
\qquad
\qquad
\qquad
\qquad
\qquad

Today

- Finish up smoothing
- Kneser-Ney example
- HMMs \qquad
- POS tagging example
- Basic HMM model \qquad
- Decoding
- Viterbi \qquad
\qquad
\qquad
317115 Speech and Language Procossing - Juratsky and Martin

Absolute Discounting

- Just subtract a fixed amount from all the observed counts (call that d).
- Redistribute it proportionally based on \qquad observed data
-17/15

Absolute Discounting w/ Interpolation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Kneser-Ney Smoothing

- Better estimate for probabilities of lower-order unigrams!
- Shannon game: I can't see without my reading Fighasiem ?
- "Francisco" is more common than "glasses"
\qquad
- So P(w) isn't what we want

Kneser-Ney Smoothing

\qquad

- $\mathrm{P}_{\text {continuation }}(\mathrm{w})$: "How likely is a word to appear \qquad as a novel continuation?
- For each word, count the number of bigram types \qquad it completes
$P_{\text {COntinuation }}(w) \propto\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|$
- Normalize that by the total number of word bigram types to get a true probability

$$
P_{\text {CONTINUATION }}(w)=\frac{\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|}{\left|\left\{\left(w_{j-1}, w_{j}\right): c\left(w_{j-1}, w_{j}\right)>0\right\}\right|}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Kneser-Ney Smoothing

λ is a normalizing constant; the probability mass we've discounted

$$
\lambda\left(w_{i-1}\right)=\frac{d}{c\left(w_{i-1}\right)}\left|\left\{w: c\left(w_{i-1}, w\right)>0\right\}\right|
$$

Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

BERP

- Let's look at "chinese food". We'll need:
- Count("chinese food")
- Count("chinese")
- P_continuation("food")
- Count of bigrams "food" completes
- Count of all bigram types
- Count of bigrams that "chinese" starts

Break

Word Classes: Parts of Speech

- 8 (ish) traditional parts of speech
- Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
- Called: parts-of-speech, lexical categories, word classes, morphological classes, lexical tags...
- Lots of debate within linguistics about the number, nature, and universality of these - We' II completely ignore this debate.

9/17/15 Seech and Language Procosssing - Juratsky and Matin

POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

WORD
tag

the	DET
koala	N
put	\mathbf{V}
the	DET
keys	N
on	P
the	DET
table	N

9/17/15 Speecch and Language Procossing- Juratky and Matin

Penn TreeBank POS Tagset

POS Tagging

- Words often have more than one part of speech: back
- The back door = JJ
- On my back = NN
- Win the voters back = RB
- Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word in context
- Usually a sentence

9/17/15
Speech and Language Procossing- Juratsky and Martin

POS Tagging

- Note this is distinct from the task of identifying which sense of a word is being used given a particular part of speech. That's called word sense disambiguation. We'll get to that later. \qquad
- "... backed the car into a pole"
- "... backed the wrong candidate"


```
Two Methods for POS Tagging
1. Rule-based tagging
2. Stochastic
1. Probabilistic sequence models
- HMM (Hidden Markov Model) tagging
- MEMMs (Maximum Entropy Markov Models)
```


POS Tagging as Sequence Classification

- We are given a sentence (an "observation" or "sequence of observations")
- Secretariat is expected to race tomorrow
- What is the best sequence of tags that corresponds to this sequence of observations?
- Probabilistic view
- Consider all possible sequences of tags
- Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words $w_{1} \ldots w_{n}$.

9/17/15 Speech and Language Procossing - Juratkky and Martin

Getting to HMMs

\qquad

- We want, out of all sequences of n tags $t_{1} \ldots t_{n}$ \qquad the single tag sequence such that

$$
\mathrm{P}\left(\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}} \mid \mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}\right) \text { is highest. }
$$

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- Hat ^ means "our estimate of the best one"
- $\operatorname{Argmax}_{x} f(x)$ means "the x such that $f(x)$ is maximized"

9/17/15

Getting to HMMs

- This equation should give us the best tag sequence

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- But how to make it operational? How to compute this value?
- Intuition of Bayesian inference:
- Use Bayes rule to transform this equation into a set of probabilities that are easier to compute (and give the right answer)
917715 Speech and Language Procossing - Juratsky and Martin

Using Bayes Rule

\qquad

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)} \quad \text { Know this. }
$$

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)}{P\left(w_{1}^{n}\right)}
$$

$$
\hat{t}_{1}^{n}=\underset{t^{n}}{\operatorname{argmax}} P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)
$$

9/17/15

$$
t_{1}^{n}
$$ Speech and Language Procossing - Juraltsky and Matin

Likelihood and Prior

Two Kinds of Probabilities

- Tag transition probabilities $\mathrm{p}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{t}_{\mathrm{i}-1}\right)$
- Determiners likely to precede adjs and nouns
- That/DT flight/NN \qquad
- The/DT yellow/JJ hat/NN
- So we expect P(NN|DT) and P(JJ|DT) to be high
- Compute P(NN|DT) by counting in a labeled corpus:

$$
P\left(t_{i} \mid t_{i-1}\right)=\frac{C\left(t_{i-1}, t_{i}\right)}{C\left(t_{i-1}\right)}
$$

\qquad
\qquad
\qquad

9/17/15

Speech and Language Processing - Juratsky and Matin

Two Kinds of Probabilities

- Word likelihood probabilities $p\left(w_{i} \mid t_{i}\right)$
- VBZ (3sg Pres Verb) likely to be "is"
- Compute P(is \mid VBZ) by counting in a labeled corpus:

$$
\begin{gathered}
P\left(w_{i} \mid t_{i}\right)=\frac{C\left(t_{i}, w_{i}\right)}{C\left(t_{i}\right)} \\
P(i s \mid V B Z)=\frac{C(V B Z, i s)}{C(V B Z)}=\frac{10,073}{21,627}=.47
\end{gathered}
$$

9/17/15

Example: The Verb "race"

\qquad

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN \qquad for/IN outer/JJ space/NN
- How do we pick the right tag? \qquad
\qquad
\qquad
9/17/15
(a)

(b)

9/17/15
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

- $P(N N \mid T O)=.00047$
- $\mathrm{P}(\mathrm{VB} \mid \mathrm{TO})=.83$
- $\mathrm{P}($ race $\mid \mathrm{NN})=.00057$
- $\mathrm{P}($ race $\mid \mathrm{VB})=.00012$
- $P(N R \mid V B)=.0027$

- $P(N R \mid N N)=.0012$

- $P(V B \mid T O) P(N R \mid V B) P($ race $\mid V B)=.00000027$
- P(NN|TO)P(NR|NN)P(race|NN)=. 00000000032 \qquad
- So we (correctly) choose the verb tag for "race"
 30

Hidden Markov Models

- What we've just described is called a Hidden Markov Model (HMM)
- This is a kind of generative model.
- There is a hidden underlying generator of observable events
- The hidden generator can be modeled as a network of states and transitions \qquad
- We want to infer the underlying state sequence given the observed event sequence \qquad

9/17/15 Speech and Language Procossing - Juratsky and Martin

Hidden Markov Models

- States $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{N}}$;
- Observations $\mathrm{O}=\mathrm{o}_{1}, \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{N}}$;
- Each observation is a symbol from a vocabulary $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{v}}\right\}$
- Transition probabilities
- Transition probability matrix $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$

$$
a_{i j}=P\left(q_{t}=j \mid q_{t-1}=i\right) \quad 1 \leq i, j \leq N
$$

- Observation likelihoods
- Output probability matrix $\mathrm{B}=\left\{\mathrm{b}_{\mathrm{i}}(\mathrm{k})\right\}$

$$
b_{i}(k)=P\left(X_{t}=o_{k} \mid q_{t}=i\right)
$$

- Special initial probability vector π

$$
\pi_{i}=P\left(q_{1}=i\right) \quad 1 \leq i \leq N
$$

9/177/15 Speech and Language Procossing - Juratsky and Martin

HMMs for Ice Cream

- You are a climatologist in the year 2799 \qquad studying global warming
- You can't find any records of the weather in Baltimore for summer of 2007
- But you find Jason Eisner's diary which \qquad lists how many ice-creams Jason ate every day that summer \qquad
- Your job: figure out how hot it was each day
\qquad

9/17/15
\qquad

Ice Cream HMM

- Let' s just do 131 as the sequence
- How many underlying state (hot/cold) sequences are there?

\qquad
\qquad
\qquad
- How do you pick the right one?

Argmax P(sequence \| 131 1) Speech and Language Procossing - Juratsky and Martin

\qquad

Ice Cream HMM

Let' s just do 1 sequence: CHC

$\begin{array}{l}\text { Cold as the initial state } \\ \text { P(Cold\|Start) }\end{array}$

$P($ Cold\|Start $)$
Observing a 1 on a cold day

$\begin{array}{l}\text { Observing a } 1 \\ P(1 \mid \text { Cold })\end{array}$

Hot as the next state

Hot as the next
P (Hot \| Cold)

$\begin{array}{l}\text { Observing a } 3 \text { on a hot day } \\ \mathrm{P}(3 \mid \text { Hot })\end{array}$

P (3 \| Hot) $)$

Cold as the next state
P(Cold|Hot)
Observing a 1 on a cold day
P(1 | Cold)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
9/17/14
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
917715

Observation Likelihoods

Question

- If there are 30 or so tags in the Penn set
- And the average sentence is around 20 words... \qquad
- How many tag sequences do we have to enumerate to argmax over in the worst case scenario?
30^{20}
\qquad
\qquad

9/17/15 Speech and Language Procossing - Juratsky and Martin

