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CSCI 5832
Natural Language Processing

Jim Martin
Lecture 16
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Today 3/11

• Review
 Partial Parsing & Chunking

 Sequence classification

• Statistical Parsing
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Back to Sequences

• HMMs

• MEMMs

And whatever other features you choose to use!
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Back to Viterbi

• The value for a cell is found by examining all the
cells in the previous column and multiplying by
the posterior for the current column (which
incorporates the transition as a factor, along with
any other features you like).
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HMMs vs. MEMMs
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HMMs vs. MEMMs
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HMMs vs. MEMMs
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Dynamic Programming Parsing
Approaches

• Earley
 Top-down, no filtering, no restriction on grammar form

• CYK
 Bottom-up, no filtering, grammars restricted to

Chomsky-Normal Form (CNF)
• Details are not important...

 Bottom-up vs. top-down
 With or without filters
 With restrictions on grammar form or not

3/11/08
9

Back to Ambiguity
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Disambiguation

• Of course, to get the joke we need both
parses.

• But in general we’ll assume that there’s
one right parse.

• To get that we need knowledge: world
knowledge, knowledge of the writer, the
context, etc…

• Or maybe not..
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Disambiguation

• Instead let’s make some assumptions and
see how well we do…
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Example
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Probabilistic CFGs

• The probabilistic model
 Assigning probabilities to parse trees

• Getting the probabilities for the model
• Parsing with probabilities

 Slight modification to dynamic programming
approach

 Task is to find the max probability tree for an
input
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Probability Model

• Attach probabilities to grammar rules
• The expansions for a given non-terminal

sum to 1
VP -> Verb .55
VP-> Verb NP .40
VP-> Verb NP NP .05
 Read this as P(Specific rule | LHS)
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Probability Model (1)

• A derivation (tree) consists of the bag of
grammar rules that are in the tree

• The probability of a tree is just the product
of the probabilities of the rules in the
derivation.
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Probability Model (1.1)

• The probability of a word sequence (sentence) is
the probability of its tree in the unambiguous
case.

• It’s the sum of the probabilities of the trees in the
ambiguous case.

• Since we can use the probability of the tree(s) as
a proxy for the probability of the sentence…
 PCFGs give us an alternative to N-Gram models as a

kind of language model.
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Example
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Rule Probabilities

2.2 * 10-6 6.1 * 10-7



7

3/11/08
19

Getting the Probabilities

• From an annotated database (a treebank)
 So for example, to get the probability for a

particular VP rule just count all the times the
rule is used and divide by the number of VPs
overall.
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Smoothing

• Using this method do we need to worry
about smoothing these probabilities?
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Inside/Outside

• If we don’t have a treebank, but we do have a
grammar can we get reasonable
probabilities?

• Yes. Use a prob parser to parse a large
corpus and then get the counts as above.

• But
 In the unambiguous case we’re fine
 In ambiguous cases, weight the counts of the rules

by the probabilities of the trees they occur in.
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Inside/Outside

• But…
• Where do those probabilities come from?
• Make them up. And then re-estimate them.
• This sounds a lot like….
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Assumptions

• We’re assuming that there is a grammar to
be used to parse with.

• We’re assuming the existence of a large
robust dictionary with parts of speech

• We’re assuming the ability to parse (i.e. a
parser)

• Given all that… we can parse
probabilistically

3/11/08
24

Typical Approach

• Use CKY as the backbone of the algorithm
• Assign probabilities to constituents as they

are completed and placed in the table
• Use the max probability for each

constituent going up
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What does that last bullet
mean?

• Say we’re talking about a final part of a
parse
 S->0NPiVPj

The probability of this S is…
P(S->NP VP)*P(NP)*P(VP)

The green stuff is already known if we’re using
some kind of sensible DP approach.
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Max

• I said the P(NP) is known.
• What if there are multiple NPs for the span

of text in question (0 to i)?
• Take the max (where?)
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CKY
Where does the 

max go?
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Prob CKY
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Break

• Next assignment details have been posted.
See the course web page. It’s due March
20.

• Quiz is a week from today.
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Problems with PCFGs

• The probability model we’re using is just
based on the rules in the derivation…
 Doesn’t use the words in any real way
 Doesn’t take into account where in the

derivation a rule is used
 Doesn’t really work  (shhh)

 Most probable parse isn’t usually the right one (the
one in the treebank test set).
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Solution 1

• Add lexical dependencies to the scheme…
 Integrate the preferences of particular words

into the probabilities in the derivation
 I.e. Condition the rule probabilities on the

actual words
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Heads

• To do that we’re going to make use of the
notion of the head of a phrase
 The head of an NP is its noun
 The head of a VP is its verb
 The head of a PP is its preposition
(It’s really more complicated than that but this

will do.)
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Example (right)
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Example (wrong)
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How?

• We used to have
 VP -> V NP PP P(rule|VP)

 That’s the count of this rule divided by the number
of VPs in a treebank

• Now we have
 VP(dumped)-> V(dumped) NP(sacks)PP(in)
 P(r|VP ^ dumped is the verb ^ sacks is the

head of the NP ^ in is the head of the PP)
 Not likely to have significant counts in any

treebank
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Declare Independence

• When stuck, exploit independence and
collect the statistics you can…

• We’ll focus on capturing two things
 Verb subcategorization

 Particular verbs have affinities for particular VP
rules

 Objects affinities for their predicates (mostly
their mothers and grandmothers)
 Some objects fit better with some predicates than

others
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Subcategorization

• Condition particular VP rules on their head… so
 r:  VP -> V NP PP  P(r|VP)
Becomes

P(r | VP ^ dumped)

What’s the count?
How many times was this rule used with dump, divided

by the number of VPs that dump appears in total
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Preferences

• Subcat captures the affinity between VP
heads (verbs) and the VP rules they go
with.

• What about the affinity between VP heads
and the heads of the other daughters of
the VP

• Back to our examples…
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Example (right)
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Example (wrong)
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Preferences

• The issue here is the attachment of the PP. So
the affinities we care about are the ones
between dumped and into vs. sacks and into.

• So count the places where dumped is the head
of a constituent that has a PP daughter with into
as its head and normalize

• Vs. the situation where sacks is a constituent
with into as the head of a PP daughter.
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Preferences (2)

• Consider the VPs
 Ate spaghetti with gusto
 Ate spaghetti with marinara

• The affinity of gusto for eat is much larger than
its affinity for spaghetti

• On the other hand, the affinity of marinara for
spaghetti is much higher than its affinity for ate
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Preferences (2)

• Note the relationship here is more
distant and doesn’t involve a headword
since gusto and marinara aren’t the
heads of the PPs.

Vp (ate) Vp(ate)

Vp(ate) Pp(with)
Pp(with)

Np(spag)

npvv
Ate spaghetti with marinaraAte spaghetti with gusto

np
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Next Time

• Finish up 14
 Rule re-writing approaches
 Evaluation


