
 CSCI 5832 Spring 2010 Exam 1

Name: ________________________

On my honor, as a University of Colorado at Boulder student, I have neither given nor
received unauthorized assistance on this work. .

1. (5 points) True/False: The monitor in this classroom is too small.

True. At least given all the squinting I’m seeing.

2. (5 points) True/False: Any language accepted by a non-deterministic finite-state
automaton can be captured by an equivalent regular expression.

True.

3. (5 Points) The following figure shows an FSA M1 with a single start and accept
state (assume there are other states and transitions unseen). Assume M1 accepts
the language L1. Construct a new machine (just draw on this one) that accepts the
language L1*.

4. (10 Points) Consider the following FSA designed to capture derivational facts
about English adjectives (think about a word like happy). What’s wrong with this
machine? And what would be the first step in designing a fix? Hint: Don’t worry
about orthographics/spelling changes (like the change of “y” to “i”).

It works ok for happy. But it overgenerates for most English
adjectives. That is, it accepts forms like ungreen , or greenly.

The usual fix is to divide the base class (adj-root) up into
sub-classes and replace the adj-root with the subclass that
works correctly for the given FSA and then create new FSAs
that correspond to the other sub-classes.

 2

5. (5 points) Assume in the context of word segmentation (think of your HW), that
you have access to correct answers to each of the examples in a test set. That is,
for each input in the test set you have a correct segmentation. Given the output
for your system, suggest a metric for evaluating your system (hint: you might
think in terms of an algorithm you’ve seen in the text).

There are any number of good answers here. One reasonable one
is to use the minimum edit distance between the system and
the reference answer. You’d want to average and length
normalize the values over the test set.

Another simpler answer is just accuracy at predicting the
segmentation points, but that’s pretty crude.

Another answer that I gave credit for is to use perplexity.
That’s kind of a reach and very indirect given that we know the
right answers.

6. (10 Points) Assuming you had access to bigram counts (say from the Google
corpus) describe a way to use a probabilistic language model to improve the
performance of your HW. (Don’t worry about implementation details, just
describe what the computation is). You might use two segmentations of
#fortherecord as an example.

You’d want to argmax P(segmentation|input) using a bigram language
model to get the P() for each possible segmentation. To make
this work you might need to do some smoothing to get rid of
zero count bigrams.

 3

7. (5 points) Describe a problem for the kind of probabilistic model aproach that is
specifically posed by examples like #thereason. (Hint: write out the possible
segmentations of this example for inspiration).

The segmentations generated in this approach won’t all have the
same length. For example “the reason” will involve the
calculation

P(the | #)*P(reason | the)

while the segmentation “there as on” or “there a son” involve 3
bigrams

P(there | #)*P(a | there)P(son | a)

Multiplying three probabilities (numbers between 0 and 1) will
normally yield a smaller number than multiplying two numbers
(in roughly the same range of values). Short story is that
language models have a problem comparing hypotheses of
differing lengths.

8. (5 points) True or False: The Viterbi algorithm computes the maximum
probability state sequence through an HMM given an input sequence.

True .

