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Today 

More language modeling 
§  Probabilistic model 

§  Independence assumptions 

§  Smoothing 
§  Laplace smoothing (add-1) 
§ Kneyser-Ney 
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So for each component in the product replace with the 
approximation (assuming a prefix of N - 1) 
 
 
 
 Bigram version 
 

€ 

P(wn |w1
n−1) ≈ P(wn |wn−N +1

n−1 )

Markov Assumption 

€ 

P(wn |w1
n−1) ≈ P(wn |wn−1)
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Estimating Bigram 
Probabilities 

§  The Maximum Likelihood Estimate (MLE) 

€ 

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

9/15/15                                          Speech and Language Processing - Jurafsky and Martin        5 

An Example 
§  <s> I am Sam </s> 
§  <s> Sam I am </s> 
§  <s> I do not like green eggs and ham </s> 
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Bigram Counts 

§  Vocabulary size is 1446  |V| 
§  Out of 9222 sentences 

§  Eg. “I want” occurred 827 times 
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Bigram Probabilities 

§  Divide bigram counts by prefix unigram 
counts to get bigram probabilities. 
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Bigram Estimates of Sentence 
Probabilities 

§  P(<s> I want english food </s>) = 
   P(i|<s>)* 

       P(want|I)* 
         P(english|want)* 
           P(food|english)* 
             P(</s>|food)* 
              =.000031 
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Perplexity 
§  Perplexity is the probability of a 

test set (assigned by the 
language model), as normalized 
by the number of words: 

§  Chain rule: 

§  For bigrams: 
 

§  Minimizing perplexity is the same as maximizing 
probability 
§  The best language model is one that best 

predicts an unseen test set 
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Lower perplexity means a 
better model 

 

§  Training 38 million words, test 1.5 million 
words, WSJ 

9/15/15                                          Speech and Language Processing - Jurafsky and Martin        11 

Practical Issues 

§  Once we start looking at test data, we’ll 
run into words that we haven’t seen 
before.  

§  Standard solution 
§  Given a corpus 
§  Create an unknown word token <UNK> 

Create a fixed lexicon L, of size V 
§  From a dictionary or  
§  A subset of terms from the training set 

§  At text normalization phase, any training word not in L is changed to  
<UNK> 

§  Collect counts for that as for any normal word 
§  At test time 

§  Use UNK counts for any word not seen in training 
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Practical Issues 

§  Multiplying a bunch of small numbers 
between 0 and 1 is a really bad idea 
§ Multiplication is slow 
§  And underflow is likely 

§  So do everything in log space 
§  Avoid underflow 
§  Adding is faster than multiplying 
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Smoothing 

§  Back to Shakespeare 
§  Recall that Shakespeare produced 300,000 bigram 

types out of V2= 844 million possible bigrams... 
§   So, 99.96% of the possible bigrams were never seen 

(have zero entries in the table) 
§  Does that mean that any sentence that contains one 

of those bigrams should have a probability of 0? 
§  For generation (shannon game) it means we’ll never 

emit those bigrams 
§  But for analysis it’s problematic because if we run 

across a new bigram in the future then we have no 
choice but to assign it a probability of zero. 
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Zero Counts 
§  Some of those zeros are really zeros...  

§  Things that really aren’t ever going to happen 
§  On the other hand, some of them are just rare events.  

§  If the training corpus had been a little bigger they would have had a 
count 
§  What would that count be in all likelihood? 

§  Zipf’s Law (long tail phenomenon): 
§  A small number of events occur with high frequency 
§  A large number of events occur with low frequency 
§  You can quickly collect statistics on the high frequency events 
§  You might have to wait an arbitrarily long time to get valid statistics 

on low frequency events 
§  Result: 

§  Our estimates are sparse! We have no counts at all for the vast 
number of things we want to estimate! 

§  Answer: 
§  Estimate the likelihood of unseen (zero count) N-grams! 
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Laplace Smoothing 
§  Also called Add-One smoothing 
§  Just add one to all the counts! 
§  Very simple 

§  MLE estimate: 

§  Laplace estimate: 
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Bigram Counts 
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Laplace-Smoothed Bigram 
Counts 
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Laplace-Smoothed Bigram 
Probabilities 
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Reconstituted Counts 

Reconstituted Counts (2) 
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Big Change to the Counts! 
§  C(want to) went from 608 to 238! 
§  P(to|want) from .66 to .26! 
§  Discount d= c*/c 

§  d for “chinese food” =.10!!! A 10x reduction 
§  So in general, Laplace is a blunt instrument 
§  Could use more fine-grained method (add-k) 

§  Because of this Laplace smoothing not often used for language 
models, as we have much better methods 

 
§  Despite its flaws Laplace (add-1) is still used to smooth other 

probabilistic models in NLP and IR, especially 
§  For pilot studies 
§  In document classification 
§  In domains where the number of zeros isn’t so huge. 
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Better Smoothing 

§  Two key ideas 
§  Use less context if the counts are missing 

for longer contexts 
§  Use the count of things we’ve seen once 

to help estimate the count of things we’ve 
never seen 

Backoff and Interpolation 
§  Sometimes it helps to use less context 

§  Condition on less context for contexts you 
haven’t learned much about  

§  Backoff  
§  use trigram if you have good evidence, 
§  otherwise bigram, otherwise unigram 

§  Interpolation 
§ mix unigram, bigram, trigram 

§  Interpolation works better 

Linear Interpolation 

§  Simple	
  interpola-on	
  

	
  
	
  
§  Lambdas	
  condi-onal	
  on	
  context	
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The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in
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How to set the lambdas? 

§  Use	
  a	
  held-­‐out	
  corpus	
  

§  Choose	
  λs	
  to	
  maximize	
  the	
  probability	
  of	
  held-­‐out	
  
data:	
  
§  Fix	
  the	
  N-­‐gram	
  probabili-es	
  (using	
  the	
  training	
  data)	
  
§  Then	
  search	
  for	
  λs	
  that	
  give	
  largest	
  probability	
  to	
  held-­‐out	
  set.	
  

Training Data 
Held-
Out 
Data 

Test  
Data 
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Types, Tokens and Fish 

§  Much of what’s coming up was first 
studied by biologists who are often faced 
with 2 related problems 
§  Determining how many species occupy a 

particular area (types) 
§  And determining how many individuals of a 

given species are living in a given area 
(tokens) 
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One Fish Two Fish 
§  Imagine you are fishing 

§  There are 8 species: carp, perch, whitefish, trout, salmon, eel, 
catfish, bass 
§  Not sure where this fishing hole is... 

§  You have caught up to now 
§  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish 

§  How likely is it that the next fish to be caught is an eel? 

Slide adapted from Josh Goodman 

§  How likely is it that the next fish caught will be a 
member of newly seen species? 

§  Now how likely is it that the next fish caught will be an 
eel? 
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Fish Lesson 

§  We need to steal part of the observed 
probability mass to give it to the as yet 
unseen N-Grams.  Questions are: 
§  How much to steal 
§  How to redistribute it 
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Absolute Discounting 

§  Just subtract a fixed amount from all the 
observed counts (call that d). 

§  Redistribute it proportionally based on 
observed data 
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Absolute Discounting w/ 
Interpolation 

 

 

30 

PAbsoluteDiscounting (wi |wi−1) =
c(wi−1,wi )− d

c(wi−1)
+λ(wi−1)P(w)

discounted bigram 

unigram 

Interpolation weight 
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§  BeGer	
  es-mate	
  for	
  probabili-es	
  of	
  lower-­‐order	
  
unigrams!	
  
§  Shannon	
  game:	
  	
  I can’t see without my 

reading___________?	
  
§  “Francisco”	
  is	
  more	
  common	
  than	
  “glasses”	
  
§  …	
  but	
  “Francisco”	
  frequently	
  follows	
  “San”	
  

§  So	
  P(w)	
  isn’t	
  what	
  we	
  want	
  

Francisco 

Kneser-Ney Smoothing 

glasses 

Kneser-Ney Smoothing 

§  Pcon-nua-on(w):	
  	
  “How	
  likely	
  is	
  w	
  to	
  appear	
  as	
  a	
  
novel	
  con-nua-on?	
  
§  For	
  each	
  word,	
  count	
  the	
  number	
  of	
  bigram	
  types	
  
it	
  completes	
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PCONTINUATION (w)∝  {wi−1 : c(wi−1,w)> 0}

Kneser-Ney Smoothing 

 

§  Normalize by the total number of word bigram 
types to get a true probability 

	
  
	
  

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj ) : c(wj−1,wj )> 0}
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Kneser-Ney Smoothing 
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PKN (wi |wi−1) =
max(c(wi−1,wi )− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi )

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

λ is a normalizing constant; the probability mass we’ve discounted 

the normalized discount 
The number of word types that can follow wi-1  
= # of word types we discounted 
= # of times we applied normalized discount 


