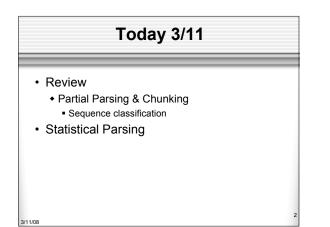
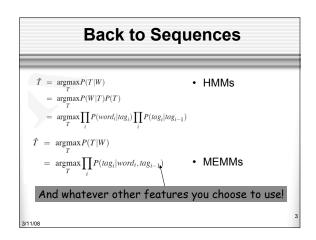
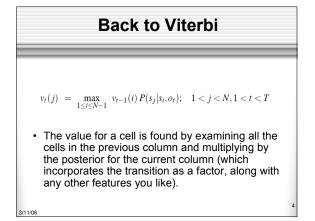
CSCI 5832 Natural Language Processing

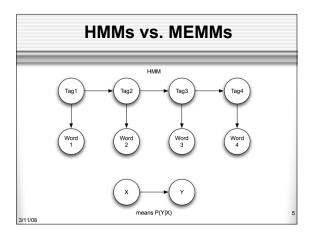
Jim Martin Lecture 16

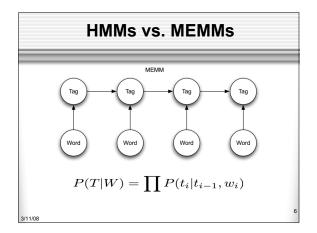
1

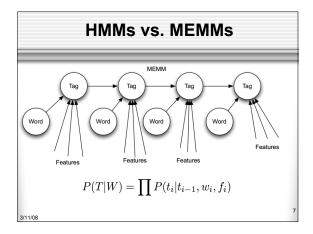






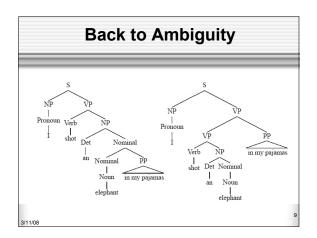






Dynamic Programming Parsing Approaches

- Earley
- Top-down, no filtering, no restriction on grammar form
 CYK
 - Bottom-up, no filtering, grammars restricted to Chomsky-Normal Form (CNF)
- Details are not important...
 - Bottom-up vs. top-down
 - With or without filters
 - With restrictions on grammar form or not



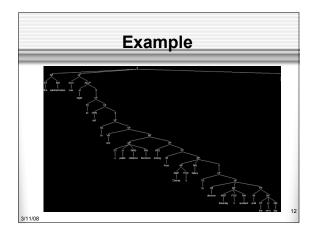
Disambiguation

- Of course, to get the joke we need both parses.
- But in general we'll assume that there's one right parse.
- To get that we need knowledge: world knowledge, knowledge of the writer, the context, etc...
- Or maybe not..

3/11/08

3/11/08

Disambiguation • Instead let's make some assumptions and see how well we do...



Probabilistic CFGs

- The probabilistic model
 - Assigning probabilities to parse trees
- Getting the probabilities for the model
- · Parsing with probabilities

3/11/08

3/11/08

- Slight modification to dynamic programming approach
- Task is to find the max probability tree for an input

Probability Model

Attach probabilities to grammar rules

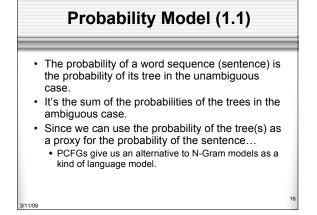
The expansions for a given non-terminal sum to 1
VP -> Verb 55
VP-> Verb NP .40
VP-> Verb NP NP .05

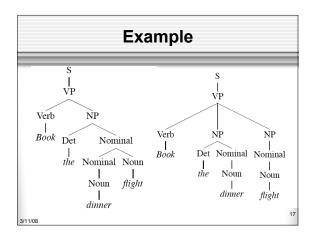
Read this as P(Specific rule | LHS)

Probability Model (1)

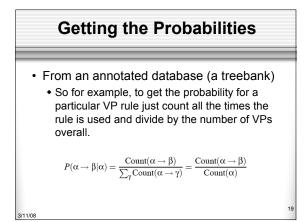
- A derivation (tree) consists of the bag of grammar rules that are in the tree
- The probability of a tree is just the product of the probabilities of the rules in the derivation.

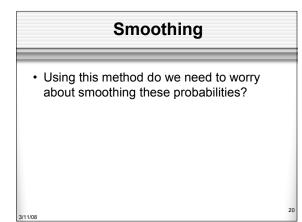
$$P(T,S) = \prod_{node \in T} P(rule(n))$$





Rule Probabilities								
	Rules		Р	Т	Rules			P
S	\rightarrow	VP	.05		S	\rightarrow	VP	.05
VP	\longrightarrow	Verb NP	.20		VP	\rightarrow	Verb NP NP	.10
NP	\rightarrow	Det Nominal	.20		NP	\rightarrow	Det Nominal	.20
Nominal	\rightarrow	Nominal Noun	.20		NP	\rightarrow	Nominal	.15
Nominal	\rightarrow	Noun	.75		Nominal	\rightarrow	Noun	.75
					Nominal	\rightarrow	Noun	.75
Verb	\rightarrow	book	.30		Verb	\rightarrow	book	.30
Det	\rightarrow	the	.60		Det	\rightarrow	the	.60
Noun	\rightarrow	dinner	.10		Noun	\rightarrow	dinner	.10
Noun	\rightarrow	flights	.40		Noun	\rightarrow	flights	.40
2.2 * 10 ⁻⁶					6.1 * 10 ⁻⁷			





Inside/Outside

- If we don't have a treebank, but we do have a grammar can we get reasonable probabilities?
- Yes. Use a prob parser to parse a large corpus and then get the counts as above.
- But
 - In the unambiguous case we're fine
 - In ambiguous cases, weight the counts of the rules by the probabilities of the trees they occur in.

Inside/Outside

• But...

3/11/08

3/11/08

3/11/08

- Where do those probabilities come from?
- Make them up. And then re-estimate them.

22

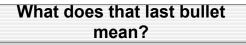
• This sounds a lot like

Assumptions

- We're assuming that there is a grammar to be used to parse with.
- We're assuming the existence of a large robust dictionary with parts of speech
- We're assuming the ability to parse (i.e. a parser)
- Given all that... we can parse probabilistically

Typical Approach

- Use CKY as the backbone of the algorithm
- Assign probabilities to constituents as they are completed and placed in the table
- Use the max probability for each constituent going up



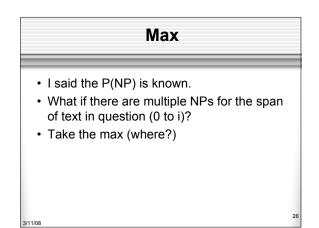
 Say we're talking about a final part of a parse
 S->₀NP_iVP_i

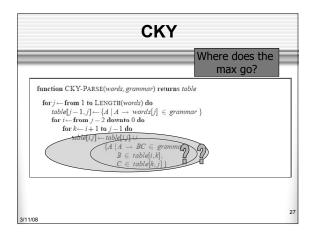
The probability of this S is... P(S->NP VP)*P(NP)*P(VP)

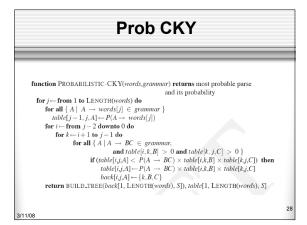
3/11/08

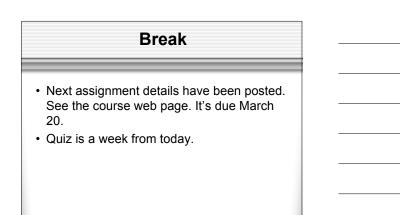
The green stuff is already known if we're using some kind of sensible DP approach.

25









Problems with PCFGs

- The probability model we're using is just based on the rules in the derivation...
 - Doesn't use the words in any real way
 - Doesn't take into account where in the derivation a rule is used
 - Doesn't really work (shhh)
 - Most probable parse isn't usually the right one (the one in the treebank test set).

Solution 1

- Add lexical dependencies to the scheme...
 - Integrate the preferences of particular words into the probabilities in the derivation
 - I.e. Condition the rule probabilities on the actual words

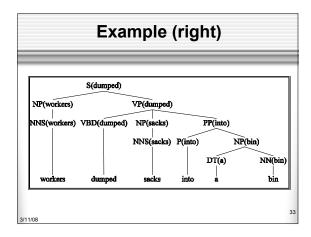
Heads

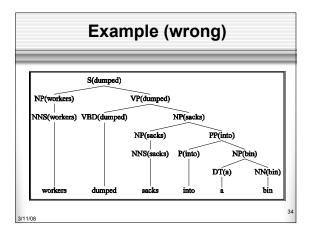
31

- To do that we're going to make use of the notion of the head of a phrase
 - The head of an NP is its noun
 - The head of a VP is its verb

3/11/08

- The head of a PP is its preposition
- (It's really more complicated than that but this will do.)







How?

- · We used to have
 - VP -> V NP PP P(rule|VP)
 - That's the count of this rule divided by the number of VPs in a treebank
- · Now we have
 - VP(dumped)-> V(dumped) NP(sacks)PP(in)
 - P(r|VP ^ dumped is the verb ^ sacks is the head of the NP ^ in is the head of the PP)
 - Not likely to have significant counts in any treebank

35

Declare Independence

- When stuck, exploit independence and collect the statistics you can...
- We'll focus on capturing two things
 Verb subcategorization
 - Particular verbs have affinities for particular VP rules
 - Objects affinities for their predicates (mostly their mothers and grandmothers)
 - Some objects fit better with some predicates than others

```
3/11/08
```

Subcategorization

Condition particular VP rules on their head... so
 r: VP -> V NP PP P(r|VP)
 Becomes
 P(r | VP ^ dumped)

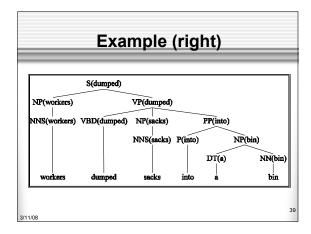
What's the count? How many times was this rule used with dump, divided by the number of VPs that dump appears in total

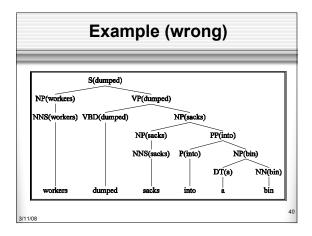
37

Preferences

- Subcat captures the affinity between VP heads (verbs) and the VP rules they go with.
- What about the affinity between VP heads and the heads of the other daughters of the VP
- Back to our examples...

3/11/08







Preferences

- The issue here is the attachment of the PP. So the affinities we care about are the ones between dumped and into vs. sacks and into.
- So count the places where dumped is the head of a constituent that has a PP daughter with into as its head and normalize
- Vs. the situation where sacks is a constituent with into as the head of a PP daughter.

Preferences (2)

- · Consider the VPs
 - Ate spaghetti with gusto
 - Ate spaghetti with marinara
- The affinity of gusto for eat is much larger than its affinity for spaghetti
- On the other hand, the affinity of marinara for spaghetti is much higher than its affinity for ate

3/11/08

