| Natural Language Processing |
| :---: |
| CSCI 5832 |
| Jim Martin |
| Lecture 17 |
| 3/3308 |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Probabilistic CFGS |
| :--- |
| - The probabilistic model |
| - Assigning probabilities to parse trees |
| - Getting the probabilities for the model |
| - Parsing with probabilities |
| - Slight modification to dynamic programming |
| approach |
| - Task is to find the max probability tree for an |
| input |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Basic Probability Model

- A derivation (tree) consists of the bag of grammar rules that are in the tree $\qquad$
- The probability of a tree is just the product of the probabilities of the rules in the derivation.

$$
P(T, S)=\prod_{\text {node } \in T} P(\text { rule }(n))
$$

3/13/08

## Probability Model (1.1)

$\qquad$

- The probability of a word sequence (sentence) is the probability of its tree in the unambiguous case.
- It's the sum of the probabilities of the trees in the ambiguous case.
- Since we can use the probability of the tree(s) as a proxy for the probability of the sentence...
- PCFGs give us an alternative to N-Gram models as a kind of language model.


## Getting the Probabilities

$\qquad$

- From an annotated database (a treebank)
- So for example, to get the probability for a particular VP rule just count all the times the rule is used and divide by the number of VPs overall.

$$
P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\sum_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)}=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

3/13/08
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Prob CKY

- Alter CKY so that the probabilities of constituents are stored on the way up...
- Probability of a new constituent A derived from the rule $A$-> $B C$ is:
- $P(A->B C) * P(B)$ * $P(C)$
- Where $P(B)$ and $P(C)$ are already in the table
- But what we store is the MAX probability over all the A rules. $\qquad$
$\qquad$



## Problems with PCFGs

- The probability model we're using is just based on the rules in the derivation...
- Doesn't use the words in any real way
- Doesn't take into account where in the derivation a rule is used
- Doesn't really work
- Most probable parse isn't usually the right one (the one in the treebank test set).
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Heads |
| :--- |
| - To do that we're going to make use of the |
| notion of the head of a phrase |
| - The head of an NP is its noun |
| - The head of a VP is its verb |
| - The head of a PP is its preposition |
| (It's really more complicated than that but this |
| will do.) |



## Declare Independence

- When stuck, exploit independence and collect the statistics you can...
- We'll focus on capturing two things
- Verb subcategorization
- Particular verbs have affinities for particular VPs
- Objects affinities for their predicates (mostly their mothers and grandmothers)
- Some objects fit better with some predicates than others

3/13/08
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Subcategorization |
| :--- |
| - Condition particular VP rules on their head... so |
| r15: VP -> V NP PP P(r\|VP) |
| Becomes |
| P(r15 \| VP ^ dumped) |
| What's the count? |
| How many times was this rule used with dump, divided |
| by the number of VPs that dump appears in total |

## Preferences

- Verb subcategorization captures the affinity between VP heads (verbs) and the VP rules they go with.
- That is the affinity between a node and one of its daughter nodes.
- What about the affinity between VP heads and the heads of the other daughters of the VP
- Back to our examples...

3/13/08


$\qquad$
$\qquad$
$\qquad$
$\qquad$


| Break |
| :--- | :--- |
| - Quiz |
| - Chapter 12: 12.1 through 12.6 |
| - CFGs, Major English phrase types, problems with CFGs, |
| relation to finite-state methods |
| - Chapter 13: All except 13.4.3 |
| - CKY, Earley, partial parsing, sequence labeling |
| - Chapter 14: 14.1 through14.6.1 |
| - Basic prob CFG model, getting the counts, prob CKY, |
| problems with the model, lexicalization, and grammar |
| rewriting |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Rule Rewriting

- An alternative to using these kinds of probabilistic lexical dependencies is to rewrite the grammar so that the rules do capture the regularities we want.
- By splitting and merging the non-terminals in the grammar.
- Example: split NPs into different classes...


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Rule Rewriting

$\square$

- Three approaches
- Use linguistic intuitions to directly rewrite rules - NP_Obj and the NP_Subj approach
- Automatically rewrite the rules using context to capture some of what we want
- le. Incorporate context into a context-free approach $\qquad$
- Search through the space of rewrites for the grammar that maximizes the probability of the training set

3/13/08

## Local Context Approach

$\qquad$

| - Condition the rules based on their parent |
| :--- |
|  |
| nodes |
| - This splitting based on tree-context captures |
| some of the linguistic intuitions |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Parent Annotation

|  |  |
| :---: | :---: |
|  |  |

- Now we have non-terminals NP^S and NP^VP that should capture the subject/object and pronoun/full NP cases.



## Auto Rewriting

- If this is such a good idea we may as well apply a learning approach to it.
- Start with a grammar (perhaps a treebank grammar)
- Search through the space of splits/merges for the grammar that in some sense maximizes parsing performance on the training/development set.

3/13/08

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Last Point

- Statistical parsers are getting quite good, but its still quite silly to expect them to come up with the correct parse given only statistically massage syntactic information. $\qquad$
- But its not so crazy to think that they can come up with the right parse among the top-N parses.
- Lots of current work on
- Re-ranking to make the top- N list even better.

3/13/08

## Evaluation

$\qquad$
$\qquad$

- So if it's unreasonable to expect these probabilistic parsers to get the right answer what can we expect from them and how do we measure it. $\qquad$
- Look at the content of the trees rather than the entire trees.
- Assuming that we have gold standard trees for test sentences $\qquad$
$\qquad$


## Evaluation

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$$
2
$$

Precision

- What fraction of the sub-trees in our parse matched corresponding sub-trees in the reference answer
- How much of what we're producing is right?
- Recall
- What fraction of the sub-trees in the reference answer did we actually get?
- How much of what we should have gotten did we get?

3/13/08

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

