
1

3/13/08 1

CSCI 5832
Natural Language Processing

Jim Martin
Lecture 17

3/13/08
2

Today 3/13

• Statistical Parsing

3/13/08
3

Example

2

3/13/08
4

Probabilistic CFGs

• The probabilistic model
 Assigning probabilities to parse trees

• Getting the probabilities for the model
• Parsing with probabilities

 Slight modification to dynamic programming
approach

 Task is to find the max probability tree for an
input

3/13/08
5

Basic Probability Model

• A derivation (tree) consists of the bag of
grammar rules that are in the tree

• The probability of a tree is just the product
of the probabilities of the rules in the
derivation.

3/13/08
6

Probability Model (1.1)

• The probability of a word sequence (sentence) is
the probability of its tree in the unambiguous
case.

• It’s the sum of the probabilities of the trees in the
ambiguous case.

• Since we can use the probability of the tree(s) as
a proxy for the probability of the sentence…
 PCFGs give us an alternative to N-Gram models as a

kind of language model.

3

3/13/08
7

Getting the Probabilities

• From an annotated database (a treebank)
 So for example, to get the probability for a

particular VP rule just count all the times the
rule is used and divide by the number of VPs
overall.

3/13/08
8

Prob CKY

• Alter CKY so that the probabilities of
constituents are stored on the way up…
 Probability of a new constituent A derived from

the rule A -> BC is:
 P(A-> B C) * P(B) * P(C)
 Where P(B) and P(C) are already in the table
 But what we store is the MAX probability over all the

A rules.

3/13/08
9

Prob CKY

4

3/13/08
10

Problems with PCFGs

• The probability model we’re using is just
based on the rules in the derivation…
 Doesn’t use the words in any real way
 Doesn’t take into account where in the

derivation a rule is used
 Doesn’t really work

 Most probable parse isn’t usually the right one (the
one in the treebank test set).

3/13/08
11

Solution 1

• Add lexical dependencies to the scheme…
 Infiltrate the predilections of particular words

into the probabilities in the derivation
 I.e. Condition the rule probabilities on the

actual words

3/13/08
12

Heads

• To do that we’re going to make use of the
notion of the head of a phrase
 The head of an NP is its noun
 The head of a VP is its verb
 The head of a PP is its preposition
(It’s really more complicated than that but this

will do.)

5

3/13/08
13

Example (right)

Attribute grammar

3/13/08
14

Example (wrong)

3/13/08
15

How?

• We used to have
 VP -> V NP PP P(rule|VP)

 That’s the count of this rule divided by the number
of VPs in a treebank

• Now we have
 VP(dumped)-> V(dumped) NP(sacks)PP(into)
 P(r|VP ^ dumped is the verb ^ sacks is the

head of the NP ^ into is the head of the PP)
 Not likely to have significant counts in any

treebank

6

3/13/08
16

Declare Independence

• When stuck, exploit independence and
collect the statistics you can…

• We’ll focus on capturing two things
 Verb subcategorization

 Particular verbs have affinities for particular VPs
 Objects affinities for their predicates (mostly

their mothers and grandmothers)
 Some objects fit better with some predicates than

others

3/13/08
17

Subcategorization

• Condition particular VP rules on their head… so
 r15: VP -> V NP PP P(r|VP)
Becomes

P(r15 | VP ^ dumped)

What’s the count?
How many times was this rule used with dump, divided

by the number of VPs that dump appears in total

3/13/08
18

Preferences

• Verb subcategorization captures the
affinity between VP heads (verbs) and the
VP rules they go with.
 That is the affinity between a node and one of

its daughter nodes.
• What about the affinity between VP heads

and the heads of the other daughters of
the VP

• Back to our examples…

7

3/13/08
19

Example (right)

3/13/08
20

Example (wrong)

3/13/08
21

Preferences

• The issue here is the attachment of the PP. So
the affinities we care about are the ones
between dumped and into vs. sacks and into.

• So count the places where dumped is the head
of a constituent that has a PP daughter with into
as its head and normalize

• Vs. the situation where sacks is a constituent
with into as the head of a PP daughter.

8

3/13/08
22

Preferences (2)

• Consider the VPs
 Ate spaghetti with gusto
 Ate spaghetti with marinara

• Here the heads of the PPs are the same (with) so that
won’t help.

• But the affinity of gusto for eat is much larger than its
affinity for spaghetti

• On the other hand, the affinity of marinara for spaghetti
is much higher than its affinity for ate (we hope).

3/13/08
23

Preferences (2)

• Note the relationship here is more
distant and doesn’t involve a headword
since gusto and marinara aren’t the
heads of the PPs.

Vp (ate) Vp(ate)

Vp(ate) Pp(with)
Pp(with)

Np(spag)

npvv
Ate spaghetti with marinaraAte spaghetti with gusto

np

3/13/08
24

Note

• In case someone hasn’t pointed this out
yet, this lexicalization stuff is a thinly veiled
attempt to incorporate semantics into the
syntactic parsing process…
 Duhh..,. Picking the right parse requires the

use of semantics.

9

3/13/08
25

Break

• Quiz
 Chapter 12: 12.1 through 12.6

 CFGs, Major English phrase types, problems with CFGs,
relation to finite-state methods

 Chapter 13: All except 13.4.3
 CKY, Earley, partial parsing, sequence labeling

 Chapter 14: 14.1 through14.6.1
 Basic prob CFG model, getting the counts, prob CKY,

problems with the model, lexicalization, and grammar
rewriting

• Bring a cheat sheet.

3/13/08
26

Rule Rewriting

• An alternative to using these kinds of
probabilistic lexical dependencies is to
rewrite the grammar so that the rules do
capture the regularities we want.
 By splitting and merging the non-terminals in

the grammar.
 Example: split NPs into different classes…

3/13/08
27

NPs

• Our CFG rules for NPs don’t condition on
where the rule is applied (they’re context-
free remember)

• But we know that not all the rules occur
with equal frequency in all contexts.

10

3/13/08
28

Other Examples

• Lots of other examples like this in the
TreeBank
 Many at the part of speech level
 Recall that many decisions made in

annotation efforts are directed towards
improving annotator agreement, not towards
doing the right thing.
 Often this involves conflating distinct classes into a

larger class
• TO, IN, Det, etc.

3/13/08
29

Rule Rewriting

• Three approaches
 Use linguistic intuitions to directly rewrite rules

 NP_Obj and the NP_Subj approach
 Automatically rewrite the rules using context

to capture some of what we want
 Ie. Incorporate context into a context-free approach

 Search through the space of rewrites for the
grammar that maximizes the probability of the
training set

3/13/08
30

Local Context Approach

• Condition the rules based on their parent
nodes
 This splitting based on tree-context captures

some of the linguistic intuitions

11

3/13/08
31

Parent Annotation

• Now we have non-terminals NP^S and NP^VP
that should capture the subject/object and
pronoun/full NP cases.

3/13/08
32

Parent Annotation

• Recall what’s going on here. We’re in effect rewriting the
treebank, thus rewriting the grammar.

• And changing the probabilities since they’re being
derived from different counts…
 And if we’re splitting what’s happening to the counts?

3/13/08
33

Auto Rewriting

• If this is such a good idea we may as well
apply a learning approach to it.

• Start with a grammar (perhaps a treebank
grammar)

• Search through the space of splits/merges
for the grammar that in some sense
maximizes parsing performance on the
training/development set.

12

3/13/08
34

Auto Rewriting

• Basic idea…
 Split every non-terminal into two new non-terminals

across the entire grammar (X becomes X1 and X2).
 Duplicate all the rules of the grammar that use X,

dividing the probability mass of the original rule
almost equally.

 Run EM to readjust the rule probabilities
 Perform a merge step to back off the splits that look

like they don’t really do any good.

3/13/08
35

Last Point

• Statistical parsers are getting quite good,
but its still quite silly to expect them to
come up with the correct parse given only
statistically massage syntactic information.

• But its not so crazy to think that they can
come up with the right parse among the
top-N parses.

• Lots of current work on
 Re-ranking to make the top-N list even better.

3/13/08
36

Evaluation

• So if it’s unreasonable to expect these
probabilistic parsers to get the right answer
what can we expect from them and how do
we measure it.

• Look at the content of the trees rather than
the entire trees.
 Assuming that we have gold standard trees for

test sentences

13

3/13/08
37

Evaluation

• Precision
 What fraction of the sub-trees in our parse

matched corresponding sub-trees in the
reference answer
 How much of what we’re producing is right?

• Recall
 What fraction of the sub-trees in the reference

answer did we actually get?
 How much of what we should have gotten did we

get?

3/13/08
38

Evaluation

• Crossing brackets

Parser hypothesis Reference answer

((A B) C) (A (B C))

3/13/08
39

Example

