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Abstract

We present our submission to the RTE2 
challenge which takes steps in the direc-
tion  of  dynamically  entailing hypothe-
ses  via  their  dependency  paths.  We 
evaluate  semantic  similarity  between 
sentences  utilizing  corpus  co-occur-
rence estimates of  various  dependency 
path features and show a 2.7% improve-
ment on the RTE1 dataset.

1 Introduction

Determining whether the propositions in one text 
fragment are entailed by those in another fragment 
is important to numerous natural language process-
ing applications.  Consider the intelligent tutoring 
setting, where it is critical for the tutor to assess 
which propositions in the desired answer are en-
tailed  by  the  student’s  answer  and,  conversely, 
whether each proposition in the student’s answer is 
entailed by a combination of world knowledge and 
the tutor subject matter.  Truly effective interaction 
and pedagogy is only possible if the automated tu-
tor  can assess this  entailment  at  a  relatively fine 
grain of detail.

The PASCAL Recognizing Textual Entailment 
(RTE) challenge (Dagan et al., 2005) has brought 
the issue of textual entailment before a broad com-
munity of researchers in a task independent fash-
ion.  This task requires systems to make judgments 
as to whether a human reading a text fragment  t 
would typically consider it to entail a second, hy-
pothesis, text fragment h.  This paper describes our 

submission to the 2006 RTE challenge.  We first 
outline the goal of our dependency path based en-
tailment and describe related prior work.  Then we 
describe our current implementation in section 3. 
We then present our results on the 2006 RTE chal-
lenge, followed by a discussion of related issues in 
section 5.

2 Dependency Path-based Entailment

Dekang Lin and Patrick Pantel (2001) propose ex-
tracting paraphrases or discovering inference rules 
from text  (DIRT)  by  extending Harris’  Distribu-
tional Hypothesis, which states that words that oc-
cur in the same contexts tend to be similar.  Specif-
ically, they extend this hypothesis to dependency 
paths in a MiniPar (Lin, 1993) parse tree, stating 
that  paths  that  occur  in  similar  contexts  tend  to 
have  similar  meanings.   The  contexts  for  these 
paths include the dependency nodes at each end of 
the path.  If two paths occur in a meaningful num-
ber of similar contexts, they interpret the paths as 
providing an inference rule, which in their context 
is similar but not identical to a paraphrase.  They 
use  point-wise  mutual  information  to  decide 
whether  these  inference  rules  are  statistically 
meaningful and run their system on 1 GB of news-
paper text, producing a large number of inference 
rules.

Multiple entries in the 2005 RTE challenge at-
tempted to use these rules to improve their entail-
ment  predictions,  but  noted  that  the  existing 
database  of  rules  provided  inadequate  coverage 
(e.g., Braz et al.,  2005; Raina et al.,  2005).  Our 
goal is to implement a technique that improves this 
coverage.   Specifically,  rather  than  generating 



these rules a priori, we interpret the RTE text-hy-
pothesis pair as providing potential inference rules 
whose validity is to be determined.  In this setting, 
the task is to align the terms in t and h which act as 
the inference rule context and then verify that the 
path(s) between the context terms in h are entailed 
by the corresponding path(s) in t.

Ultimately our aim is  to  extend the DIRT ap-
proach  and  implement  it  as  a  dynamic  system. 
Context word alignment will be performed using a 
mixture of techniques (c.f., Turney et al., 2003) in-
cluding PMI-IR (Turney, 2001), WordNet and the-
saurus  expansion,  and  Latent  Semantic  Analysis 
(Deerwester et al., 1990).  Given a highly probable 
alignment between two pairs of words (or phrases), 
w1 and w2 from h aligning with w1’ and w2’ from t 
respectively,  we  will  determine  the  dependency 
paths from  w1 to  w2,  ph,  and from  w1’ to  w2’,  pt. 
These dependency paths will be expanded to their 
minimal meaning-retaining surface forms, sh and st 

respectively, by adding back necessary terms that 
are not directly on the dependency path (e.g., nega-
tion operators such as ‘not’ that are not directly on 
the path will be added back to the minimal mean-
ing-retaining surface forms).  These surface forms 
will  then be used in queries to generate a likeli-
hood estimate for st entailing sh, which is a neces-
sary condition to show that t entails h.  Entailment 
is assumed to hold if all of the words or phrases in 
h are  aligned reasonably well  with those  in  t or 
they are part of the paths connecting these phrases 
and these paths show a high likelihood of entail-
ment.

3 Initial Implementation

In this section, we detail the status of our current 
implementation,  which  is  perhaps  a  first  order 
approximation  of  the  goal  described  in  the 
preceding  section,  but  nonetheless  provided  a 
significant  improvement  in  accuracy  over  our 
baseline system.  We cast the problem as a classifi-
cation task and generate features related to word, 
phrase and dependency path similarity.  Our fea-
tures are based primarily on corpus co-occurrence 
statistics, so we first describe the corpora and in-
formation retrieval engine we utilized.   Then we 
describe our features, followed by an outline of our 
classification approach and the training dataset.

3.1 Corpora

The features described in the following subsections 
are  based  on  document  co-occurrence  counts. 
Rather than use the web as our corpus, as was done 
by Turney (2001) and Glickman et al. (2005), we 
use three publicly available corpora totaling 7.4M 
articles and 2.6B indexed terms.

English  Gigaword: English  Gigaword  (Graff, 
2003) is newspaper text from five sources ranging 
from 1995-2004.  It consists of about 5.7M news 
articles and 2.1B words on a wide variety of sub-
jects.  This resulted in documents with an average 
of around 375 indexed tokens.  This corpus com-
prises 77% of our total documents and 83% of the 
total indexed words.

Reuters Corpus Volume 1: The Reuters corpus 
(Lewis et al., 2004) consists of one year of Reuters 
newswire from 1996-1997.  It provided 0.8M arti-
cles  and  0.17B  indexed  words,  averaging  213 
words per article.

TIPSTER: The three volume TIPSTER corpus1 

includes documents from a variety of sources, in-
cluding  newspaper  text,  and  ranges  from  1987-
1992.  It provided 0.9M articles and 0.26B indexed 
words, averaging 291 words per article.

3.2 Query Engine

The above corpora were indexed and searched us-
ing Lucene.2  Two indices were created, the first 
using the  StandardAnalyzer and the second 
adding the  PorterStemFilter.   Both indices 
excluded only three words, {a, an, the}.  However, 
when referring to content words in the feature de-
scriptions that follow, Lucene’s standard stop-word 
list  was utilized, with the exception of removing 
the words no and not.  

3.3 Features

We generate features that loosely assess the overall 
quality of word and phrase alignments.  Informa-
tion from these sets of features will in the future be 
used to perform a formal word alignment.  

Unigram Word Alignment: The first set of fea-
tures correspond with the lexical entailment calcu-
lations in (Turney, 2001; Glickman et al.,  2005). 
Here  a  lexical  entailment  likelihood  is  derived 
from  point-wise  mutual  information,  common 
1 http:// www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93T3A
2 http://lucene.apache.org/



terms are factored out and maximum likelihood es-
timates  are made based on corpus co-occurrence 
statistics.  For a single content word w from h, their 
methods estimate the probability of entailment as
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where v represents a word in t, nv is the number of 
documents in which v occurs, nw,v is the number of 
documents  in  which  w and  v co-occur,  and  the 
truth value or entailment of w is assumed to be de-
termined primarily by the single aligned word from 
t that maximizes this estimate.

Glickman et al. then estimate the probability of 
entailment for h as the product of the probabilities 
of each of its content words w being entailed:
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One weakness of this product of the maximum 
likelihood  estimates  (MLEs)  is  that  longer  hy-
potheses  result  in  lower  entailment  probabilities. 
Glickman et al. noted that a tf-idf weighted aver-
age  approach  resulted  in  lower  accuracy  in  the 
2005 RTE challenge dataset.  It  could be argued 
that  the  more  someone says  or  writes,  the  more 
likely they are to say something inaccurate, but we 
believe this to be an anomaly that is perhaps spe-
cific  to  the  way  the  RTE1  dataset  was  created. 
Therefore,  in  addition to  the  product  we include 
features for the average and the geometric mean of 
the MLEs.  We also include a feature for the worst 
non-zero MLE, believing that one very poorly en-
tailed word could imply the entire hypothesis is not 
entailed.

Since these estimates are subject to significant 
variance depending on,  among other  things,  nv – 
the  number  of  documents  in  which  the  entailing 
word occurs,  we include a number of features to 
expose this information to the classifier.   We in-
clude  nv for the lowest non-zero MLE, the largest 
nv with  a  zero  MLE,  and the  smallest  nv with  a 
nonzero MLE.  We also provide the classifier with 
the count of words w that do not co-occur with any 
v, (i.e., the number of words  w in  h where  nw,v is 
zero for all v in t) and the count of words w that do 
co-occur with at least one v.

The features described above are listed in Table 
1, but in a slightly more general form as they are 
repeated in 24 additional contexts described in the 
following paragraphs.

Core Repeated Features
Product of MLEs
Average of MLEs
Geometric Mean of MLEs
Worst Non-Zero MLE
Entailing Ngrams for the Lowest Non-Zero MLE
Largest Entailing Ngram Count with a Zero MLE
Smallest Entailing Ngram Count with a Non-Zero MLE
Count of Ngrams in h that do not Co-occur with any 
Ngrams from t
Count of Ngrams in h that do Co-occur with Ngrams in t

Table 1: Core Features (see text for descriptions)

Bigram Word Alignment: The second set  of 
word alignment-related features involves using bi-
grams rather than unigrams.  To measure the simi-
larity of  wi and  vj,  we perform bigram co-occur-
rence queries using the words on each side of  wi 

and  vj as  contexts;  again,  using  document  hit 
counts to calculate the MLE for wi
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where the  δh are 1 if the term is included in the 
average and 0 otherwise – to avoid severe penalties 
where  one  or  more  queries  result  in  very  low 
MLEs, we only average across the highest k of the 
four MLEs up to the first value with zero co-occur-
rences or the first value with more than 30 co-oc-
currences.  

Average  Word  Alignment: The  third  set  of 
word alignment-related features is derived by gen-
erating averages for each w across the information 
used in the first two sets, assuming both query pro-
cedures result in positive MLEs, otherwise it uses 
the unigram information.  For each  w,  the co-oc-
currence count and entailing ngram count is taken 
from the query with the largest MLE.  

Stem-based Word Alignment: The fourth-sixth 
sets  of  word  alignment-related  features  replicate 
the  first-third  sets,  but  are  based  on  the  Porter 
stems of the words rather than their surface forms. 

Bag-of-Dependencies: This  set  of  features 
treats h and t each as a bag of MiniPar dependen-
cies  (i.e.,  independent  parent-child  node  pairs). 
We refer to a MiniPar node as a Word Node if it in-
cludes a <word> element that maps to a word (not 
punctuation) in the original text fragment.  We re-
fer to a node, wp, as a Word Parent of a node wc, if 



(a) it is a Word Node and it is referenced as  wc’s 
MiniPar parent, (b) it is a Word Parent of wq, wq is 
the node reference as the parent of wc, and wq is not 
a Word Node, (c) it is a Word Node and it refer-
ences  wc as  a  MiniPar  antecedent,  or  (d)  it  is  a 
Word  Parent  of  wr,  wr references  wc as  an  an-
tecedent, and wr is not a Word Node.  While a node 
will never have more than one MiniPar parent, it 
will have two Word Parents, for example, when it 
is the subject of two verbs.

We generate MLEs for all, wc, content words in 
h that have a Word Parent.  Let <wc, wp> be the bi-
gram containing wc and wp in the same order they 
occur in  h. Similarly, let <vc,  vp> be a surface or-
dered bigram containing any  vc from t and one of 
its Word Parents vp. The MLE for <wc, wp> is made 
based  on  document  co-occurrence  counts,  using 
the <vc,  vp> bigram that  maximizes the MLE, as 
shown in equation 4.  This calculation disregards 
the actual dependency type.  The queries use the 
Porter stem-based index.
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The final MLE associated with a given wc is the 
average MLE calculated by equation 4 for all of its 
parents wp.  The MLEs for all the wc in h are then 
combined to generate a set of features that parallels 
those discussed above in the bag-of-words feature 
sets (see Table 1).  These features indicate the like-
lihood that the dependencies in  h are entailed by 
those in t.

Dependency Path Based Entailment: The rest 
of  the paragraphs in this  subsection describe our 
first  steps  toward  implementing  the  Dependency 
Path Based Entailment  approach.   All  queries in 
these sections were run against the Porter stems.

Descendent Relation Features: Given a depen-
dency node wc and its Word Parent wp, let wc be de-
fined as a Word Child of wp.  The descendent rela-
tion features for a node wp are the same MLE and 
ngram count features as described in the Bag-of-
Dependencies  above,  but  include just  the  depen-
dencies with each of wp’s Word Children wc in the 
bag.   The  MLE  for  wc is  recursively  computed 
from the descendent relation MLE of its children; 
this bag of MLEs is averaged (or unitized) before 
being combined with the MLEs of wp’s other chil-
dren.  These features are not used by the classifier 

directly,  but  are  used  repeatedly  to  generate  the 
feature sets described below.

Combined  Verb  Descendent  Relations: This 
set of features is generated by combining the de-
scendent relation features of each verb in  h.  For 
each  of  these  verbs,  we  process  all  dependency 
paths that include content words.  Before combin-
ing the features for all verbs, their individual MLE 
features are unitized as discussed above under De-
scendent Relation Features.

Worst  Verb  Descendent  Relations: This  is 
simply the set of features associated with the verb 
that has the lowest MLE value.  

Combined  Subject  Descendent  Relations: 
This set of features parallels the Combined Verb 
Descendent Relations features.  It is calculated by 
combining the Descendent Relation Features for all 
the Word Children  wc of verbs where  wc has the 
subj relation with its parent verb.

Worst Subject Descendent Relations: The set 
of  features  used  in  the  preceding  paragraph  that 
had the lowest MLE value.  

Combined Subject-to-Verb Relations: This set 
of features is based on the same Word Children wc 

as  the  Combined  Subject  Descendent  Relations. 
Here the features are constructed from the depen-
dencies between the subjects and the verbs, rather 
than  the  dependencies  between  the  subjects  and 
their child nodes.

Worst  Subject-to-Verb Relations: The set  of 
features  from  the  preceding  paragraph  associate 
with the lowest MLE.  

Object,  pcomp-n,  and  Other  Relations: The 
same four sets of features that are generated for the 
subject are also constructed for the object, the head 
nouns of other prepositional phrases having depen-
dencies with the verb, and all other content word 
types having a dependency link to the verbs.  

Other Features: We also provide the classifier 
with features that indicate the RTE task type (IR, 
IE, QA, or SUM), the number of content words in 
h, the number of content words in t and the number 
of verbs in h. 

3.4 Classification Approach

We  used  a  mixture  of  experts  as  our  classifier, 
combining  the  unweighted  votes  and  probability 
estimates of a variety of classifiers, all within the 
Weka  machine  learning  package  (Witten  and 
Frank, 2000).  We trained separate classifiers for 



the document  summarization,  SUM,  subset  of  the 
data, since this resulted in better performance dur-
ing cross-validation on our training sets.  Each in-
dividual classifier was also tuned somewhat based 
on training set cross-validation.3  Our first submis-
sion made decisions based on the average probabil-
ity of the classifiers.  Where classifiers output al-
most strictly 0 and 1 probability estimates (SMO 
and VotedPerceptron),  we  normalized  these  esti-
mates to be consistent with the classifiers’ accura-
cy  on  training  set  cross-validation.   Our  second 
submission made decisions based on the majority 
vote  among  component  classifiers,  breaking  any 
ties with the average probability estimate.

3.5 Training Set

We trained our IE,IR,QA classifier strictly on the 
associated  RTE2  training  data,  but  trained  our 
SUM classifier utilizing both the RTE2 SUM train-
ing data and the RTE1 CD training and test sets, 
since cross-validation on the training data suggest-
ed better performance taking this approach.  

4 Results

Table 2 shows our results  on each subset  of  the 
data for each of our two submissions.  For compar-
ison, Table 3 shows results from cross-validation 
on our training sets, results when training and test-
ing on the RTE1 (2005) datasets, and the best ac-
curacy results for a full submission by anyone at 
the RTE1 challenge (Dagan et al., 2005).

5 Discussion

Comparison with RTE1 Submissions: As can be 
seen in Table 3, the system described here outper-
formed the submission with the best  accuracy at 
the RTE1 challenge by 2.7%.  Part of the reason 
for this  is  because we trained separate classifiers 
for the CD and non-CD portions of the dataset.  In 
cross-validation on the RTE1 training set, we see 
an absolute increase of 1.6% in the error rate when 
combining all of the examples into a single dataset. 
It  is interesting to note that of the RTE1 partici-

3 {IE,IR,QA} classifiers with tuned parameters: AdaBoost (I=50), ADTree 
(I=7), ClassificationViaRegression, DecisionTable (X=2, -I), JRip (O=6), Logit-
Boost (I=2), MultiBoost (I=35), RandomCommittee (I=65), RandomForest 
(I=100, K=24), SimpleLogistic (H=300), SMO (N=1), SMO (N=1, C=0.73), 
VotedPerceptron
SUM classifiers with tuned parameters: AdaBoost, ADTree, Classification-
ViaRegression, DecisionTable (X=2, -I), JRip, LMT, LogitBoost, RandomCom-
mittee (I=100), RandomForest (I=129, K=24), RepTree, SMO

pants  that  reported task-specific  information at  a 
level of detail sufficient to determine their CD ver-
sus non-CD accuracy, the average non-CD accura-
cy was essentially at chance, as shown in the last 
line of Table 3.  The best non-CD accuracy was 
only  52.8%,  where  the  accuracy  for  our  system 
was 3.1% higher on that section of the data.  

Run IE IR QA SUM Overall
Run1 54.0 50.8 61.5 63.6 55.0 57.8 68.0 82.3 59.6 64.6
Run2 53.5 50.7 59.5 64.2 54.0 57.3 68.0 82.4 58.8 64.9

Table 2: Accuracy and Average Precision 
(Run 1: average probability estimate mixture; 
Run 2: majority vote of component classifiers)

Run SUM / 
CD

NonSUM 
/ NonCD

Overall

RTE2 Test Set 68.0 56.8 59.6
RTE2 Trng CV 83.9 4 63.2 68.4
RTE1 Trng CV 81.6 55.0 59.6
RTE1 Test Set 84.7 55.9 61.3
Best RTE1 Submission 83.3 52.8 58.6
Ave RTE1 Submission 75.2 49.8 54.5
Table 3: Accuracy (ave. probability estimate mixture)

Comparison with Training Cross-Validation: 
Comparing  our  RTE2 test  results  with  those  for 
cross-validation on the training data shows a sig-
nificant decline in accuracy.  This is true for both 
the SUM subset, which had a 15.9% decline4, and 
the non-SUM subset,  which saw a 6.4% decline. 
The majority of this decline is not due to over-fit-
ting the training data.  Using component classifiers 
that are not tuned to the training data leads to only 
a 2% decrease in accuracy on the non-SUM por-
tion and effectively no decrease on the SUM por-
tion of the training set. Additionally, many of the 
good classifiers performed close to the accuracy of 
the mixture of experts.  We hypothesize that most 
of  the decrease in performance on the test set  is 
due to differences in the entailment pairs, but we 
do not want to examine the test set and bias our fu-
ture results.

Feature Analysis: Preliminary feature ablation 
studies based on training set cross-validation sug-
gest that nearly all of our features might be helping 
the accuracy in some context.  The core repeated 
feature  from  Table  1  that  appeared  to  have  the 
most  significant  positive  effect  on  accuracy  was 
the average MLE.  Removing this feature from all 

4 This is based on the average performance over the RTE1 CD data and the 
RTE2 SUM training data, which could not be differentiated in the Weka output.



of the feature sets resulted in a decrease in perfor-
mance of 4% (24/600 additional misclassifications) 
for  the  {IE,IR,QA} portion  of  the  dataset.   The 
best single feature appears to be the stem unigram 
average MLE.  Training a linear classifier on just 
this  feature  results  in  a  decrease  in  accuracy  of 
only 5% (30/600) relative to the tuned mixture of 
experts.  

On the other hand, feature analysis of the SUM 
portion of the dataset suggested that virtually all of 
the feature sets were irrelevant.  Multiple features 
individually performed very close to the same ac-
curacy as the mixture of experts.  Again, the best 
feature  appears  to  be  the  stem unigram  average 
MLE.

6 Summary and Future Work

We presented a dependency path based entailment 
approach  and  our  initial  implementation  which 
takes steps in this direction.  Our results are very 
promising, showing a 2.7% improvement over the 
best accuracy for all full submissions on the RTE1 
dataset.  

Future work includes implementing the full sys-
tem described in Section 2.  We intend to utilize 
additional training data, perhaps following the ap-
proach proposed by Burger and Ferro (2005) to use 
news  article  headlines  and  their  opening  para-
graphs as entailment pairs.  We also plan to work 
on our mixture of  experts  to verify the effect  of 
adding other classifiers, among other issues.
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