Natural Language Processing

Lecture 8—9/17/2015 Jim Martin

- Just subtract a fixed amount from all the observed counts (call that d).
- Redistribute it proportionally based on observed data

Speech and Language Processing - Jurafsky and Martin

9/17/15

Kneser-Ney Smoothing

- Better estimate for probabilities of lower-order unigrams!
 - Shannon game: I can't see without my reading Fighting?
 - "Francisco" is more common than "glasses"
 - ... but "Francisco" frequently follows "San"
- So P(w) isn't what we want

Kneser-Ney Smoothing

- P_{continuation}(w): "How likely is a word to appear as a novel continuation?
 - For each word, count the number of bigram *types* it completes

$$P_{CONTINUATION}(w) \propto \left| \{ w_{i-1} : c(w_{i-1}, w) > 0 \} \right|$$

Speech and Language Processing - Jurafsky and Marti

9/17/15

Kneser-Ney Smoothing
• Normalize that by the total number of word bigram types to get a true probability

$$P_{CONTINUATION}(w) = \frac{|\{w_{i-1} : c(w_{i-1}, w) > 0\}|}{|\{(w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0\}|}$$

Bigram Counts								
	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	-
	-

Let's look at "chinese food". We'll ne	eed:
 Count("chinese food") 	82
 Count("chinese") 	158
 P_continuation("food") 	
 Count of bigrams "food" completes 	110
 Count of all bigram types 	9421
Count of bigrams that "chinese" starts	17
9/17/15 Speech and Language Processing - Jurafsky and Martin	

BERP

- Let's look at "chinese food". We'll need:
 - Count("chinese food")
 - Count("chinese")

9/17/15

- P_continuation("food")
 Count of bigrams "food" completes
 - Count of all bigram types
- Count of bigrams that "chinese" starts

• 8 (ish) traditional parts of speech

9/17/15

- Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
 Called: parts-of-speech, lexical categories, word classes, morphological classes, lexical tage
- tags...
- Lots of debate within linguistics about the number, nature, and universality of these • We' II completely ignore this debate.

Speech and Language Processing - Jurafsky and Martin

13

POS Tagging						
 The process of assigning a part-of-speech or lexical class marker to each word in a 						
collect	tion.	WORD	tag			
		the koala put the keys on the table	DET N V DET P DET N			
9/17/15	Speech and Langua	ge Processing - Jurafsky and Martin				

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, tha
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	s	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	**	left quote	' or "
POS	possessive ending	's	**	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis	$],), \dot{\}}, >$
RB	adverb	quickly, never	,	comma	, .
RBR	adverb, comparative	faster		sentence-final punc	.12
RBS	adverb, superlative	fastest		mid-sentence punc	:;
RP	particle	up, off			

POS Tagging

- Words often have more than one part of speech: *back*
 - The back door = JJ
 - On my *back* = NN
 - Win the voters back = RB
 - Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word in context
 - Usually a sentence
 Speech and Language Processing Jurafsky and Martin

9/17/15

9/17/15

POS TaggingNote this is distinct from the task of identifying which sense of a word is being

- used given a particular part of speech. That's called word sense disambiguation. We'll get to that later.
 - "... *backed* the car into a pole"
 - "... backed the wrong candidate"

How Hard is POS Tagging? Measuring Ambiguity

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous (1 tag)		44,019		38,857	
Ambiguous (2	2–7 tags)	5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round, open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)
9/17/15	Spe	sch and Languag	e Processing - Jurafsky and Martir		

Two Methods for POS Tagging

- 1. Rule-based tagging
- 2. Stochastic

9/17/15

9/17/15

9/17/15

- 1. Probabilistic sequence models
 - HMM (Hidden Markov Model) tagging
 - MEMMs (Maximum Entropy Markov Models)

POS Tagging as Sequence Classification

Speech and Language Processing - Jurafsky and Martin

- We are given a sentence (an "observation" or "sequence of observations")
- Secretariat is expected to race tomorrow
 What is the best sequence of tags that corresponds to this sequence of
- observations?Probabilistic view
 - Consider all possible sequences of tags

Speech and Language Processing - Jurafsky and Martin

 Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words w₁...w_n.

• Intuition of Bayesian inference:

9/17/15

 Use Bayes rule to transform this equation into a set of probabilities that are easier to compute (and give the right answer)

Two Kinds of Probabilities • Word likelihood probabilities $p(w_i|t_i)$ • VBZ (3sg Pres Verb) likely to be "is" • Compute P(is|VBZ) by counting in a labeled corpus: $P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

Speech and Language Pro

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN

Speech and Language Processing - Jurafsky and Marti

How do we pick the right tag?

9/17/15

9/17/15

- What we've just described is called a Hidden Markov Model (HMM)
- This is a kind of *generative* model.
 - There is a hidden underlying generator of observable events
 - The hidden generator can be modeled as a network of states and transitions
 - We want to infer the underlying state sequence given the observed event sequence

Speech and Language Processing - Jurafsky and Martin

Hidden Markov Models

9/17/15

9/17/15

9/17/15

- Transition probabilities
- Transition probability matrix A = {a_{ii}} $a_{ij} = P(q_i = j \mid q_{t-1} = i) \quad 1 \le i, j \le N$ • Observation likelihoods
- Output probability matrix B={b_i(k)}
 - $b_i(k) = P(X_t = o_k | q_t = i)$
- Special initial probability vector π $\pi_i = P(q_1 = i) \quad 1 \le i \le N$

Speech and Language Processing - Jurafsky and Martin

- You are a climatologist in the year 2799 studying global warming
- You can't find any records of the weather in Baltimore for summer of 2007
- But you find Jason Eisner's diary which lists how many ice-creams Jason ate every day that summer
- Your job: figure out how hot it was each day

