

Markov Assumption

So for each component in the product replace with the approximation (assuming a prefix of $\mathrm{N}-1$) \qquad
$P\left(w_{n} \mid w_{1}^{n-1}\right) \approx P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)$ \qquad
Bigram version

$$
P\left(w_{n} \mid w_{1}^{n-1}\right) \approx P\left(w_{n} \mid w_{n-1}\right)
$$

Estimating Bigram Probabilities

- The Maximum Likelihood Estimate (MLE)

An Example

- <s> I am Sam </s>
- <s> Sam I am </s>
- <s> I do not like green eggs and ham </s>
$P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{2}{3}=.67 \quad P(\mathrm{Sam}|<\mathrm{s}\rangle)=\frac{1}{3}=.33 \quad P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67$ $P(</ \mathrm{s}\rangle \mid \mathrm{sam})=\frac{1}{2}=0.5 \quad P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 \quad P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33$

$$
P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)=\frac{C\left(w_{n-N+1}^{n-1} w_{n}\right)}{C\left(w_{n-N+1}^{n-1}\right)}
$$

/15/15 Speech and Language Procossing - Juratatky and Matin

Bigram Counts

- Vocabulary size is 1446 |V|
- Out of 9222 sentences
- Eg. "I want" occurred 827 times

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0
Speech and Language Procossing - Juratsky and Matin								
9/15/15								

Bigram Probabilities

- Divide bigram counts by prefix unigram counts to get bigram probabilities.

i	want	to	eat	chinese	food	lunch	spend	
2533	927	2417	746	158	1093	341	278	
	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

9/15/15

Bigram Estimates of Sentence Probabilities

- $\mathrm{P}(<\mathrm{s}>$ I want english food </s>) $=$
$\mathrm{P}(\mathrm{i} \mid<\mathrm{s}>)^{*}$
P(want|I)*
P(english|want)*
$P($ food |english)*
P(</s>|food)*
$=.000031$

9/15/15 \qquad

Perplexity

- Perplexity is the probability of a $\operatorname{PP}(W)=P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}}$ test set (assigned by the language model), as normalized $=\sqrt[N]{\left.\frac{1}{P\left(w_{1} w_{2} \ldots w_{N}\right.}\right)}$ by the number of words:
\qquad
\qquad
- Chain rule: $\quad \operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)}}$
- For bigrams:
$\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}}$
\qquad
\qquad
- Minimizing perplexity is the same as maximizing probability
- The best language model is one that best predicts an unseen test set
9/15/15
Seech and Language Procossing - Juratsky and Martin

Lower perplexity means a better model

- Training 38 million words, test 1.5 million words, WSJ

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

Practical Issues

- Once we start looking at test data, we'll run into words that we haven't seen before.
- Standard solution
- Given a corpus
- Create an unknown word token <UNK> Create a fixed lexicon L, of size V
- From a dictionary or
- A subset of terms from the training set
- At text normalization phase, any training word not in L is changed to <UNK>
- Collect counts for that as for any normal word
- At test time
- Use UNK counts for any word not seen in training

9/15/15 \qquad

Practical Issues

- Multiplying a bunch of small numbers between 0 and 1 is a really bad idea
- Multiplication is slow
- And underflow is likely
- So do everything in log space
\qquad
- Avoid underflow
- Adding is faster than multiplying
$p_{1} \times p_{2} \times p_{3} \times p_{4}=\exp \left(\log p_{1}+\log p_{2}+\log p_{3}+\log p_{4}\right)$

9/15/15
Speech and Language Procosssing - Juratsky and Martin
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Smoothing

- Back to Shakespeare
- Recall that Shakespeare produced 300,000 bigram types out of $\mathrm{V}^{2}=844$ million possible bigrams...
- So, 99.96% of the possible bigrams were never seen (have zero entries in the table)
- Does that mean that any sentence that contains one of those bigrams should have a probability of 0 ?
- For generation (shannon game) it means we'll never emit those bigrams
- But for analysis it's problematic because if we run across a new bigram in the future then we have no choice but to assign it a probability of zero.

Zero Counts

- Some of those zeros are really zeros...
- Things that really aren't ever going to happen
- On the other hand, some of them are just rare events.
- If the training corpus had been a little bigger they would have had a count
- What would that count be in all likelihood?
- Zipf' s Law (long tail phenomenon):
- A small number of events occur with high frequency
- A large number of events occur with low frequency
- You can quickly collect statistics on the high frequency events
- You might have to wait an arbitrarily long time to get valid statistics You might have to wait an
on low frequency events
- Result:
- Our estimates are sparse! We have no counts at all for the vast number of things we want to estimate!
- Answer:
- Estimate the likelihood of unseen (zero count) N -grams!

9/15/15 Speech and Language Procossing - Juratatky and Matin

Laplace Smoothing

\qquad

- Also called Add-One smoothing
- Just add one to all the counts!
- Very simple

\qquad
\qquad
- MLE estimate:

$$
P\left(w_{i}\right)=\frac{c_{i}}{N}
$$

\qquad

- Laplace estimate:

$$
P_{\text {Laplace }}\left(w_{i}\right)=\frac{c_{i}+1}{N+V}
$$

\qquad
\qquad

9/15/15

Bigram Counts								
	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend		0	1	0	0	0	0	0
9/15/15	Speech and Language Procossing Juratsky and Martin							

Laplace-Smoothed Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace-Smoothed Bigram Probabilities

	$P^{*}\left(w_{n} \mid w_{n-1}\right)=$			$\frac{C\left(w_{n-1} w_{n}\right)+1}{C\left(w_{n-1}\right)+V}$				
	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058
9/15/15		Speech and Language Procossing - Juratsky and Matin						18

Reconstituted Counts								
$c^{*}\left(w_{n-1} w_{n}\right)=\frac{\left[C\left(w_{n-1} w_{n}\right)+1\right] \times C\left(w_{n-1}\right)}{C\left(w_{n-1}\right)+V}$								
	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16
9/15/15			and Languag	ocossing - Ju	y and Martin			19

Reconstituted Counts (2)

	i	want	to	eat	chinese	food	lunch	spend
i want to eat chinese food lunch spend	5	827	0	9	0	0	0	2
	2	0	608	1	6	6	5	1
	2	0	4	686	2	0	6	211
	0	0	2	0	16	2	42	0
	1	0	0	0	0	82	1	0
	15	0	15	0	1	4	0	0
	2	0	0	0	0	1	0	0
	1	0	1	0	0	0	0	0
	1	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Big Change to the Counts!

- C(want to) went from 608 to 238 !
- P(to|want) from . 66 to $.26!$
- Discount d= c*/c
- d for "chinese food" =.10!!! A 10x reduction
- So in general, Laplace is a blunt instrument
- Could use more fine-grained method (add-k)
- Because of this Laplace smoothing not often used for language models, as we have much better methods
- Despite its flaws Laplace (add-1) is still used to smooth other probabilistic models in NLP and IR, especially
- For pilot studies
- In document classification
- In domains where the number of zeros isn't so huge.

9/15/15 Speech and Language Procossing - Juratsky and Martin

Better Smoothing

- Two key ideas
- Use less context if the counts are missing for longer contexts
- Use the count of things we've seen once to help estimate the count of things we've never seen

Backoff and Interpolation

- Sometimes it helps to use less context
\qquad
- Condition on less context for contexts you haven't learned much about \qquad
- Backoff
- use trigram if you have good evidence, \qquad
- otherwise bigram, otherwise unigram
- Interpolation \qquad
- mix unigram, bigram, trigram
- Interpolation works better
\qquad
\qquad

Linear Interpolation

- Simple interpolation

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1} P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \quad \sum_{i} \lambda_{i}=1 \\
& +\lambda_{2} P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3} P\left(w_{n}\right)
\end{aligned}
$$

- Lambdas conditional on context

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \\
& +\lambda_{2}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3}\left(w_{n-2}^{n-1}\right) P\left(w_{n}\right)
\end{aligned}
$$

How to set the lambdas?

- Use a held-out corpus

Training Data	Held- Out Data	Test Data

- Choose λ s to maximize the probability of held-out data:
- Fix the N -gram probabilities (using the training data)
- Then search for λ s that give largest probability to held-out set.

Types, Tokens and Fish

- Much of what's coming up was first studied by biologists who are often faced with 2 related problems
- Determining how many species occupy a particular area (types)
- And determining how many individuals of a given species are living in a given area (tokens)
/15/15 Speech and Language Procossing - Juratkky and Martin

One Fish Two Fish

- Imagine you are fishing
- There are 8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass
- Not sure where this fishing hole is..
- You have caught up to now
- 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel $=18$ fish
- How likely is it that the next fish to be caught is an eel?
- How likely is it that the next fish caught will be a member of newly seen species? \qquad
- Now how likely is it that the next fish caught will be an eel? \qquad
\qquad

Fish Lesson

- We need to steal part of the observed probability mass to give it to the as yet unseen N-Grams. Questions are:
- How much to steal
- How to redistribute it

Absolute Discounting

- Just subtract a fixed amount from all the
\qquad
\qquad observed counts (call that d).
- Redistribute it proportionally based on \qquad observed data

91515 \qquad Speech and Language Procossing- Juratsky and Matin
\qquad
\qquad
\qquad
\qquad

Absolute Discounting w/ Interpolation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Kneser-Ney Smoothing

- Better estimate for probabilities of lower-order
\qquad unigrams!
- Shannon game: I can't see without my reading Figlasisee ?
- "Francisco" is more common than "glasses" \qquad
" ... but "Francisco" frequently follows "San"
- So P(w) isn't what we want

Kneser-Ney Smoothing

- $\mathrm{P}_{\text {continuation }}(\mathrm{w}):$ "How likely is w to appear as a \qquad novel continuation?
- For each word, count the number of bigram types \qquad it completes
$P_{\text {CONTINUATION }}(w) \propto\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|$ \qquad
\qquad
\qquad
9/15/15 \qquad Speech and Language Procossing - Juratsky and Matin 32

Kneser-Ney Smoothing

\qquad
\qquad

- Normalize by the total number of word bigram types to get a true probability

$$
P_{\text {CONTINATION }}(w)=\frac{\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|}{\left|\left\{\left(w_{j-1}, w_{j}\right): c\left(w_{j-1}, w_{j}\right)>0\right\}\right|}
$$

Kneser-Ney Smoothing	
$P_{K N}\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left(c\left(w_{i-1}, w_{i}\right)-d, 0\right)}{c\left(w_{i-1}\right)}+\lambda\left(w_{i-1}\right) P_{\text {CONTNUATION }}\left(w_{i}\right)$	
λ is a normalizing constant; the probability mass we've discounted	
	34

