
1!

Natural Language
Processing

Lecture 7—9/15/2015

Jim Martin

9/15/15 Speech and Language Processing - Jurafsky and Martin 2

Today

More language modeling
§  Probabilistic model

§  Independence assumptions

§  Smoothing
§  Laplace smoothing (add-1)
§ Kneyser-Ney

9/15/15 Speech and Language Processing - Jurafsky and Martin 3

So for each component in the product replace with the
approximation (assuming a prefix of N - 1)

 Bigram version

€

P(wn |w1
n−1) ≈ P(wn |wn−N +1

n−1)

Markov Assumption

€

P(wn |w1
n−1) ≈ P(wn |wn−1)

2!

9/15/15 Speech and Language Processing - Jurafsky and Martin 4

Estimating Bigram
Probabilities

§  The Maximum Likelihood Estimate (MLE)

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

9/15/15 Speech and Language Processing - Jurafsky and Martin 5

An Example
§  <s> I am Sam </s>
§  <s> Sam I am </s>
§  <s> I do not like green eggs and ham </s>

9/15/15 Speech and Language Processing - Jurafsky and Martin 6

Bigram Counts

§  Vocabulary size is 1446 |V|
§  Out of 9222 sentences

§  Eg. “I want” occurred 827 times

3!

9/15/15 Speech and Language Processing - Jurafsky and Martin 7

Bigram Probabilities

§  Divide bigram counts by prefix unigram
counts to get bigram probabilities.

9/15/15 Speech and Language Processing - Jurafsky and Martin 8

Bigram Estimates of Sentence
Probabilities

§  P(<s> I want english food </s>) =
 P(i|<s>)*

 P(want|I)*
 P(english|want)*
 P(food|english)*
 P(</s>|food)*
 =.000031

9/15/15 Speech and Language Processing - Jurafsky and Martin 9

Perplexity
§  Perplexity is the probability of a

test set (assigned by the
language model), as normalized
by the number of words:

§  Chain rule:

§  For bigrams:

§  Minimizing perplexity is the same as maximizing
probability
§  The best language model is one that best

predicts an unseen test set

4!

9/15/15 Speech and Language Processing - Jurafsky and Martin 10

Lower perplexity means a
better model

§  Training 38 million words, test 1.5 million
words, WSJ

9/15/15 Speech and Language Processing - Jurafsky and Martin 11

Practical Issues

§  Once we start looking at test data, we’ll
run into words that we haven’t seen
before.

§  Standard solution
§  Given a corpus
§  Create an unknown word token <UNK>

Create a fixed lexicon L, of size V
§  From a dictionary or
§  A subset of terms from the training set

§  At text normalization phase, any training word not in L is changed to
<UNK>

§  Collect counts for that as for any normal word
§  At test time

§  Use UNK counts for any word not seen in training

9/15/15 Speech and Language Processing - Jurafsky and Martin 12

Practical Issues

§  Multiplying a bunch of small numbers
between 0 and 1 is a really bad idea
§ Multiplication is slow
§  And underflow is likely

§  So do everything in log space
§  Avoid underflow
§  Adding is faster than multiplying

5!

9/15/15 Speech and Language Processing - Jurafsky and Martin 13

Smoothing

§  Back to Shakespeare
§  Recall that Shakespeare produced 300,000 bigram

types out of V2= 844 million possible bigrams...
§  So, 99.96% of the possible bigrams were never seen

(have zero entries in the table)
§  Does that mean that any sentence that contains one

of those bigrams should have a probability of 0?
§  For generation (shannon game) it means we’ll never

emit those bigrams
§  But for analysis it’s problematic because if we run

across a new bigram in the future then we have no
choice but to assign it a probability of zero.

9/15/15 Speech and Language Processing - Jurafsky and Martin 14

Zero Counts
§  Some of those zeros are really zeros...

§  Things that really aren’t ever going to happen
§  On the other hand, some of them are just rare events.

§  If the training corpus had been a little bigger they would have had a
count
§  What would that count be in all likelihood?

§  Zipf’s Law (long tail phenomenon):
§  A small number of events occur with high frequency
§  A large number of events occur with low frequency
§  You can quickly collect statistics on the high frequency events
§  You might have to wait an arbitrarily long time to get valid statistics

on low frequency events
§  Result:

§  Our estimates are sparse! We have no counts at all for the vast
number of things we want to estimate!

§  Answer:
§  Estimate the likelihood of unseen (zero count) N-grams!

9/15/15 Speech and Language Processing - Jurafsky and Martin 15

Laplace Smoothing
§  Also called Add-One smoothing
§  Just add one to all the counts!
§  Very simple

§  MLE estimate:

§  Laplace estimate:

6!

9/15/15 Speech and Language Processing - Jurafsky and Martin 16

Bigram Counts

9/15/15 Speech and Language Processing - Jurafsky and Martin 17

Laplace-Smoothed Bigram
Counts

9/15/15 Speech and Language Processing - Jurafsky and Martin 18

Laplace-Smoothed Bigram
Probabilities

7!

9/15/15 Speech and Language Processing - Jurafsky and Martin 19

Reconstituted Counts

Reconstituted Counts (2)

9/15/15 Speech and Language Processing - Jurafsky and Martin 20

9/15/15 Speech and Language Processing - Jurafsky and Martin 21

Big Change to the Counts!
§  C(want to) went from 608 to 238!
§  P(to|want) from .66 to .26!
§  Discount d= c*/c

§  d for “chinese food” =.10!!! A 10x reduction
§  So in general, Laplace is a blunt instrument
§  Could use more fine-grained method (add-k)

§  Because of this Laplace smoothing not often used for language
models, as we have much better methods

§  Despite its flaws Laplace (add-1) is still used to smooth other

probabilistic models in NLP and IR, especially
§  For pilot studies
§  In document classification
§  In domains where the number of zeros isn’t so huge.

8!

9/15/15 Speech and Language Processing - Jurafsky and Martin 22

Better Smoothing

§  Two key ideas
§  Use less context if the counts are missing

for longer contexts
§  Use the count of things we’ve seen once

to help estimate the count of things we’ve
never seen

Backoff and Interpolation
§  Sometimes it helps to use less context

§  Condition on less context for contexts you
haven’t learned much about

§  Backoff
§  use trigram if you have good evidence,
§  otherwise bigram, otherwise unigram

§  Interpolation
§ mix unigram, bigram, trigram

§  Interpolation works better

Linear Interpolation

§  Simple	 interpola-on	

	
	
§  Lambdas	 condi-onal	 on	 context	

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

9!

How to set the lambdas?

§  Use	 a	 held-‐out	 corpus	

§  Choose	 λs	 to	 maximize	 the	 probability	 of	 held-‐out	
data:	
§  Fix	 the	 N-‐gram	 probabili-es	 (using	 the	 training	 data)	
§  Then	 search	 for	 λs	 that	 give	 largest	 probability	 to	 held-‐out	 set.	

Training Data
Held-
Out
Data

Test
Data

9/15/15 Speech and Language Processing - Jurafsky and Martin 26

Types, Tokens and Fish

§  Much of what’s coming up was first
studied by biologists who are often faced
with 2 related problems
§  Determining how many species occupy a

particular area (types)
§  And determining how many individuals of a

given species are living in a given area
(tokens)

9/15/15 Speech and Language Processing - Jurafsky and Martin 27

One Fish Two Fish
§  Imagine you are fishing

§  There are 8 species: carp, perch, whitefish, trout, salmon, eel,
catfish, bass
§  Not sure where this fishing hole is...

§  You have caught up to now
§  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

§  How likely is it that the next fish to be caught is an eel?

Slide adapted from Josh Goodman

§  How likely is it that the next fish caught will be a
member of newly seen species?

§  Now how likely is it that the next fish caught will be an
eel?

10!

Fish Lesson

§  We need to steal part of the observed
probability mass to give it to the as yet
unseen N-Grams. Questions are:
§  How much to steal
§  How to redistribute it

9/15/15 Speech and Language Processing - Jurafsky and Martin 28

Absolute Discounting

§  Just subtract a fixed amount from all the
observed counts (call that d).

§  Redistribute it proportionally based on
observed data

9/15/15 Speech and Language Processing - Jurafsky and Martin 29

Absolute Discounting w/
Interpolation

30

PAbsoluteDiscounting (wi |wi−1) =
c(wi−1,wi)− d

c(wi−1)
+λ(wi−1)P(w)

discounted bigram

unigram

Interpolation weight

11!

§  BeGer	 es-mate	 for	 probabili-es	 of	 lower-‐order	
unigrams!	
§  Shannon	 game:	 	 I can’t see without my

reading___________?	
§  “Francisco”	 is	 more	 common	 than	 “glasses”	
§  …	 but	 “Francisco”	 frequently	 follows	 “San”	

§  So	 P(w)	 isn’t	 what	 we	 want	

Francisco

Kneser-Ney Smoothing

glasses

Kneser-Ney Smoothing

§  Pcon-nua-on(w):	 	 “How	 likely	 is	 w	 to	 appear	 as	 a	
novel	 con-nua-on?	
§  For	 each	 word,	 count	 the	 number	 of	 bigram	 types	
it	 completes	

	

9/15/15 Speech and Language Processing - Jurafsky and Martin 32

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

Kneser-Ney Smoothing

§  Normalize by the total number of word bigram
types to get a true probability

	
	

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

12!

Kneser-Ney Smoothing

34

PKN (wi |wi−1) =
max(c(wi−1,wi)− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi)

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

λ is a normalizing constant; the probability mass we’ve discounted

the normalized discount
The number of word types that can follow wi-1
= # of word types we discounted
= # of times we applied normalized discount

