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Abstract

Correctly predicting the direction that branches will take is

increasingly important in today’s wide-issue computer archi-

tectures. The name program-based branch prediction is given
to static branch prediction techniques that base their predic-
tion on a program’s structure. In this paper, we investigate
a new approach to program-based branch prediction that uses
a body of existing programs to predict the branch behavior
in a new program. We call this approach to program-based

branch prediction, evidence-based static prediction, or 13SP,
The main idea of ESP is that the behavior of a corpus of pro-

grams can be used to infer the behavior of new programs. In

this paper, we use a neural network to map static featores as-
sociated with each branch to the probability that the branch

will be taken. ESP shows significant advantages over other

prediction mechanisms. Specifically, it is a program-based
technique, it is effective across a range of programming lan-
guages and programming styles, and it does not rely on the

use of expert-defined heuristics. In this paper, we describe
the application of ESP to the problem of branch prediction

and compare our results to existing program-based branch pre-

dictors, We also investigate the applicability of ESP across
computer architectures, programming languages, compilers,

and run-time systems. Averaging over a body of 43 C and

Fortran programs, ESP branch prediction results in a miss rate
of 20%, as compared with the 25cZ0miss rate obtained using

the best existing program-based heuristics.

1 Introduction

In this paper, we propose a new technique for program-based
branch prediction based on a general approach that we have in-
vented called Evidence-based Static Prediction (ESP). Our re-

sults show that using our new approach results in better branch
prediction than all existing program-based techniques. In ad-
dition, our ESP approach is very general, and can be applied

to a wide range of program behavior estimation problems. In
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this paper, we describe ESP and its successful application to

the problem of program-based branch prediction.

Branch prediction is the process of correctly predicting
whether branches will be taken or not before they are actually

executed. Branch prediction is important, both for computer

architectures and compilers. Compilers rely on branch pre-
diction and execution estimation to implement optimizations
such as trace-scheduling [12, 13] and other profile-directed
optimization [8, 9].

Wide-issue computer architectures rely on predictable con-
trol flow, and failure to correctly predict a branch results in

delays for fetching and decoding the instructions along the

incorrect path of execution. The penalty for a mispredicted

branch may be several cycles long. For example, the mis-
predict penalty is 4 to 5 cycles on the Digital Alpha AXP

21064 processor, In previous studies, we found that condi-
tional branches in C programs were executed approximately

every 8 instructions on the Alpha architecture [7], Current
wide-issue architectures can execute four or more instntctions
per cycle. As a result, such architectures are likely to exe-
cute branch instructions every two cycles or less and effective

branch prediction on such architectures is extremely impor-
tant. Many approaches have been taken to branch prediction,

some of which involve hardware [5, 23] while others involve

software [3, 6, 11]. Software methods usually work in tan-

dem with hardware methods, For example, some architectures
have a “likely” bit that can be set by a compiler if a branch is

determined to be likely taken by a compiler.
Compilers typically rely on two general approaches for

branch prediction. Profile-based methods use program profiles
to determine the frequency that branch paths are executed.

Fisher and Freudenberger showed that profile-based branch
prediction can be extremely successfid in reducing the number
of instructions executed between mis-predicted branches [11].

The main drawback of profile-based methods is that additional
work is required on the part of the programmer to generate the
program profiles,

Program-based branch prediction methods attempt to pre-

dict branch behavior in the absence of profile information and

are based only on a program’s structure, Some of these tech-
niques use heuristics based on local knowledge that can be

encoded in the architecture [14, 18]. Other techniques rely on
applying heuristics based on less local program structure in an

effort to predict branch behavior [3]. In this paper, we describe

a new approach to program-based branch prediction that does
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not rely on such heuristics. Our branch prediction relies on a

general program-based prediction framework that we call ESP.

The main idea of ESP is that the behavior of a corpus of pro-
grams can be used to infer the behavior of new programs. That
is, instead of using a different execution of a program to pre-

dict its own behavior (as is done with profile-based methods),

we use the behavior of a large body of different programs (the
training set, or corpus) to identify and infer common behavior.

Then we use this knowledge to predict branches for programs

that were not included in the training set. In particular, in this

paper we use a neural network to map static features associ-

ated with each branch to the probability that the branch will be

taken.
Branch prediction using ESP has several important advan-

tages over existing program-based branch prediction methods.
First, because the technique automatically maps static features
of branches to a probability that they will be taken, our tech-
nique is suitable for program-based branch prediction across

different languages, compilers, and computer architectures.
Existing techniques rely on compiler-writer defined heuristics

that are based on an intuition about common programming id-

ioms. Second, given a large amount of static information about

each branch. the technique automatically determines what parts
of that information are useful, Thus, it does not rely on trial-

and-error on the part of the compiler writer searching for good
heuristics. Finally, our results show that ESP branch prediction

outperforms existing heuristic program-based branch predic-

tion techniques over a body of 43 C and Fortran programs. In
particular, our heuristics have an average overall miss rate of
20%, which compares to the 25% miss rate of the best existing

heuristic technique, and the 8% miss rate of the perfect static
predictor.

This paper has tbe following organization. In Section 2
we discuss previous approaches to program-based branch pre-

diction and other knowledge-based approaches to program op-
timization. In Section 3 we discuss the details of our ESP

branch prediction method, Section 4 describes the methods

we used to evaluate and compare ESP prediction with previous

approaches, and Section 5 presents our results. We summarize
our conclusions in Section 6 and also discuss possible future

directions to take with this research.

2 Background

In this section, wediscuss the existing approaches to static
branch prediction and also discuss other knowledge-based ap-

proaches to compiler optimization.

2.1 Program-Based Branch Prediction Methods

One of the most simple program-based methods for branch pre-

diction is called “backward-taken/forward-not-taken” (BTFNT).
This technique relies on the heuristic that backward branches

are usually loop branches, and as such are likely to be taken.

One of the main advantages of this technique is that it relies
solely on the sign bit of the branch displacement, which is al-
ready encoded in the instruction. While simple, BTFNT is also
quite successful. Our results in Section 5 show it has an over-
all miss rate in our experiments of sq~o, Any more sophisti-
cated program-based prediction techniques must do better than
BTFNT to be viable.

To facilitate program-based methods for branch predic-
tion, some modem architectures provide a “branch-likely” bit
in each branch instruction [1], In these architectures, compilers

can employ either profile-based [11 ] or program-based tech-
niques to determine what branches are likely to be taken, In
recent work, Ball and Lams [3] showed that applying a number

of simple program-based heuristics can significantly improve
the branch prediction miss rate over BTFNT on tests based

on the conditional branch operation. A complete summary of
the Ball and Lams heuristics is given in Table 1 (as described

in [22]). Their heuristics use information about the branch
opcode, operands, and characteristics of the branch successor

blocks, and encode knowledge about common programming

idioms.

Two questions arise when employing an approach like that
taken by Ball and Lams. First, an important question is which
heuristics should be used. In their paper, they describe seven
heuristics that they considered successful, but also noted that
“We tried many heuristics that were unsuccessful, [3]” A sec-
ond issue that arises with heuristic methods is how to decide

what to do when more than one heuristic applies to a given

branch. This problem has existed in the artificial intelligence

community for many years and is commonly known as the “ev-

idence combination” problem. Ball and Lams considered this

problem in their paper and decided that the heuristics should be

applied in a fixed order; thus the first heuristic that applied to a

particular branch was used to determine what direction it would

take. They determined the “best” fixed order by conducting an

experiment in which all possible orders were considered. We
call using this pre-determined order for heuristic combination
the A Priori Heuristic Combination (APHC) method. Using
APHC, Ball and Larus report an average overall miss rate on

the MIPS architecture of 20%.
In a related paper, Wu and Lams refined the APHC method

of Ball and Lams [22]. In that paper, their goal was to deter-

mine branch probabilities instead of simple branch prediction.
Whereas with branch prediction, the goal is to determine a
single bit of information per branch (likely versus unlikely),

with branch probabilities, the goal is to determine the numeric
probability that a branch is taken or not taken. Wu and Lams

abandoned the simplistic evidence combination function of
APHC in favor of an evidence combination function borrowed

from Dempster-Shafer theory [1 O, 17]. We call this form of ev-
idence combination Dempster-Shafer Heuristic Combination

(DSHC). By making some fairly strong independence assump-

tions, the Dempster-Shafer evidence combination function can
produce an estimate of the branch probability from any number
of sources of evidence. For example, if one heuristic indicates

that a branch is likely to be taken with probability X%, while

another says it is likely to be taken with probability Y%, then
DSHC allows these two probabilities to be combined. The

probabilities X% and Y% that Wu and Lams use are taken
directly from the paper of Ball and Lams [3]. We refer to a
DSHC algorithm based on this data as DSHC(B&L).

Because the goal of Wu and Lams was to perform program-
based profile estimation, they give no results about how the
DSHC method works for program-based branch prediction.
One of the contributions of our paper is that we quantify the
effectiveness of the DSHC method for branch prediction.

Wagner et al. [21] also used heuristics similar to those of
Ball and Lams to perform program-based profile estimation.
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Heuristic Heuristic.

Name Description

Loop Branch Predict that the edge back to the loop’s head is taken and the edge exiting the loop

is not taken.

Pointer If a branch compares a pointer against null or compares two pointers, predict the

branch on false condition as taken.

Opcode If a branch checks an integer for less than zero, less than or equal to zero, or equal
to a constant, predict the branch on fake condition.

Guard If a register is an operand of the branch comparison, the register is used before

being defined in a successor block, and the successor block does not post-dominate

the branch, predict the successor block as taken.

Loop Exit If a comparison is inside a loop and no successor is a loop head, predict the edge

exiting the loop as not taken.
Loop Header Predict the successor that does not post-dominate and is a loop header or a loop

pre-header as taken.

Call Predict the successor that contains a call and does not post-dominate the branch

as taken.
Store Predict the successor that contains a store instruction and does not post-dominate

the branch as not taken.
Return Predict the successor that contains a return as not taken.

Tablel: Summary of the BatVLaras Heuristics

They also applied theheuristics ina fixed order. llreyreport

branch prediction miss rate results similar to those of Ball and

Lams.

2.2 Kncrwledge-Base Approaches to Optimization

Our ESP method relies on collecting data from a corpus of pro-

gram behavior and using that data to perform program-based
prediction. There is little other work in compiler optimization

that has taken this approach. We summarize the work we are
aware of here.

In [2], Balasundaram et al, address a somewhat different

program-based estimation problem, The authors wanted to

make compile-time decisions about data partitioning across a

parallel computer. They report on the idea of using profile

data to “train” an estimator. This training, an offline step,
generates code which is then incorporated into their compiler.

Training only needs to bedoneonceper compilation target, and
is reported to be better than using a parametrized theoretical

model. While the strategy they employ is similar to ESP, their
application domain is quite different. In addition, our results
show that this general approach of knowledge-based “training”
can be used to enhance a wide class of optimization based on

program behavior estimation.

3 Evidence-based Branch Prediction

In this section, we propose a general framework for program-

based prediction. Our method, ESP, is generally described as
follows. A body of programs and program input is gathered

(the corpus). Particular static information (the static feature
ser) about important static elements of the corpus (e.g., instruc-
tions) are recorded. The programs in the corpus are executed,
and the corresponding dynamic behavior is associated with
each static element (e.g., the number of times a branch is taken

and not-taken is associated with each branch). At this point,
we have accumulated a body of knowledge about the relation-

ship between static program elements and dynamic behavior.

This body of knowledge can then be used at a later time to pre-
dict the behavior of instructions with similar static features for

programs not in the corpus. With this broad definition of our
framework in mind, we now describe how we apply this general

framework to the specific problem of branch prediction.

3.1 ESP Branch Prediction

In applying ESP to the problem of branch prediction, we instan-

tiate the above framework in the following way. The static pro-

gram elements we are interested in are the program branch in-

structions. For this study, we consider only two-way branches.

For each branch instruction in the program text, we record a

large static feature set (see Table 2).
Some of the features are properties of the branch instruction

itself (e.g., the brancb opcode), others are properties of the

registers used to define the register in the branch instmction
(e.g., the opcode of the instructions that defined them), while
others are properties of the procedure that the branch is in (leaf
versus non-leaf). The existence of some features is dependent

on the values of other features. For example, feature 4 is only
meaningful if feature 3 has an RA operand. We call such

features dependent static features.
We chose the feature set shown in Table 2 based on several

criteria. First, we encoded information that we believed would
likely be predictive of behavior. This information included

some of the information used to define the BaWLarus heuristics
(e.g., information about whether a call appears in a successor

of the branch). Second, we encode other information that was
easily available. For example, since the opcodes that define
the branch instruction register are readily available, we include
them as well. Similarly, information about the procedure type



Feat.

Num.

1
2

3

4

5

6

7
8

9-16

9
10

11

12

13

14

15

16

17-24

Feature

Name

Br. opcode
Br. direction
W. operand opcode

RA opcode

RB opcode

Loop header

Language
Procedure type

Br. dominates
Br. postdominates

Succ. Ends

Succ. Loop

Succ. Backedge

Succ, Exit

Succ. UseDef

Succ Call

Feature Description

The opcode of branch instrrtction.
F — Forward branch, B — Backwards branch
The opcodeof the instruction that defines the register used in the branch instruction

(or ?, if the branch operand is defined in a previous basic block).
If the instruction in (3) uses an RA register, this is the opcode of the instruction

that defines thatregister(? otherwise).
If the instruction in (3) uses an RB register, this is the opcode of the instruction

that defines that register (? otherwise).

LH — the basic block is a loop header, NLH - not a loop header

The language of the procedure the branch is in (C or FORT).
The branches’ procedure is a Leaf, NonLeaf or calls itself recursively (CallSelf)

Features of the Taken Successor of the Branch

D — basic block dominates this successor, or ND — does not dominate
PD — the successor basic block post-dominates the basic block with the branch,

or NPD — does not post-dominate
Branch type ending successor basic block, possible values (5T — fall through,

CBR — conditional branch, UBR — unconditional branch, BSR — branch sub-
routine, JUMP — jump, IJUMP — indirect jump, JSR — jump subroutine, IJSR

— indirect jump subroutine, RETURN, COROUTINE, LASTJUMP_KIND, or
NOTHING)

LH — the successorbasic block is a loop header or unconditionally passes control

to a basic block which is a loop header, NLH — not a loop header
LB — the edge getting to the successor is a loop back edge, NLB — not a loop
back edge

LE — the edge getting to the successor is a loop exit edge, NLE — not a loop
exit edge
UBD — the successor basic block has a use of a register before defining it and that
register was used to determine the destination of the current conditional branch

instruction. NU — no use before def in successor
PC — the successor basic block contains a procedure call or unconditionally

passes control to a basic block with a procedure call, NPC — no procedure call
down here

Features of the Not Taken Successor of the Branch

As above features 9–16

Table 2: Stat:c Feature Set Used nr the ESP Branch Prediction Study.
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is readily available. We note that the feature set listed here

is the only one we have yet tried. We have made no effort to

identify a particularly good feature set, and our positive results
suggest that such “feature tuning” is unnecessary.

Having defined the static feature set, we then determine
the static feature set for each branch in the corpus of programs.

We next run the programs in the corpus and collect information
about how often each branch is taken and not taken, The goal

is to associate two pieces of dynamic information with each
branch instruction: how frequently the branch was executed

and how often was it taken. Because execution frequency is

program dependent, we normalize the branch frequency by

the total number of branches executed in the program. We
compute the normalized branch weight by dividing how many

times the branch was executed by the total number of branches

executed by the program (resulting in a number between zero

and one). Finally, we associate with each branch instruction in

the corpus its static feature set, its normalized branch weight,
and its branch probability (percentage of the time the branch
was taken).

3.1.1 Prediction using Neural Nets

Our goal is to have a system that can predict the branch prob-

ability for a particular branch from its static feature set. This
system should accurately predict not just for the programs in
the corpus, but also for previously unseen programs,

One way of doing such prediction is via a feedforward

neural network [19], A feedforward neural network maps a
numerical input vector to a numerical output. Here, the input
vector consists of the feature values in the static feature set,

and the output is a scalar indicating the branch probability.

Figure 1 depicts the branch prediction neural network. A
neural network is composed of processing units, depicted in

the Figure by circles. Each processing unit conveys a scalar
value known as its activi~. The activity pattern over the bottom
row of units is the input to the network, The activity of the

top unit is the output of the network. Activity in the network
flows from input to output, through a layer of intermediate or

hidden urrits, via weighted connections. These connections

are depicted in the figure by links with arrows indicating the
direction of activity flow,

This is a standard neural network architecture. We also use

a fairly standard neural network dynamics in which the activity

of hidden unit i, denoted hi, is computed as:

h; = tanh(~ Wijzj + hi),

where ~j is the activity of input unit j, Wij is the connection

weight from input unit j to hidden unit i, bi is a bias weight
associated with the unit, and tanh is the hyperbolic tangent
function,

Similarly, the output unit activity, denoted y, is computed from
the hidden unit activities:

y = .5 tanh(
E

7Jihi+a)+l,

i

where vi is the connection weight from hidden unit i to the

output unit and a is a bias weight associated with the output

unit. The tanh tirnction is normalized to achieve an activity
range of [0, 1] for the output unit.

The input-output behavior of the neural network is deter-
mined by its free parameters, the weights w and v and biases

b and a. These parameters are set by an algorithm known as

backpropaga~ion [1 6]. This is a gradient descent procedure for

adjusting the parameters such that performance of the network
on a training corpus is optimized. The standard measure of

performance is the sum of squared errors,

E = ~(yk –tk)z,

k

where k is an index over examples in the training corpus, yk

is the actual output of the network when training input k is
presented, and tk is the target output—the output indicated for

that example in the training corpus.

In this application, however, we have a different criterion

for good performance, We want to minimize two sorts of errors,
missed branches (MB) and branches incorrectly taken (BIT).

MB occur when the predictor says that the branch will be taken
with probability less than.5 when the branch is in reality taken;
BIT occur when the predictor says that the branch will be taken
with probability greater than.5 when the branch is in reality not

taken. If the network output for example k, is binary-1 if the
predicate “the branch probability is greater than .5” is believed

to be true, O otherwise-then the total number of errors due to

MB for example k is

EAZB = (1 - ~k)tknk,

where nk is the normalized branch weight, The product tknk

gives the (relative) number of cases where the branch is taken.

All of these branches are missed if yk = O (or equivalently,

1 – ~k = 1). Similarly, the total number of errors due to BIT
is

EBIT = Vk(l – tk)nk.

Because these two types of errors have equal cost, the total
error is simply

E=~EMB+EBIT= ~nk[yk(l -r!k)+i!k(l -yk)].

k k

This is used as the error measure to be minimized by the neural

net training procedure. That is, the free parameters in the neural
net are adjusted such that the network will produce outputs yk

such that E is minimized. Note that this does not require that

the network accurately predict branch probabilities per se, as

we were assuming previously.l
Each input unit’s activity is normalized over the training set

to have zero mean and standard deviaiion 1. The same normal-
ization is applied for test cases. We deal with nonmeaningful

1In the above discussion, we assumed that tbc network output will be eirber O

or 1. However, the output must be continuous-valued in order to apply gradient-

based training procedures. Thus, we use the continuous activation rule for y

presented earlier, and simply interpret the continuous output us the network’s

confidence that the true branch probability is gmarcr than 5.
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output
(branch probability)

hidden layer

input
(static feature set)

Figure 1: The branch prediction neural network. Each circle represents a processing unit in the network, and the links between units depict the

flow of activity.

dependent static features by setting their input activity to Oafter

the normalization step; this prevents the nonmeaningful fea-
tures from having any effect on the computation, and is equiva-
lent to gating the flow of activity from these features by another
feature that indicates the relevance of the dependent features

for a particular example. We use a “batch” training procedure
in which weights are updated following a sweep through the

entire training corpus, and an adaptive learning rate procedure
wherein the learning rate for the network is increased if error

drops regularly or is decreased otherwise, Momentum is not

used. Training of the network continues until the thresholded

error of the net no longer decreases. By thresholded error. we
mean the error computed when the output is first thresholded

to values O or 1. This achieves a form of early stopping, and
thereby helps to prevent overfitting.

3.1.2 Discussion

In Section 2, we noted that there were two inherent problems

with heuristic-based approaches to program-based prediction.
First there is the problem of determining what heuristics to

use. In particular, the search for successful heuristics requires
a significant amount of effort and cannot be easily automated.

Furthermore, the effectiveness of particular heuristics (e.g.,

the “return heuristic” which predicts the successor without tbe

return instruction to be taken) will depend on the programming
language, compiler, programming style, and architecture being

used,
For example, one might think that tbe return heuristic is

likely to be more effective when applied to languages, such as
Scheme, where recursion is the most commonly used mecha-

nism for performing iteration. Likewise, the pointer heuristic,
which assumes pointer comparisons to null and for equality
will fail, is more likely to be applicable in a “pointerfrrl” lan-
guage like Scheme. We found, however, that when we applied
these heuristics to three Scheme programs (boyer, corewar,
and sccomp, all compiled with the Scheme-to-C compiler)z,
the results show that the return heuristic had an average 56%

‘In the future, we plan to investigate how the ESP approach works for lan-

guages such as CH and Scheme as well.

miss rate and tbe pointer heuristic had a miss rate of 89~o.

These results show that applying heuristics based on intuition
is both difficult and can often result in incorrect conclusions.

Thus, new betrristics will be required for new architectures,
programming languages, and even compilers.

A second problem with bettristic approaches is determining
how to combine them when more than one apply to the same

situation. While Wu and Larus attempted to solve this problem
using Dempster-Shafer theory, our results show that using the

DSHC method results in slightly bigher miss rates than the

more ad hoc APHC method. This is likely a result of the

strong independence assumptions embodied in the Dempster-
Shafer evidence combination function [15].

Our ESP method addresses these two disadvantages di-
rectly. Instead of relying on experts to think of heuristics

and to test them to determine if they are effective, our method

extracts features associated with predictable behavior automat-
ically. The ESP method also has disadvantages, as well. First,

a corpus of programs must be available. For our results in

Section 5, we initially had only 8 C programs to examine, Our
average, ESP prediction results for these 8 programs were the

same as the APHC and DSHC results, After we increased tbe
corpus of 8 C programs to 23 C programs, the average mispre-

diction rate for ESP was 5% lower than the average miss rates
for the APHC and DSHC techniques, Second, our approach

requires that the feature set be defined. Our results indicate

that having too much information does not degrade the ESP
predictions (we have not investigated the impact of not having
enough data in the feature set), Third, our current implemen-

tation of ESP requires that tbe neural net be trained. Such
training requires someone who understands neural nets fairly
well, probably at the level of a person who has taken a course
in neural nets. We envision that if the ESP approach becomes

sufficiently widespread, then took that facilitate such training
would be made available. We also note that preliminary re-
sults we have obtained using decision trees instead of neural
networks are comparable to the neural net results presented

here. Moreover, decision trees are easier to use and the knowl-
edge they encode can be automatically translated into simple
if-then rules.
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4 Evaluation Methods 5 Results

To perform our evaluation, we collected information from 43 C
and Fortran programs. During our study, we instrumented the

programs from the SPEC92 benchmark suite and other pro-
grams, including many from the Perfect Club [4] suite. We

used ATOM [20] to instntment the programs. Due to the strt~c-

ture of ATOM, we did not need to record traces and could trace

very long-running programs, The programs were compiled on

a DEC 3000-400 using the Alpha AXP-21064 processor using

either the DEC C or FORTRAN compilers. Most progra)ms
were compiled using the standard OSF/1 V 1.2 operating sys-

tems; other programs were compiled using different compilers

and different versions of the operating system. Most programs
were compiled with standard optimization (-O). Each program
was run once to collect information about branch frequency and

the percentage of “taken” branches. For the SPEC92 programs,
we used the largest input distributed with the SPEC!?2 suite,

Table 3 shows the basic statistics for the programs we

instrumented. The first column lists the number of instruc-

tions traced and the second column gives the percentage of

instructions that are conditional branches, The third COIUmn

gives the percentage of conditional branches that are taken,
The columns labeled ‘Q-50’, ‘Q-75’, ‘Q-90’, ‘Q-95’, ‘Q-99’,

and ‘Q-1 00’ show the number of branch instmction sites that
contribute 50, 75, 90, 95, 99 and 100% of all the executed

conditional branches in the program. The next column ‘Static’
shows the total number of conditional branch sites in each pro-
gram. Thus, in Alvinn, two branch instructions constitute over

90% of all executed branches and correctly predicting these
two conditional branches is very important.

The ATOM instrumentation tool provides a concrete rep-

resentation of the program, and we used this information to

construct a control flow graph. Using the control How graph,
we computed the dominator and post-dominator trees, Follow-

ing this, we determined the natural Ioop headers and applied
the same definition of natural loops used by Ball and Lams to

determine the loop bodies [3], We used ATOM to reproduce
the Ball and Larus APHC resuks, and to generate the static

feature sets with the corresponding branch probabilities whlich
are used to train the neural net for ESP,

For ESP, we did not use the information gathered about a
given program to predict the branches for that same program;

rather, we used a cross validation study. We took all of the
programs, except the one program for which we want to gather

prediction results and fed the corpus of programs into the tneu-
ral net. We then use the neural net’s branch probabilities to

predict branches for that program not inchtded in the corpus.

This provides a conservative estimate of how well ESP will

perform since we are predicting the behavior of a program
that the neural net has not seen, For the ESP results shown

in Section 5, we performed the cross validation breaking the
programs into two groups - C programs and FORTRAN pro-

grams. We performed cross validation feeding the feature sets
for 22 of the C programs at a time into the neural net, predicting

branches for the 23rd C program not included in initial 22. We
did the same for FORTRAN programs feeding into the neural

net the feature sets for 19 of the 20 programs in order to predict
branches for the 20th program.

We now compare the prediction accuracy of a priori heuris-
tic combination (APHC) branch prediction [3], the Dempster-

Shafer heuristic combination (DSHC) proposed by Wu and

Lanrs [22], and our ESP technique. Following this, we show

that the APHC and DSHC techniques are sensitive to differ-

ences in system architecture and compilers.

5.1 Comparison: APHC, DSHC and ESP

Table 4 shows the branch misprediction rate for the meth-
ods we implemented. The first column shows the results for
the BTFNT architecture, the second column shows the re-

sults for our implementation of the Ball and Lams heuristics,
and the third and fourth columns show the results when ap-
plying Dempster-Shafer to those heuristics. In implement-

ing DSHC, we use both the original prediction rates specified

in [3], DSHC(B&L), and the prediction rates produced by our

implementation, DSHC(Ours), Later, we compare the simi-

larity between these two sets of prediction heuristics as seen
in Table 6, The fifth column in Table 4 shows tbe results

for our ESP method and the last column shows the results
for the perfect static profile prediction. Table 4 reveals sev-

eral interesting points, First, the overall average shows that
the Dempster-Shafer method performs no better than the fixed

order of heuristics. Wu and Lanrs [22] said

When more than one heuristic applies to a branch,
combining the probabilities estimated by the ap-
plicable heuristics shouldproduce on overal[branch

probability that is more accurate than the individ-

ual probabilities.

However, there was no comparison to the earlier results of Ball
and Lams. In 6 cases (flex, sort, mdl j sp2, CSS,

NAS, TFS), the Dempster-Shafer method is more than 5%
worse than the simple APHC ordering, while the APHC or-

dering method is 5% worse in only three cases (wdi f f,

SDS, LWS). The intuition in [22] was correct; however, the

Dempster-Shafer theory does not combine the evidence well
enough to improve branch prediction, The ESP technique per-

forms significantly better than the Dempster-Shafer and the

APHC method in 15 cases ( burg, flex, gzip, indent,
od, perl, siod, sort, tex, wdiff, fpppp, su2cor,

tomcatv, LWS, and TIS), and has significantly worse per-

formance in only one case (mall-j sp2 ).

We feel that the ESP results maybe improved by expanding

the feature sets used. We used a limited number of “features”
in the feature set to distinguish branches, primarily using the

features described by Ball and Lams. To extend the set of
features, we need to determine what new features (e.g., infor-

mation from the control dependencegraph) we want to include,
capture that information during program instrumentation, and

pass those features to the neural net, This is a simple. process,
but we have only examined a small set of the possible features.

Rather than rely on intuition about the appropriate features
(e.g,. by using the Ball and Lartrs predictors), we should pro-
vide as much information to the neural network as possible and

let it decide the importance.
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94
12

63

34
3
7

132

357
262

26

69
79
67

220

36
344
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7
276

x
467

38

125
197
169

464

66
533

x

Q-1OO

753
1,348

802

1,204

910

342

1,065
433
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5,474
8,149

8,926

9,670
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Table 3: Measured attributes of the traced programs.
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Table 4: Comparison of using Heuristics in Ball and Lams ordering, Dempster-Shafer Theory and ESP. The first column shows the misprediction

rate of the BTFNT approach. The second column shows the miss rate for our implementation of the APHC method of Ball and Lams. We computed

the Dempster-Shafer miss rates, shown in column three, with the same values for the heuristics used by Wu and farm as well as the values we

computed, shown in column four, The fifth column is the miss rate for the ESP technique, while the last cohrmu is the miss rate for perfect static

profile prediction. In each case, smaller vahres are better.
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5.2 Cross-Architectural Study of A Priori Heuristics

In the paper by Ball and Lams [3], a number of prediction

heuristics were described. These heuristics were the founda-
tion for the prediction scheme in both the study by Ball and
Lams and the study by Wu and Lams. In the study by Wu

and Larus, the values given in [3] were used for the Dempster-

Shafer combination method, even though the study by Wu and
Lams used a different architecture, compiler and runtime sys-

tem. We wondered how sensitive these metrics were to differ-

ences in architecture, compiler, rrmtime system and selection

of programs.

We use the CFG, dominator, post-dominator and loop infor-

mation to implement the same heuristics in [3], summarized
in Table 1. Our implementation results for these heuristics

are shown in Table 5. This table shows detailed information
about how the branch heuristics performed for each program.

Some of the programs in our suite were also used in the ear-
lier study by Ball [3], and the values in parenthesis show the

equivalent metrics recorded in that study. In general, the val-
ues are quite similar, but there are some small differences that
we believe arise from different runtime libraries. For exam-
ple, a binary-buddy memory allocator would not contain any

loops, while a coalescing implementation may contain several
loops. These library routines are part of the native operating

system, and not part of the distributed benchmark suite. Note

that there are considerable differences, in the percentage of
non-loop branches, particularly in eqntott. Some of these
differences are caused by libraries and rrtntime systems, but
others can be attributed to architectural features. For example,

the Alpha has a “conditional move” operation that obliviates
the need for many short conditional branches, reducing the
number of conditional branches that are executed.

Table 5 further demonstrates that our implementation of the
heuristics listed in [3] appear to be correct. The loop miss rates
are roughly the same, the heuristics cover approximately the

same percentage of branches and the overall branch prediction

miss rates are similar. There are some differences, but after

some investigation, we have attributed most of these to different

architectures, operating systems and compilers.

Table 6 shows the comparison of the overall averages for
the heuristics comparing the Ball and Laros results on the

MIPS architecture to our results on the Alpha. This table also

shows the probablilites used in the DSHC results shown in

Table 4. The B&L miss rates were used for the DSHC(B&L)

probabilities and our Overall miss rates in Table 6 were used

for the DSHC(Ours) probabilities in Table 4.
We felt that the differences seen in Table 6 were to be

expected, because the two studies used a different collection
of programs with different compilers that implement differ-

ent optimizations for different architectures and used different
runtime libraries. Table 6 supports our position that at least
some of Ball and Larus heuristics are quite language dependent.
First, we point out that pointers are very rare in FORTRAN, and

as such the great success of the Pointer heuristic in FORTRAN
is of little consequence because it applies to very few branches,
Next, we see that while the Store heuristic appears successful
in our FORTRAN programs, it performs much worse in our

C programs. Conversely, the Loop Header heuristic performs
well in C programs, but poorly in FORTRAN programs. Over-
all, four of the nine heuristics show a difference of greater than

9Ncde27

LDT :0,0(R22)
FABS F8,F11
FABS F,?O,F1O

CMmLT FIO,F11,Fl 1
FBNE F1 1,Ncde30

/
b

c1’29
FMov F20.FS j z,

BIS R31.R21,R12
BIS R31,R7,R13 j

D
30

LDT F26,0(R20)
FABS F9,F28

FABS F26,F14
CMFTLT F14,F28,F28

FBNE F28,Ncde32

8’””
31

FMOV F26.FY \
BIS R31,R21,R14 :

BLS R31,R7,R15 :

:21

33
ADDL R7,#l,R7 :

CMPLE R7,R27,R26 :
BNE R26,Ncde34

; 21

&l&gigg;:l
BNE W, Ncde28

Figure 2: Sample code fragment from TOMCATV benchmark that

continues most of the branches in the program. The numbers on the

edges indicate the percentage of all edge transitions attributed to a

particular edge. The dotted edges indicate taken branches.

10% in their miss rates when our C and Fortran programs are
compared.

5.2.1 The Influence of Architectures

In certain cases, we had slightly different implementations of
heuristics than Ball and Lams because the Alpha architecture
did not allow us to implement the heuristics as originally stated.
For example, with respect to the Opcode heuristic, the Alpha
architecture has two types of branch instructions; one compares

floating point numbers to zero and the other integer numbers
to zero, The conditional branch instructions always compare
a register to zero. On the MIPS architecture, the “branch if
equal” (BEQ) and “branch if not-equal” (BNE) instructions
compares two registers, To accomplish the same task on the
Alpha, an earlier comparison must be made between the two
registers, and the resulting value is then compared to zero,
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Table 5: Results for the Promarn-Based Heuristic Atsoroaches. The first column lists the miss rate for looP branches. The second column shows. .
the percentage of non-loop branches. The. third column shows the dynamic percentage of non-loop branches that can ‘be predicted using one of

the heuristics, while the fourth colnmn shows the miss rate achieved when using those berrristics. For example, 80% of the non-loop branches in

compress can be predicted using some heuristic, and those heuristics have a 3870 miss rate. Branches that can not be predicted using the heuristics

are predicted using a uniform random distribution. The fifth column shows the prediction miss rate for the execution of all non-loop branches,

combining the predictions from the heuristics and the random predictions. Lastly, the sixth column lists the misprediction rate when both loop and

non-loop branches are included.
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Table6: Companion of Branch Miss Rates for Prediction Heuristics. These averages =forall theprograms wesimulated andaprogrmis

only included inaheuristic's average iftheheuristic applies toatlemt l%ofthe bmrschesintheprogram.

However, our implementation of the heuristics took these
factors into account, constructing an abstract syntax tree from

theprogram binary andusing that to determine the outcome
of the conditional branch. Clearly, determining this informa-

tionat compile time would simplify theanalysis, because we
could usemore information from the program. However, both
Ball and Larus [3] and our study used binary instrumentation,

so we felt that other factors must also contribute to the pre-
diction differences. Reexamined oneprogram for which the
Ball and Larus heuristics provided good prediction accuracy,

tomcatv in more detail, since our implementation of those
heuristics provided worse prediction accuracy (see Table 5).

On the Alpha, tomcatv spends 99% of its execution in one
procedure. Furthermore, most of the basic block transitions in

that procedure involve three basic blocks, shown in Figure 2.
The edge from block 32 a 28 is a loop back edge, and our

heuristics indicate this correctly, However, the remaining two
conditional branches only match the “guard” heuristic in the

heuristics described by Ball and Lams. However, their study
indicated that tomcatv benefited from the “store” heuristic,

which predicts that basic blocks with store instructions fol-
lowing a conditional branch are not taken. By comparison,

on the Alpha, none of the successors of block 28 (blocks 29
and 30) or block 30 (blocks 31 and 32) contain store instruc-

tions. This difference may be attributed to different register
scheduling or register saving conventions, requiring a store

on the MIPS, but not on the Alpha, The “guard’ heuristic
still applies, but predicts both branches in blocks 28 and 30
incorrectly.

5.2.2 The Influence of Compilers and Optimization

To further validate our belief that the choice of compilers in-
fluences the prediction accuracy of the various heuristics, we
compiled one program, espresso, with the following com-
pilers: cc on OSF/1 V1 .2, cc on OSF/I V2.0, the DEC GEM
C compiler and the Gnu C compiler. The results are shown
in Table 7. In terms of the overall miss rate, the compilers all
show different behavior. Also note that the DEC GEM C com-
piler produced significantly fewer loop branches, and resulted
in a program approximately 15% faster than the other compil-

ers. The GEM compiler unrolled one loop in the main routine,

inserting more forward branches and reducing the dynamic
frequency of loop edges.

This simple optimization changed the characteristics of the
branches in the program and the efficacy of the APHC branch

prediction technique. The difference caused by loop-unrolling
is significant if we want to use branch probabilities after tradi-
tional optimization have been applied, However, many pro-
grammers unroll loops “by hand’ and other programmers use

source-to-source restructuring tools, such as KAP or VAST.
The differences evinced by these applications may render the
fixed ordering of heuristics inappropriate for some programs.

Our validation study confirmed an underlying assumption
in our work: heuristic-based branch prediction rates vary with
programs, program style, compiler, architecture, and runtime

system. Rather than choosing a set of heuristics based on tbe
intuition of a few people, we have devised a program-based

prediction mechanism that can be adapted to the techniques,
style and mechanisms of different programmers, languages and

systems. Furthermore, the corpus-based approach means our
prediction technique can be customized to specific groups or

customers.

6 Summary

Branch prediction is very important in modem computer ar-

chitectures. In this paper, we investigate methods for static

program-based branch prediction, Such methods are impor-

tant because they do not require complex hardware or time-
consuming profiling. We propose a new, general approach

to program-based behavior estimation called evidence-based
static prediction (ESP), We then show how our general ap-

proach can be applied specifically to the problem of program-
based branch prediction. The main idea of ESP is that the
behavior of a corpus of programs can be used to infer the
behavior of new programs. In this paper, we use a neural net-
work to map static features associated with each branch to the

probability that the branch will be taken,

ESP has the following advantages over existing program-
based approaches to branch prediction. First, instead of being
based on heuristics, it is based on a corpus of information about

actual program behavior and structure, We have observed that
the effectiveness of heuristic approaches to branch prediction
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Program 0/s Compiler Loop Branches Non-Loop Branches Overall Perfect

Miss Rate ~ ettristic Miss Rate Miss Rate

Branches Miss Rate

mm~

Table7: Compdson of Accuracy ofhdiction Heuristics Using Dlffemnt Compilem

can be architecture, compiler, and language dependent. Thus,
ESP can be specialized easily to work with new and different

programming languages, compilers, computer architectures, or

runtime systems. Itisour hopethat itcaneven becurstomized
for specific application domains, or workgroups with a moclest

amount of effort.

Second, the ESP approach does not require careful consid-
eration when deciding what features to include in the training
data. The neural net we use is capable of ignoring information

that is irrelevant and such information does not degrade the per-
formance of the predicted branch probabilities. On the other
hand, with heuristic methods, tial-and-error is often required

to find heuristics that are effective.
Finally, we have shown that the ESP approach results

in branch prediction miss rates that are better than the best
program-based heuristic approaches, Over a collection of 43

C and Fortran programs, the overall miss rate of ESP branch
prediction was 20?10,which compares against the 25% miss rate

using a fixed ordering of the Ball and Lams heuristics (the best

heuristic method), and the overall 8% miss rate of the perfect

static-profile predictor.

We see many future directions to take with this work. Cur-
rently, the neural network we use not only provides a prediction
for each branch, but also provides its estimate of the bramcb

probability. If that probability is > so~. we estimate that the
branch will be taken. Our next goal will be to incorporate
this branch probability data to perform program-based profile
estimation using ESP. It is simple to add more “features” into

our training information; for example, we plan on indicating
branches in library subroutines, since that those subroutines

may have similar behavior across a number of programs. We

also plan to gather large bodies of programs in other pro-

gramming languages, such as C++ and Scheme, and evaluate
how ESP branch prediction works for those languages. We are

also interested in seeing how effective other classification tech-
niques, such as memory-based reasoning or decision trees, will
be for J3SP prediction, Finally, we are interested in comparing
the effectiveness of using ESP prediction techniques against

using profile-based methods across a range of optimization
problems,

We also see other possible uses of the ESP approach that

supplement profile-based prediction techniques. We expect
that organizations and workgroups might use their own pro-

grams to “train” the ESP system. They could then use program-

based information for most compilations, and useprofile-based
information for performance-critical compilations. Likewise,
computer vendors may provide several trained ESP predictors,

based on program type or language.

Acknowledgements

We would like to thank Alan Eustace and Amitabh Srivastava
for developing ATOM, and James Larus for motivating this

paper. Brad Calder was supported by an ARPA Fellowship
in High Performance Computing administered by the Institute

for Advanced Computer Studies, University of Maryland. This
work was funded in part by NSF grant No. ASC-9217394, NSF

grant No. CCR-9404669, ARPA contract ARMY DABT63-94-
C-0029 and a software grant from Digital Equipment Corp.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[it]

R. Alverson, D. Crdlahan, D, Cummings, B. Koblenz, A. Porter-
field, and B. Smith, The tera computer system. In hrrernational

Conference on Supercomputing, pages 1-6, June 1990.

Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy, and Ulrich

Kremer. A static performance estimator to guide data partitioning

decisions. In Third ACM S[GPL4N Symposium on Principles&
Practice of Parallel Programming, pages 213-223, July 1991.

Thomas Bsdl and James R. f.ants. !draach prediction for free. In

Proceedings of the S1GPL4N’93 Conference on Programming

Language Design and Implementation, pages 300-313, June
1993.

M. Berry. The Perfect Club Benchmarks: Effective performance
evaluation of supercomputers. The international Journal ojSu-

percomputerApplications, 3(3):.5-40, Fall 1989.

Brad Calder and Dirk Grunwald. Fast & accurate instruction fetch

and branch prediction. In 21s? Annual International Symposium
on Computer Architecture, pages 2-11. ACM, April 1994.

Brad Calder and Dirk Gmnwafd. Reducing branch costs via

branch alignment. In Six htrernational Conference on Archi-

tectural Support for Programming Languages and Operating

Systems, pages 242-251. ACM, 1994.

Brad Catder, Dirk Grunwald, and Benjamin Zom. Quantifying

behavioral differences between C and C++ programs. Journal of
Programming Languages, 2(4), 1995. Also available as Univer-
sity of Colorado Technical Report CU-CS-698-94.

P. P. Chang and W, W. Hwu. profile-guided automatic inline
expansion for C programs. Software Practice and Experience,

22(5):349-376, 1992,

P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile infor-

mation to assist classic compiIer code optimization. Softiare
Practice and Experience, 21 (12):1301–1 321,1991.

A. P. Dempster. A generalization of bayesian inference. Journal

of the Royal Statistical Society, 30:205–247, 1968.

J. A. Fisher and S. M. Frerrdenberger. Predicting conditional

branch dkections from previous runs of a program. In Pro-
ceedings of the F@h International Conference on Architectural

91



Support for Programming Languages and Operating Systems
(ASPLOS-V), pages 85-95, Boston, Mass., October 1992. ACM.

[12] Joseph A. Fisher. Tmce scheduling: A technique for global
microcode compaction. IEEE Transactions on Computers, C-

30(7):478-490, JUiy 1981.

[13] Wen-mei W. Hwu and Pohua P. Chang. Achieving high instruc-
tion cache performance with an optimizing compiler. In 16th An-
nual International Symposium on Computer Architecture, pages

242-251. ACM, 1989.

[14] Scott McFarling and John Hennessy. Reducing the cost of
branches. In 13th Annual International Sytnposiunr of Crmt-

purer Architecture, pages 396-403. Association for Computing
Machinery, 1986.

[15] Judea Pearl. Probabilistic Reasoning in Intelligent Syslerns: Net-
works of Plausible Inference. Morgan Kmrfmaan, San Mateo,
CA, 1988.

[16] D. E. Rumelhart, G. E. Hinton, and R J. Williams. Parallel dis-

tributedprocessing: .Erplorations in the microstructure of cogni-

tion. Volume I: Foundations, chapter f-earning internal represen-
tations by error propagation, pages 318-362. MIT Press/Bradford

Books, Cambridge, MA, 1986. D. E. Rumelhart and J. L. Mc-

Clelland, editors.

[17] G. Shafer. A Mathematical Theory of Evidence, Prhrceton Uni-
versity Press, Princeton, NJ, 1976.

[18] J. E. Smith. A study of branch prediction strategies. In 8th Annual
International Symposium of Computer Architecture, pages 135-

148. ACM, 1981.

[19] P. Smolensky, M. C. Mozer, and D. E. Rumelhast, editors. Math-

emaacal perspectives on neural networks. ErIbaum, t 994. In
press.

[20] Amitabh Srivastava and Alan Eustace. ATOM: A system for
building customized program analysis tools. In Proceedings of
the SIGPLAN’94 Conference on Programming Language Design

and lmplementatlon, pages 196-205, ACM, 1994,

[21] Tlm A. Wagner, Vance Maverick, Susan Graham, and Michael

Harrison. Accurate static estimators for program optimization,

In Proceedings of the SIGPL4N’94 Conference on Programming

Lunguage Design and Implementation, pages 85-96, Orlando,
Florida, June 1994. ACM.

[22] Youfeng Wu and James R, Lattrs. Static branch frequency and

program profile analysis, In 27th International Symposium on
Microarchitecture, San Jose, Ca, November 1994, IEEE.

[23] Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic branch
predictors that use two levels of branch history. In 20th Annual

JnternationalSymposium on Computer Architecture, pages 257-
266, San Diego, CA, May 1993. ACM.

92


