
\qquad
\qquad
\qquad
\qquad

Today 3/11

- Review
- Partial Parsing \& Chunking
- Sequence classification
- Statistical Parsing

Back to Viterbi

"

$$
v_{t}(j)=\max _{1 \leq i \leq N-1} v_{t-1}(i) P\left(s_{j} \mid s_{i}, o_{t}\right) ; \quad 1<j<N, 1<t<T
$$

- The value for a cell is found by examining all the cells in the previous column and multiplying by the posterior for the current column (which incorporates the transition as a factor, along with any other features you like)

HMMs vs. MEMMs

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dynamic Programming Parsing Approaches

=

- Earley
- Top-down, no filtering, no restriction on grammar form
- CYK
- Bottom-up, no filtering, grammars restricted to Chomsky-Normal Form (CNF)
- Details are not important...
- Bottom-up vs. top-down
- With or without filters
- With restrictions on grammar form or not

Disambiguation

- Of course, to get the joke we need both parses.
- But in general we'll assume that there's one right parse.
- To get that we need knowledge: world knowledge, knowledge of the writer, the context, etc...
- Or maybe not.
$3 / 1108$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Disambiguation

- Instead let's make some assumptions and
see how well we do...
11108

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Probability Model

- Attach probabilities to grammar rules
- The expansions for a given non-terminal sum to 1
VP -> Verb . 55
VP-> Verb NP . 40
VP-> Verb NP NP . 05
- Read this as P(Specific rule | LHS)

3/11/08

Probability Model (1)

(2)

- A derivation (tree) consists of the bag of grammar rules that are in the tree
- The probability of a tree is just the product of the probabilities of the rules in the derivation.

$$
P(T, S)=\prod_{\text {node } \in T} P(\text { rule }(n))
$$

3/11/08

Probability Model (1.1)

- The probability of a word sequence (sentence) is the probability of its tree in the unambiguous case.
- It's the sum of the probabilities of the trees in the ambiguous case.
- Since we can use the probability of the tree(s) as a proxy for the probability of the sentence...
- PCFGs give us an alternative to N-Gram models as a kind of language model.

Rule Probabilities

	Rules	P		Rules	P
S	\rightarrow VP	. 05	S	\rightarrow VP	05
VP	\rightarrow Verb NP	. 20	VP	\rightarrow Verb NP NP	. 10
NP	\rightarrow Det Nominal	. 20	NP	\rightarrow Det Nominal	. 20
Nominal	\rightarrow Nominal Noun	. 20	NP	\rightarrow Nominal	. 15
Nominal	\rightarrow Noun	. 75	Nominal	\rightarrow Noun	. 75
			Nominal	\rightarrow Noun	. 75
Verb	\rightarrow book	. 30	Verb	\rightarrow book	. 30
Det	\rightarrow the	. 60	Det	\rightarrow the	. 60
Noun	\rightarrow dimner	. 10	Noun	\rightarrow dimner	. 10
Noun	\rightarrow flights	. 40	Noun	\rightarrow flights	. 40
	2.2 * 10^{-6}			* 10^{-7}	
3/11/08					

Getting the Probabilities

\qquad \square

- From an annotated database (a treebank)
- So for example, to get the probability for a particular VP rule just count all the times the rule is used and divide by the number of VPs overall.

$$
P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\sum_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)}=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Smoothing

11108

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Inside/Outside

- If we don't have a treebank, but we do have a grammar can we get reasonable \qquad probabilities?
- Yes. Use a prob parser to parse a large \qquad corpus and then get the counts as above.
- But \qquad
- In the unambiguous case we're fine
- In ambiguous cases, weight the counts of the rules by the probabilities of the trees they occur in.
\qquad
\qquad

Inside/Outside
- But...
- Where do those probabilities come from?
- Make them up. And then re-estimate them.
- This sounds a lot like....
11108

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Assumptions

- We're assuming that there is a grammar to be used to parse with.
- We're assuming the existence of a large robust dictionary with parts of speech
- We're assuming the ability to parse (i.e. a parser)
- Given all that... we can parse probabilistically

Typical Approach

- Use CKY as the backbone of the algorithm
- Assign probabilities to constituents as they are completed and placed in the table
- Use the max probability for each constituent going up
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What does that last bullet

 mean?- Say we're talking about a final part of a parse
- $\mathrm{S}->_{0} \mathrm{NP}_{\mathrm{i}} \mathrm{VP}_{\mathrm{j}}$

The probability of this S is...
P(S->NP VP)*P(NP)*P(VP)
The green stuff is already known if we're using some kind of sensible DP approach.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Max
- I said the $\mathrm{P}(\mathrm{NP})$ is known.
- What if there are multiple NPs for the span
of text in question (0 to i)?
- Take the max (where?)
31108

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Break
- Next assignment details have been posted.
See the course web page. It's due March
20.
- Quiz is a week from today.

Problems with PCFGs

- The probability model we're using is just based on the rules in the derivation... \qquad
- Doesn't use the words in any real way
- Doesn't take into account where in the derivation a rule is used
- Doesn't really work (shhh)
- Most probable parse isn't usually the right one (the one in the treebank test set).
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How?

2.2 .2

- We used to have
- VP -> V NP PP

P(rule|VP)

- That's the count of this rule divided by the number of VPs in a treebank
- Now we have
- VP(dumped)-> V(dumped) NP(sacks)PP(in)
- $\mathrm{P}\left(\mathrm{r} \mid \mathrm{VP}{ }^{\wedge}\right.$ dumped is the verb ^ sacks is the head of the $N P^{\wedge}$ in is the head of the PP)
- Not likely to have significant counts in any treebank

3/11/08

Declare Independence

- When stuck, exploit independence and collect the statistics you can.. \qquad
- We'll focus on capturing two things
- Verb subcategorization
- Particular verbs have affinities for particular VP rules
- Objects affinities for their predicates (mostly their mothers and grandmothers)
- Some objects fit better with some predicates than others

3/11/08
\square

- Condition particular VP rules on their head... so
r: VP -> V NP PP P(r|VP)
Becomes
$\mathrm{P}\left(\mathrm{r} \mid \mathrm{VP} \mathrm{A}^{\wedge}\right.$ dumped)
What's the count?
How many times was this rule used with dump, divided by the number of VPs that dump appears in total
3/11/08
\qquad
\qquad

Preferences

- Subcat captures the affinity between VP heads (verbs) and the VP rules they go with.
- What about the affinity between VP heads and the heads of the other daughters of the VP \qquad
- Back to our examples... \qquad
\qquad

Example (right)

Preferences

- The issue here is the attachment of the PP. So the affinities we care about are the ones between dumped and into vs. sacks and into.
- So count the places where dumped is the head of a constituent that has a PP daughter with into as its head and normalize
- Vs. the situation where sacks is a constituent with into as the head of a PP daughter.

Preferences (2)
- Consider the VPs
- Ate spaghetti with gusto
- Ate spaghetti with marinara
- The affinity of gusto for eat is much larger than
its affinity for spaghetti
- On the other hand, the affinity of marinara for
spaghetti is much higher than its affinity for ate

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Next Time
• Finish up 14
• Rule re-writing approaches
• Evaluation
31108

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

