0.6) *(0.7 * 0.6) *(0.3 * 0.7)=0.0052$
222	$(0.1 * 0.6) *(0.7 * 0.6) *(0.7 * 0.4)=0.0070$

9/21/15

Urns and Balls

- So the probability of passing through $1->2$ is the weighted sum of the paths taken through that transition given the observations
- $\left(.0077 *_{1}\right)+(.0136 * 1)+(.0181 * 1)+(.0020 * 1)$
= . 0414
- But, that's not the probability we want, it needs to be divided by the probability of leaving Urn 1 total.
- There's only one other way out of Urn 1 (going back to
urn1)
- So let's reestimate Urn1-> Urn1

9/21/15
Urn Example

Urns and Balls

\qquad
Blue Blue Red

| 1 | 1 | 1 | $\left(0.9^{*} 0.3\right)^{*}\left(0.6^{*} 0.3\right)^{*}\left(0.6^{*} 0.7\right)=0.0204$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | $\left(0.9^{*} 0.3\right)^{*}\left(0.6^{*} 0.3\right)^{*}\left(0.4^{*} 0.4\right)=0.0077$ |
| 1 | 2 | 1 | $\left(0.9^{*} 0.3\right)^{*}\left(0.4^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)=0.0136$ |
| 1 | 2 | 2 | $\left(0.9^{*} 0.3\right)^{*}\left(0.4^{*} 0.6\right)^{*}\left(0.7^{*} 0.4\right)=0.0181$ |

| 211 | $(0.1 * 0.6) *(0.3 * 0.7) *(0.6 * 0.7)=0.0052$ |
| :--- | :--- | \qquad

$212 \quad\left(0.1^{*} 0.6\right)^{*}(0.3 * 0.7) *\left(0.4^{*} 0.4\right)=0.0020$
$221(0.1 * 0.6) *(0.7 * 0.6) *(0.3 * 0.7)=0.0052$ \qquad
$222(0.1 * 0.6) *(0.7 * 0.6) *(0.7 * 0.4)=0.0070$
9/21/15

Urns and Balls

- That's
- (2*.0204)+(1*.0077)+(1*.0052) = . 0537
- Again, not what we need but we're closer... we just need to normalize using those two numbers.

Urns and Balls

- The $1->2$ transition probability is
\qquad $.0414 /(.0414+.0537)=0.435$
- The 1->1 transition probability is \qquad $.0537 /(.0414+.0537)=0.565$
- So in re-estimation the 1->2 transition \qquad went up from . 4 to .435 and the $1->1$ transition went down from . 6 to .565 \qquad

9/21/15 Speech and Language Procossing - Juratsky and Martin

EM Re-estimation

- Not done yet. No reason to think those \qquad values are right. They're just more right than they used to be.
- So do it again, and again and....
- Until convergence \qquad
- Convergence does not guarantee a global optima, just a local one \qquad
- As with Problems 1 and 2, you wouldn't actually compute it this way. Enumerating \qquad all the paths is infeasible.

9/21/15
Speech and Language Procossing. Juratsky and Martin

[^0]: /21/15

