Natural Language
Processing

Lecture 7—9/15/2015

Jim Martin

Today

More language modeling
= Probabilistic model
= Independence assumptions
= Smoothing
= Laplace smoothing (add-1)
= Kneyser-Ney

9/15/15 Speech and Language Processing - Jurafsky and Martin 2

Markov Assumption

So for each component in the product replace with the
approximation (assuming a prefix of N - 1)

P(wa lw™) = P(wa W™, .,

Bigram version

P(w, le”_l) ~Pw, Iw,)

9/15/15 Speech and Language Processing - Jurafsky and Martin 3

Estlmatlng Elgram

Probabilities
= The Maximum Likelihood Estimate (MLE)

count(w,_;,w;)

Pw,lw,_)=
(v Twin) count(w,_,)

9/15/15 Speech and Language Processing - Jurafsky and Martin 4

An Example

= <s>TIam Sam </s>
= <s>SamIam </s>
= <s>Ido not like green eggs and ham </s>

P(I|<s>)=3%=.67 P(Sam|<s>)=1=233 P(am|I)=3=.67
P(</s>|5am):%:0.5 P(Sam|am):§:45 P(do|I):i:.33
n—1
-1 CWy"ny1Wn)

P(WH|W:;—N+1): C(w”fl)
\Wn—N+1

9/15/15 Speech and Language Processing - Jurafsky and Martin 5

Bigram Counts

= Vocabulary size is 1446 |V|
= Out of 9222 sentences
= Eg. “I want” occurred 827 times

i want | to eat chinese | food | lunch | spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

9/15/15 Speech and Language Processing - Jurafsky and Martin 6

(|
Bigram Probabilities

= Divide bigram counts by prefix unigram
counts to get bigram probabilities.

[[want | to [cat [chinese | food [lunch] spend |
2533] 927 [2417 [746 | 158 [1093 [341 | 2718]

i want | to cat chinese | food | lunch | spend
i 0.002 033 |0 0.0036 | 0 0 0 0.00079
want 0.0022 |0 0.66 0.0011| 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | 0 0.0017 | 0.28 0.00083 | 0 0.0025 | 0.087
eat 0 0 0.0027 | 0 0.021 0.0027 [0.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 [0.0063 | 0
food 0.014 |0 0.014 |0 0.00092 | 0.0037 | 0 0
lunch | 0.0059 |0 0 0 0 0.0029 | 0 0
spend | 0.0036 |0 0.0036 | 0 0 0 0 0

9/15/15 Speech and Language Processing - Jurafsky and Martin 7

Bigram Estimates of Sentence

Probabilities

= P(<s> I want english food </s>) =
P(i| <s>)*
P(want|I)*
P(english|want)*
P(food|english)*
P(</s>|food)*
=.000031

9/15/15 Speech and Language Processing - Jurafsky and Martin 8

Perplexity
= Perplexity is the probability of a PP(W) = P(wiw2...wy) ?
test set (assigned by the o 1
language model), as normalized — V PGriwa oy
by the number of words:-
= Chain rule: ppw) =

=

l‘l[1
e P(wiwy...wi1)

= For bigrams:

1

N

P(wilwi_1)

1

Minimizing perplexity is the same as maximizing
probability

= The best language model is one that best
predicts an unseen test set

9/15/15 Speech and Language Processing - Jurafsky and Martin 9

[Lower perplexity meansa |

better model

= Training 38 million words, test 1.5 million
words, WSJ]

N-gram Order || Unigram | Bigram | Trigram
Perplexity 962 170 109

9/15/15 Speech and Language Processing - Jurafsky and Martin 10

(|
Practical Issues

= Once we start looking at test data, we’'ll
run into words that we haven't seen
before.

= Standard solution

= Given a corpus
= Create an unknown word token <UNK>
Create a fixed lexicon L, of size V
= From a dictionary or
= A subset of terms from the training set

= At text normalization phase, any training word not in L is changed to
<UNK>

= Collect counts for that as for any normal word
= At test time
= Use UNK counts for any word not seen in training

9/15/15 Speech and Language Processing - Jurafsky and Martin 1

(|
Practical Issues

= Multiplying a bunch of small numbers
between 0 and 1 is a really bad idea
= Multiplication is slow
= And underflow is likely

= So do everything in log space
= Avoid underflow
= Adding is faster than multiplying

P1 X p2 x p3 x ps = exp(log p1 + log p> +log p3 +log ps)

9/15/15 Speech and Language Processing - Jurafsky and Martin 12

Smoothing

= Back to Shakespeare

= Recall that Shakespeare produced 300,000 bigram
types out of V2= 844 million possible bigrams...

= S0, 99.96% of the possible bigrams were never seen
(have zero entries in the table)

= Does that mean that any sentence that contains one
of those bigrams should have a probability of 0?

= For generation (shannon game) it means we'll never
emit those bigrams

= But for analysis it's problematic because if we run
across a new bigram in the future then we have no
choice but to assign it a probability of zero.

9/15/15 Speech and Language Processing - Jurafsky and Martin 13

(|
Zero Counts

= Some of those zeros are really zeros...
= Things that really aren’t ever going to happen
= On the other hand, some of them are just rare events.
= If the training corpus had been a little bigger they would have had a
count
= What would that count be in all likelihood?
= Zipf's Law (long tail phenomenon):
= A small number of events occur with high frequency
= A large number of events occur with low frequency
= You can quickly collect statistics on the high frequency events
= You might have to wait an arbitrarily long time to get valid statistics
on low frequency events
= Result:
= Our estimates are sparse! We have no counts at all for the vast
number of things we want to estimate!
= Answer:
= Estimate the likelihood of unseen (zero count) N-grams!

9/15/15 Speech and Language Processing - Jurafsky and Martin 14

Laplace Smoothing

Also called Add-One smoothing
Just add one to all the counts!
Very simple

MLE estimate: ¢
P(w;) = N

Laplace estimate:
Laplace (wi

9/15/15 Speech and Language Processing - Jurafsky and Martin 15

Bigram Counts
i want | to eat chinese | food | lunch | spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
91515 Spesch and Language Processing - Jurafsy and Martn 5

:a p|ace-§moot“ea Blg ram
Counts
i want | to eat chinese | food | lunch | spend
i 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1
91515 Spesch and Language Processing - Jurafsy and Martn 7

[Laplace-Smoothed Bigram |

Probabilities

" Cwy_1wy)+1
P (wafwp_y) = COnm1n) £1

C (Wn—1) +V

i want to eat chinese | food Tunch spend
i 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078| 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046 | 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039 | 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056| 0.0011 0.00056 | 0.00056
spend 0.0012 0.00058| 0.0012 0.00058| 0.00058| 0.00058| 0.00058| 0.00058

9/15/15 Speech and Language Processing - Jurafsky and Martin 18

-
Reconstituted Counts
* [C(W,,,]W,,) + 1] X C(wy_1)
Cc (Wn—lwn) =
C(Wn—l) +V

i want to eat chinese| food| lunch| spend
i 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 23 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34] 034 1 0.34 58 1 15 0.34
chinese 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 043 0.86 22 043 043
lunch 0.57| 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16
1515 Speech and Language Processing - Juralsky and Martin 19

=
Reconstituted Counts (2)
i want | to eat chinese | food | lunch | spend
i 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 1510 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1] o0 1 0 0 0 0 0
i want to eat chinese | food| lunch| spend
i 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 12 0.39 238 0.78 27 27 23 0.78
to 1.9 0.63 3.1 430 19 0.63| 44 133
eat 0.34] 0.34 1 0.34 58 1 15 0.34
chinese 0.2 0.098| 0.098| 0.098| 0.098 8.2 02 0.098
food 6.9 0.43 6.9 0.43 0.86 22 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38(0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16| 0.16 0.16
91515 Spoech and Language Processing - Jurafsky and Martn 20

Big Change to the Counts!

= C(want to) went from 608 to 238!
= P(to|want) from .66 to .26!
= Discount d= c*/c
= d for “chinese food” =.10!!! A 10x reduction
= So in general, Laplace is a blunt instrument
= Could use more fine-grained method (add-k)
= Because of this Laplace smoothing not often used for language
models, as we have much better methods

= Despite its flaws Laplace (add-1) is still used to smooth other
probabilistic models in NLP and IR, especially
= For pilot studies
= In document classification
= In domains where the number of zeros isn't so huge.

9/15/15 Speech and Language Processing - Jurafsky and Martin 21

Better Smoothing

= Two key ideas
= Use less context if the counts are missing
for longer contexts

= Use the count of things we've seen once
to help estimate the count of things we've
never seen

9/15/15 Speech and Language Processing - Jurafsky and Martin 2

(|
Backoff and Interpolation

= Sometimes it helps to use less context

= Condition on less context for contexts you
haven't learned much about

= Backoff
= use trigram if you have good evidence,
= otherwise bigram, otherwise unigram
= Interpolation
= mix unigram, bigram, trigram
= Interpolation works better

Linear Interpolation

= Simple interpolation
Plwawuawuo1) = MP(walwu_awn1) Zl -1
+MP(Walwn-1)
+/13P(Wn)
= Lambdas conditional on context
Dl |1 _ n-1
P(Wn|wn—2wn—l> = }"1(W:LQ)P(wn‘wn—an—l)
—1
+>‘2(WZ 2 Wn|Wn—l)
l
+A3(wy25)P(wy)

How to set the lambdas?

= Use a held-out corpus

b Test
Training Data Out Data
Data
= Choose As to maximize the probability of held-out

data:

= Fix the N-gram probabilities (using the training data)
= Then search for As that give largest probability to held-out set.

Types, Tokens and Fish

= Much of what's coming up was first
studied by biologists who are often faced
with 2 related problems
= Determining how many species occupy a
particular area (types)
= And determining how many individuals of a

given species are living in a given area
(tokens)

9/15/15 Speech and Language Processing - Jurafsky and Martin 2

One Fish Two Fish

= Imagine you are fishing

= There are 8 species: carp, perch, whitefish, trout, salmon, eel,
catfish, bass

= Not sure where this fishing hole is...
= You have caught up to now
= 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
= How likely is it that the next fish to be caught is an eel?

How likely is it that the next fish caught will be a
member of newly seen species?

= Now how likely is it that the next fish caught will be an
eel?

artsis Slide adoptse from Aosh.SpORA an e ”

(|
Fish Lesson

= We need to steal part of the observed
probability mass to give it to the as yet
unseen N-Grams. Questions are:
= How much to steal
= How to redistribute it

9/15/15 Speech and Language Processing - Jurafsky and Martin 28

|
Absolute Discounting

= Just subtract a fixed amount from all the
observed counts (call that d).

= Redistribute it proportionally based on
observed data

9/15/15 Speech and Language Processing - Jurafsky and Martin 29

[Absolute Discountingw/ |

Interpolation

discounted bigram interpojation weight
i-1?

cw,,w,)-d +Kow)POw)
N

unigram

P

AbsoluteDiscounting (Wi | wi-l) =
cw,,)

10

Kneser-Ney Smoothing

= Better estimate for probabilities of lower-order
unigrams!
= Shannon game: I can’t see without my
reading_Fagissizo ___ ?
= “Francisco” is more common than “glasses”
= ... but “Francisco” frequently follows “San”

= So P(w) isn’t what we want

(|
Kneser-Ney Smoothing

" Pontinvation(W): “How likely is w to appear as a
novel continuation?

= For each word, count the number of bigram types
it completes

Peovrmvunrion (W) |{Wi—1 re(wp,w)> O}|

9/15/15 Speech and Language Processing - Jurafsky and Martin 32

|
Kneser-Ney Smoothing

= Normalize by the total number of word bigram
types to get a true probability

|{w,._1 e(w,w)> 0}|

{ww)ielwy,w)> 0}|

PCONTINUATION (W) |

11

P
Kneser-Ney Smoothing

Po(w,lw.,) o)

+ A(Wi—l)PCONTINUATION (wi)

A is a normalizing constant; the probability mass we've discounted

d

AMw,,)=

/ c(wy,
The number of word types that can follow w;,
the normalized discount = # of word types we discounted
= # of times we applied normalized discount

Kow:cOw,.,w) > 0}

12

