Natural Language Processing

Lecture 9-9/22/2015

Jim Martin

Speech and Language Processing - Jurafsky and Martin

HMMs for Ice Cream

- You are a climatologist in the year 2799 studying global warming
- You can't find any records of the weather in Baltimore for summer of 2007
- But you find Jason Eisner's diary which lists how many ice-creams Jason ate every day that summer
- Your job: figure out how hot it was each day

Speech and Language Processing - Jurafsky and Martin

Speech and Language Processing - Jurafsky and Martin

Problem 1

• The probability of a sequence given a model...

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.

- Used in model development... How do I know if some change I made to the model is making things better?
- And in classification tasks

9/21/15

9/21/15

9/21/15

 Word spotting in ASR, language identification, speaker identification, author identification, etc. Train one HMM model per class

Speech and Language Processing - Jurafsky and Martin

Given an observation, pass it to each model and compute P(seq|model).

Problem 2

 Most probable state sequence given a model and an observation sequence

Decoding: Given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q=q_1q_2q_3\ldots q_T.$

Typically used in tagging problems, where the tags correspond to hidden states • As we'll see almost any problem can be cast as a sequence

Speech and Language Processing - Jurafsky and Martin

labeling problem

Problem 3

- Infer the best model parameters, given a partial model and an observation sequence...

 - That is, fill in the A and B tables with the right numbers...
 - The numbers that make the observation sequence most likely
 - Useful for getting an HMM without having to hire annotators...
 - That is, you tell me how many tags there are and give me a boatload of untagged text, and I can give you back a part of speech tagger.

Solutions

Problem 2: Viterbi

9/21/15

- Problem 1: Forward
- Problem 3: Forward-Backward
 An instance of EM

Speech and Language Pro

essing - Jurafsky and Martin

Viterbi

Create an array

9/21/15

9/21/15

- Columns corresponding to observationsRows corresponding to possible hidden states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob and path to each cell, (not all paths)

Speech and Language Processing - Jurafsky and Mart

The Viterbi Algorithm

function VITERBI(observations of len *T*,state-graph of len *N*) returns best-path create a path probability matrix viterbi[*N*+2,*T*] for each state *s* from 1 to *N* do viterbi[*s*,1]- $a_{0,s}$ * $b_2(o_1)$ backpointer[*s*,1]--0for each time step *t* from 2 to *T* do ; recursion step

 $bicxpointer[s,1] \rightarrow 0$ for each time step *t* from 2 to *T* do ; recursion for each state *s* from 1 to *N* do viterbi[s,1] $\leftarrow \max_{i'=1}^{N} viterbi[s', t-1] * a_{s',s} * b_s(o_t)$

 $backpointer[s,t] \leftarrow argmax viterbi[s',t-1] * a_{s',s}$

 $viterbi[q_F,T] \leftarrow \max_{s=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step

 $backpointer[q_F,T] \leftarrow \operatorname{argmax}_{i \to 1} viterbi[s,T] * a_{s,q_F}$; termination step return the backtrace path by following backpointers to states back in time from $backpointer[q_F,T]$

Speech and Language Processing - Jurafsky and Martin

Viterbi Example (00) Cent eed Quere fere -(m) NN. TO 1 1 (10) * ATVAN .019 x 0 = 0 **v**0 VB (PP) 55 (PP SS (PP) SS (996) 3 (air) Gan (and) i want to race 04 03 9/21/1

Problem 1: Forward

- Given an observation sequence return the probability of the sequence given the model...
 - Well in a normal Markov model, the states and the sequences are identical... So the probability of a sequence is the probability of the path sequence
 - But not in an HMM... Remember that any number of sequences might be responsible for any given observation sequence.

Speech and Language Processing - Jurafsky and Martin

Problem 3: Learning the Parameters

• First an example to get the intuition down

Speech and Language Processing - Jurafsky and Martin

We'll do Forward-Backward next time

Urn Example

- A genie has two urns filled with red and blue balls. The genie selects an urn and then draws a ball from it (and replaces it). The genie then selects either the same urn or the other one and then selects another ball...
 - The urns are hidden

9/21/15

9/21/15

The balls are observed

Urn

Speech and Language Processing - Jurafsky and Martin

- Based on the results of a long series of draws...
 - Figure out the distribution of colors of balls in each urn
 - Observation probabilities (B table)
 - Figure out the genie's preferences in going from one urn to the next

Speech and Language Processing - Jurafsky and Martin

Transition probabilities (A table)

Urns and Balls								
• Pi:	Urn 1:	0.9; Uri	n 2: 0.1					
• A		Urn 1	Urn 2					
	Urn 1	0.6	0.4					
	Urn 2	0.3	0.7					
• B								
		Urn 1	Urn 2					
	Red	0.7	0.4					
	Blue	0.3	0.6					
9/21/15		Speech and Language	e Processing - Jurafsky a	and Martin				

Urns and Balls				
Blue Blu	e Red			
111	(0.9*0.3)*(0.6*0.3)*(0.6*0.7)=0.0204			
112	(0.9*0.3)*(0.6*0.3)*(0.4*0.4)=0.0077			
121	(0.9*0.3)*(0.4*0.6)*(0.3*0.7)=0.0136			
122	(0.9*0.3)*(0.4*0.6)*(0.7*0.4)=0.0181			
211	(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052			
212	(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020			
221	(0.1*0.6)*(0.7*0.6)*(0.3*0.7)=0.0052			
222	(0.1*0.6)*(0.7*0.6)*(0.7*0.4)=0.0070			
9/21/15 Speech and Language Processing - Jurafisky and Martin				

Urns and Balls

Speech and Language Processing - Jurafsky and Martin

9/21/15

-	Urns and Balls			
Forwar	d: P(BBR model) = .0792 Σ			
111	(0.9*0.3)*(0.6*0.3)*(0.6*0.7)=0.0204			
112	(0.9*0.3)*(0.6*0.3)*(0.4*0.4)=0.0077			
121	(0.9*0.3)*(0.4*0.6)*(0.3*0.7)=0.0136			
122	(0.9*0.3)*(0.4*0.6)*(0.7*0.4)=0.0181			
211	(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052			
212	(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020			
221	(0.1*0.6)*(0.7*0.6)*(0.3*0.7)=0.0052			
222	(0.1*0.6)*(0.7*0.6)*(0.7*0.4)=0.0070			
9/21/15 Speech and Language Processing - Jurafisky and Martin				

Urns and Balls

EM

- What if I told you I lied about the numbers in the model (Priors,A,B). I just made them up.
- Can I get better numbers just from the input sequence?

Urns and Balls

Speech and Language Processing - Jurafsky and Martin

Yup

9/21/15

9/21/15

- Just count up and prorate the number of times a given transition is traversed while processing the observations inputs.
- Then use that pro-rated count to re-estimate the transition probability for that transition

Speech and Language Processing - Jurafsky and Martin

Urns and Balls				
Blue Blu	ue Red			
111	(0.9*0.3)*(0.6*0.3)*(0.6*0.7)=0.0204			
112	(0.9*0.3)*(0.6*0.3)*(0.4*0.4)=0.0077			
121	(0.9*0.3)*(0.4*0.6)*(0.3*0.7)=0.0136			
122	(0.9*0.3)*(0.4*0.6)*(0.7*0.4)=0.0181			
First, what	exactly is this probability?			
211	(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052			
212	(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020			
221	(0.1*0.6)*(0.7*0.6)*(0.3*0.7)=0.0052			
222	(0.1*0.6)*(0.7*0.6)*(0.7*0.4)=0.0070			
9/21/15	Speech and Language Processing - Jurafsky and Martin			

Urns and Balls						
Blue Blu	ue Red					
111	(0.9*0.3)*(0.6*0.3)*(0.6*0.7)=0.0204					
112	(0.9*0.3)*(0.6*0.3)*(0.4*0.4)=0.0077					
121	(0.9*0.3)*(0.4*0.6)*(0.3*0.7)=0.0136					
122	(0.9*0.3)*(0.4*0.6)*(0.7*0.4)=0.0181					
211	(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052					
212	(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020					
221	(0.1*0.6)*(0.7*0.6)*(0.3*0.7)=0.0052					
222	(0.1*0.6)*(0.7*0.6)*(0.7*0.4)=0.0070					
9/21/15	Speech and Language Processing - Jurafsky and Martin	45				

Urns and Balls

That's

9/21/15

9/21/15

9/21/15

- **(2*.0204)+(1*.0077)+(1*.0052) = .0537**
- Again, not what we need but we're closer... we just need to normalize using those two numbers.

Urns and Balls

Speech and Language Processing - Jurafsky and Martin

- The 1->2 transition probability is .0414/(.0414+.0537) = 0.435
- The 1->1 transition probability is .0537/(.0414+.0537) = 0.565
- So in re-estimation the 1->2 transition went up from .4 to .435 and the 1->1 transition went down from .6 to .565

Speech and Language Processing - Jurafsky and Martin

EM Re-estimation

- Not done yet. No reason to think those values are right. They're just more right than they used to be.
 - So do it again, and again and....
 - Until convergence
 - Convergence does not guarantee a global optima, just a local one
- As with Problems 1 and 2, you wouldn't actually compute it this way. Enumerating all the paths is infeasible.

Speech and Language Processing - Jurafsky and Martin