Natural Language
Processing

Lecture 6—9/10/2015

Jim Martin

Today

Language modeling with N-grams
= Basic counting
= Probabilistic model
= Independence assumptions

9/8/15 Speech and Language Processing - Jurafsky and Martin 2

Word Prediction

= Guess the next word...
= So I notice three guys standing on the ???

What are some of the knowledge
sources you used to come up with
those predictions?

9/10/15 Speech and Language Processing - Jurafsky and Martin 3

Word Prediction

= We can formalize this task using what are
called N-gram models
= N-grams are token sequences of length NV

= -Our earlier example contains the following 2-
grams (aka bigrams)

= (So I), (I notice), (notice three), (three guys),
(guys standing), (standing on), (on the)
= Given knowledge of counts of N-grams such
as these, we can guess likely next words in
a sequence.

9/10/15 Speech and Language Processing - Jurafsky and Martin 4

N-Gram Models

= More formally, we can use knowledge of
the counts of N-grams to assess the
conditional probability of candidate words
as the next word in a sequence.

= Or, we can use them to assess the
probability of an entire sequence of words.
= Pretty much the same thing as we’'ll see...

9/10/15 Speech and Language Processing - Jurafsky and Martin 5

Applications

= It turns out that being able to assess the
probability of a sequence is an extremely useful
thing to be able to do.
= As we'll see, it lies at the core of many applications
= Automatic speech recognition
= Handwriting and character recognition
= Spam detection
= Sentiment analysis
= Spelling correction
= Machine translation

9/10/15 Speech and Language Processing - Jurafsky and Martin 6

|
Counting

= Simple counting lies at the core of any
probabilistic approach. So let’s first take a
look at what we're counting.

= He stepped out into the hall, was delighted to
encounter a water brother.
= 13 tokens, 15 if we include “,” and “.” as separate
tokens.
= Assuming we include the comma and period as
tokens, how many bigrams are there?

9/10/15 Speech and Language Processing - Jurafsky and Martin 7

(|
Counting: Types and Tokens

= How about
= They picnicked by the pool, then lay back on the
grass and looked at the stars.
= 18 tokens (again counting punctuation)
= But we might also note that “the” is used 3
times, so there are only 16 unique types (as
opposed to tokens).
= In going forward, we'll have occasion to focus
on counting both types and tokens of both
words and N-grams.
= When we're looking at isolated words we'll refer to
them as unigrams

9/10/15 Speech and Language Processing - Jurafsky and Martin 8

(|
Language Modeling

= Now that we know how to count, back to
word prediction

= We can model the word prediction task as
the ability to assess the conditional
probability of a word given the previous
words in the sequence
- P(Wn|W1,W2...Wn_1)

= We'll call a statistical model that can
assess this a Language Model

9/10/15 Speech and Language Processing - Jurafsky and Martin 9

Language Modeling

= How might we go about calculating such a
conditional probability?
= One way is to use the definition of conditional
probabilities and look for counts. So to get
= P(the | its water is so transparent that)
= By definition that’s
P(its water is so transparent that the)
P(its water is so transparent that)

We can get each of those from counts in a large
corpus.

9/10/15 Speech and Language Processing - Jurafsky and Martin 10

Very Easy Estimate

= How to estimate?
= P(the | its water is so transparent that)

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

9/10/15 Speech and Language Processing - Jurafsky and Martin 1

Very Easy Estimate
= According to Google those counts are

12000 and 19000 so the conditional
probability of interest is...

= P(the | its water is so transparent that) = 0.63

9/10/15 Speech and Language Processing - Jurafsky and Martin 12

Language Modeling

= Unfortunately, for most sequences and for
most text collections we won't get good
estimates from this method.

= What we're likely to get is 0. Or worse 0/0.

= Clearly, we'll have to be a little more clever.
= Let’s first use the chain rule of probability

= And then apply a particularly useful
independence assumption

9/10/15 Speech and Language Processing - Jurafsky and Martin 13

The Chain Rule

= Recall the definition of conditional probabilities

P(A"B)
= Rewriting: P(4]B) = P(B)

P(A"B)=P(A| B)P(B)
= For sequences...
= P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

= In general
= P(Xy X X3y Xn) = P(X)P(Xa| X1)P(X3]X1,X5)...P(Xq [Xy X 1)

9/10/15 Speech and Language Processing - Jurafsky and Martin 14

The Chain Rule
P(w1)P(wawy)P(w3[w})... P(w,|wi~t)

n
= [T POwlwkh)
k=1

P(wi)

P(its water was so transparent)=
P(its)*
P(water|its)*
P(was|its water)*
P(solits water was)*
P(transparent|its water was so)

9/10/15 Speech and Language Processing - Jurafsky and Martin 15

|
Unfortunately

= There are still a lot of possible sequences in
there

= In general, we'll never be able to get
enough data to compute the statistics for
those longer prefixes

= Same problem we had for the strings
themselves

9/10/15 Speech and Language Processing - Jurafsky and Martin 16

|
Independence Assumption

= Make the simplifying assumption
= P(lizard|
the,other,day,I,was,walking,along,and,saw,a)
= P(lizard|a)
= Or maybe
= P(lizard|
the,other,day,I,was,walking,along,and,saw,a)
= P(lizard|saw,a)
= That is, the probability in question is to
some degree independent of its earlier
history.

9/10/15 Speech and Language Processing - Jurafsky and Martin 17

|
Independence Assumption

= This particular kind of independence assumption
is called a Markov assumption after the Russian
mathematician Andrei Markov.

]

9/10/15 Speech and Language Processing - Jurafsky and Martin 18

|
Markov Assumption

So for each component in the product replace with the
approximation (assuming a prefix of N - 1)

Pwalw™) = P(wa W'},

Bigram version

Piw, Iw'™y=Pw, Iw,)

9/10/15 Speech and Language Processing - Jurafsky and Martin 19

Estlmatlng Elgram

Probabilities
= The Maximum Likelihood Estimate (MLE)

count(w,_,,w;)

Pw,lw,_)=
(v Twin) count(w,_,)

9/10/15 Speech and Language Processing - Jurafsky and Martin 20

(|
An Example

= <s>Iam Sam </s>
= <s>SamIam </s>
= <s>Ido not like green eggs and ham </s>

P(I|<s>)=3%=.67 P(sam|<s>)=1=.33 P(am|I)=3=.67
P(</s>|5am):%:0.5 P(Sam|am):§:45 P(do|I):i:.33
n—1
n—1 CWy"ny1Wn)

P(WH|W:;—N+1): C(w”fl)
\Wn—N+1

9/10/15 Speech and Language Processing - Jurafsky and Martin 21

9/10/15

BerRe|ey Restaurant Pro;'ect

Sentences

can you tell me about any good cantonese restaurants
close by

mid priced thai food is what i’ m looking for
tell me about chez panisse

can you give me a listing of the kinds of food that are
available

i’m looking for a good place to eat breakfast
when is caffe venezia open during the day

Speech and Language Processing - Jurafsky and Martin

22

Bigram Counts

= Vocabulary size is 1446 |V|

Out of 9222 sentences
= Eg. “I want” occurred 827 times

i want | to eat chinese | food | lunch | spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

9/10/15

Speech and Language Processing - Jurafsky and Martin

23

Bigram Probabilities

Divide bigram counts by prefix unigram

vcounts to get bigram probabilities.

[[want | to [cat [chinese | food [lunch [spend |
2533] 927 [2417 [746 | 158 [1093 [341 | 2718]

i want | to cat chinese | food | lunch | spend
i 0.002 033 |0 0.0036 | 0 0 0 0.00079
want 0.0022 |0 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | 0 0.0017 | 0.28 0.00083 | 0 0.0025 | 0.087
eat 0 0 0.0027 | 0 0.021 0.0027 [0.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 [0.0063 | 0
food 0.014 |0 0.014 |0 0.00092 | 0.0037 | O 0
lunch | 0.0059 |0 0 0 0 0.0029 | 0 0
spend | 0.0036 |0 0.0036 | 0 0 0 0 0

9/10/15

Speech and Language Processing - Jurafsky and Martin

24

Probabilities

= P(<s> I want english food </s>) =
P(i| <s>)*
P(want|I)*
P(english|want)*
P(food|english)*
P(</s>|food)*
=.000031

9/10/15 Speech and Language Processing - Jurafsky and Martin

Blgram Esflma!es O! gen!ence

25

Kinds of Knowledge

As crude as they are, N-gram probabilities
capture a range of interesting facts about
language.

= P(english|jwant) =.0011

= P(chinese|want) = .0065
P(to|want) = .66

= P(eat | to) = .28

= P(food | to) =0

P(want | spend) = 0

= P(i| <s>)=.25

9/10/15 Speech and Language Processing - Jurafsky and Martin

26

Shannon’s Method

= Assigning probabilities to sentences is all
well and good, but it's not terribly
illuminating. A more entertaining task is
to turn the model around and use it to
generate random sentences that are like
the sentences from which the model was
derived.

= Generally attributed to

Claude Shannon.

9/10/15 Speech and Language Processing - Jurafsky and Martin

27

Shannon’s Method

= Sample a random bigram (<s>, w) according to the
probability distribution over bigrams

= Now sample a new random bigram (w, x) according to
its probability
= Where the prefix w matches the suffix of the first bigram
chosen.
= And so on until we randomly choose a (y, </s>)
= Then string the words together

= <s>1
Twant
want to
to eat
eat Chinese
Chinese food
food </s>
91015 Speech and Language Processing - Jurafsky and Martin 28

Shakespeare

« To him swallowed confess hear both. Which. OF save on trail for are ay device
and rote life have

o Every enter now severally so, let

o Hill he late speaks; or! a more to leg less first you enter

o Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near;
vile like

 What means, sir. I confess she? then all sorts, he is trim, captain.

«Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry.
* Live king. Follow.

eWhat we, hath got so she that I rest and sent to scold and nature bankrupt, nor the
first gentleman?

Enter Menenius, if it so many good direction found’st thou art a strong upon com-
mand of fear not a liberal largess given away, Falstaff! Exeunt

o Sweet prince, Falstaff shall die. Harry of Monmoutl's grave.

© This shall forbid it should be branded, if renown made it empty.

o Indeed the duke; and had a very good friend.

o Fly, and will rid me these news of price. Therefore the sadness of parting, as they
say, tis done.

« King Henry. What! T will go seek the traitor Gloucester. Exeunt some of the
watch. A great banquet serv’d in;

« Will you not tell me who I am?

It cannot be but so.

o Indeed the short and the long. Marry, 'tis a noble Lepidus

2
&

£

ram|

9/10/15 Speech and Language Processing - Jurafsky and Martin 29

Shakespeare as a Corpus

= N=884,647 tokens, V=29,066
= Shakespeare produced 300,000 bigram types
out of V2= 844 million possible bigrams...
= S0, 99.96% of the possible bigrams were never seen
(have zero entries in the table)
= This is the biggest problem in language modeling;
we'll come back to it.
= Quadrigrams are worse: What's coming out
looks like Shakespeare because it is

Shakespeare e
s

9/10/15 Speech and Language Processing - Jurafsky and Martin 30

10

The Wall Street Journal is Not
Shakespeare

unigram: Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

bigram: Last December through the way to preserve the Hudson corporation
N. B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living on
information such as more frequently fishing to keep her

trigram: They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

9/10/15 Speech and Language Processing - Jurafsky and Martin 31

Model Evaluation

= How do we know if our models are any good?
= And in particular, how do we know if one model is
better than another.
= Well Shannon’ s game gives us an intuition.
= The generated texts from the higher order models
sure sounds better.

= That is, they sound more like the text the model was
obtained from.

= The generated texts from the WSJ and Shakespeare
models look different
= That is, they look like they’ re based on different underlying
models.
= But what does that mean? Can we make that
notion operational?

9/10/15 Speech and Language Processing - Jurafsky and Martin 32

Evaluating N-Gram Models

= Best evaluation for a language model
= Put model A into an application
= For example, a machine translation system

= Evaluate the performance of the
application with model A

= Put model B into the application and
evaluate

= Compare performance of the application
with the two models

= Extrinsic evaluation

9/10/15 Speech and Language Processing - Jurafsky and Martin 33

11

Evaluation

= Extrinsic evaluation
= This is really time-consuming and hard
= Not something you want to do unless you're pretty
sure you've got a good solution
= So
= As a temporary solution, in order to run rapid
experiments we evaluate N-grams with an intrinsic
evaluation
= An evaluation that tries to capture how good the
model is intrinsically, not how much it improves
performance in some larger system

9/10/15 Speech and Language Processing - Jurafsky and Martin 34

Evaluation

= Standard method
= Train parameters of our model on a training set.
= Evaluate the model on some new data: a test set.

= A dataset which is different than our training set, but is
drawn from the same source

9/10/15 Speech and Language Processing - Jurafsky and Martin 35

Perplexity

= The intuition behind perplexity as a
measure is the notion of surprise.
= How surprised is the language model when it
sees the test set?

= Where surprise is a measure of...
= Geg, I didn’ t see that coming...
= The more surprised the model is, the lower the
probability it assigned to the test set
= The higher the probability, the less surprised it was

9/10/15 Speech and Language Processing - Jurafsky and Martin 36

12

Perplexity

= Perplexity is the probability of a PP(W) = P(wiw2...wy) ?
test set (assigned by the
language model), as normalized
by the number of words:-

= Chain rule: ppw) =

=

= For bigrams:

1

N

Flwlwir)

= Minimizing perplexity is the same as maximizing

probability

= The best language model is one that best
predicts an unseen test set

9/10/15 Speech and Language Processing - Jurafsky and Martin 37

[Lower perplexity meansa |

better model

= Training 38 million words, test 1.5 million
words, WSJ]

N-gram Order || Unigram | Bigram | Trigram
Perplexity 962 170 109

9/10/15 Speech and Language Processing - Jurafsky and Martin 38

Practical Issues

= Once we start looking at test data, we’'ll
run into words that we haven't seen
before. So our models won't wor

= Standard solution

= Given a corpus
= Create an unknown word token <UNK>
Create a fixed lexicon L, of size V
= From a dictionary or
= A subset of terms from the training set

= At text normalization phase, any training word not in L is changed to
<UNK>

= Collect counts for that as for any normal word
= At test time
= Use UNK counts for any word not seen in training

9/10/15 Speech and Language Processing - Jurafsky and Martin 39

1=

Practical Issues

= Multiplying a bunch of really small
numbers < 0 is a really bad idea.
= Multiplication is slow
= And underflow is likely
= So do everything in log space
= Avoid underflow
= (also adding is faster than multiplying)

P1 X p2 x p3 x ps = exp(log p1 + log p> +log p3 +log ps)

9/10/15 Speech and Language Processing - Jurafsky and Martin 40

Smoothing

= Back to Shakespeare

= Recall that Shakespeare produced 300,000 bigram
types out of V2= 844 million possible bigrams...

= S0, 99.96% of the possible bigrams were never seen
(have zero entries in the table)

= Does that mean that any sentence that contains one
of those bigrams should have a probability of 0?

= For generation (shannon game) it means we'll never
emit those bigrams

= But for analysis it's problematic because if we run
across a new bigram in the future then we have no
choice but to assign it a probability of zero.

9/8/15 Speech and Language Processing - Jurafsky and Martin 41

Zero Counts

= Some of those zeros are really zeros...
= Things that really aren’t ever going to happen
= On the other hand, some of them are just rare events.
= If the training corpus had been a little bigger they would have had a
count
= What would that count be in all likelihood?
Zipf's Law (long tail phenomenon):
= A small number of events occur with high frequency
= A large number of events occur with low frequency
= You can quickly collect statistics on the high frequency events
= You might have to wait an arbitrarily long time to get valid statistics
on low frequency events
= Result:
= Our estimates are sparse! We have no counts at all for the vast
number of things we want to estimate!
= Answer:
= Estimate the likelihood of unseen (zero count) N-grams!

9/8/15 Speech and Language Processing - Jurafsky and Martin 42

14

Laplace Smoothing

= Also called Add-One smoothing
= Just add one to all the counts!
= Very simple

= MLE estimate:

¢
P(w;) = NI
= Laplace estimate: P (%) ci+1
w;) =
Laplace \Wi N1V
or8/15 Sponch and Language Procsssig -ty and Marin e

Bigram Counts
i want | to eat chinese | food | lunch | spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
Tunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
9/8/15 Spesch and Language Processing - Jurafsy and Martn “

Laplace-Smoothed Bigram

Counts
i want | to eat chinese | food | lunch | spend
i 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

9/8/15 Speech and Language Processing - Jurafsky and Martin 45

Laplace-Smoothed Bigram

P*(W |W _ C(WH—IWII)+ 1
n|Wn—1) =
C (Wn—1) +V

i want to eat chinese | food Tunch spend
i 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078| 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046 | 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039 | 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056| 0.0011 0.00056 | 0.00056
spend 0.0012 0.00058| 0.0012 0.00058| 0.00058| 0.00058| 0.00058| 0.00058

9/8/15 Speech and Language Processing - Jurafsky and Martin 46

-
Reconstituted Counts
* [Cwy_ywn) +1] X C(wy_1)
Cc (Wn—lwn) =
C(Wn—l) +V
i want to eat chinese| food| lunch| spend
i 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 23 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34] 034 1 0.34 58 1 15 0.34
chinese 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 043 0.86 22 043 043
lunch 0.57| 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16
o815 Speech and Language Processing - Juralsky and Martin 47

=
Reconstituted Counts (2)
i want | to eat chinese | food | lunch | spend
i 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 1510 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
i want to eat chinese | food| lunch| spend
i 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 12 0.39 238 0.78 27 27 23 0.78
to 1.9 0.63 3.1 430 19 0.63| 44 133
eat 0.34] 0.34 1 0.34 58 1 15 0.34
chinese 0.2 0.098| 0.098| 0.098| 0.098 8.2 02 0.098
food 6.9 0.43 6.9 0.43 0.86 22 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38(0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16| 0.16 0.16
9/8/15 Spoech and Language Processing - Jurafsky and Martn 18

Big Change to the Counts!

= C(want to) went from 608 to 238!
= P(to|want) from .66 to .26!
= Discount d= c*/c
= d for “chinese food” =.10!!! A 10x reduction
= So in general, Laplace is a blunt instrument
= Could use more fine-grained method (add-k)
= Because of this Laplace smoothing not often used for language
models, as we have much better methods

= Despite its flaws Laplace (add-1) is still used to smooth other
probabilistic models in NLP and IR, especially
= For pilot studies
= In document classification
= In domains where the number of zeros isn't so huge.

9/8/15 Speech and Language Processing - Jurafsky and Martin 49

Better Smoothing

= An intuition used by many smoothing
algorithms is to use the count of things
we've seen once to help estimate the
count of things we've never seen

9/8/15 Speech and Language Processing - Jurafsky and Martin 50

Types, Tokens and Fish

= Much of what's coming up was first

studied by biologists who are often faced

with 2 related problems

= Determining how many species occupy a
particular area (types)

= And determining how many individuals of a
given species are living in a given area
(tokens)

9/8/15 Speech and Language Processing - Jurafsky and Martin 51

17

One Fish Two Fish

= Imagine you are fishing

= There are 8 species: carp, perch, whitefish, trout, salmon, eel,
catfish, bass

= Not sure where this fishing hole is...
= You have caught up to now
= 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
= How likely is it that the next fish to be caught is an eel?

How likely is it that the next fish caught will be a
member of newly seen species?

= Now how likely is it that the next fish caught will be an
eel?

9/10/15 Slidg adapted from dosh GoOAMAD avd varsn

1L

