
1

2/28/08 1

CSCI 5832
Natural Language Processing

Jim Martin
Lecture 13

2/28/08
2

Today 2/28

• Finish Grammars
 Treebanks

• Parsing

2/28/08
3

Grammars

• Before you can parse you need a grammar.
• So where do grammars come from?

 Grammar Engineering
 Lovingly hand-crafted decades-long efforts by humans to write

grammars (typically in some particular grammar formalism of interest
to the linguists developing the grammar).

 TreeBanks
 Semi-automatically generated sets of parse trees for the sentences in

some corpus. Typically in a generic lowest common denominator
formalism (of no particular interest to any modern linguist).

2

2/28/08
4

TreeBank Grammars

• Reading off the grammar…
• The grammar is the set of rules (local

subtrees) that occur in the annotated
corpus

• They tend to avoid recursion (and
elegance and parsimony)
 Ie. they tend to the flat and redundant

• Penn TreeBank (III) has about 17500
grammar rules under this definition.

2/28/08
5

TreeBanks

2/28/08
6

TreeBanks

3

2/28/08
7

Sample Rules

2/28/08
8

Example

2/28/08
9

TreeBanks

• TreeBanks provide a grammar (of a sort).
• As we’ll see they also provide the training data for various ML

approaches to parsing.
• But they can also provide useful data for more purely linguistic

pursuits.
 You might have a theory about whether or not something can happen

in particular language.
 Or a theory about the contexts in which something can happen.
 TreeBanks can give you the means to explore those theories. If you

can formulate the questions in the right way and get the data you
need.

4

2/28/08
10

Tgrep

• You might for example like to grep through
a file filled with trees.

2/28/08
11

TreeBanks

• Finally, you should have noted a bit of a
circular argument here.

• Treebanks provide a grammar because
we can read the rules of the grammar out
of the treebank.

• But how did the trees get in there in the
first place? There must have been a
grammar theory in there someplace…

2/28/08
12

TreeBanks

• Typically, not all of the sentences are
hand-annotated by humans.

• They’re automatically parsed and then
hand-corrected.

5

2/28/08
13

Parsing

• Parsing with CFGs refers to the task of
assigning correct trees to input strings

• Correct here means a tree that covers all
and only the elements of the input and has
an S at the top

• It doesn’t actually mean that the system
can select the correct tree from among all
the possible trees

2/28/08
14

Parsing

• As with everything of interest, parsing
involves a search which involves the
making of choices

• We’ll start with some basic (meaning bad)
methods before moving on to the one or
two that you need to know

2/28/08
15

For Now

• Assume…
 You have all the words already in some buffer
 The input isn’t POS tagged
 We won’t worry about morphological analysis
 All the words are known

6

2/28/08
16

Top-Down Parsing

• Since we’re trying to find trees rooted with
an S (Sentences) start with the rules that
give us an S.

• Then work your way down from there to
the words.

2/28/08
17

Top Down Space

2/28/08
18

Bottom-Up Parsing

• Of course, we also want trees that cover
the input words. So start with trees that
link up with the words in the right way.

• Then work your way up from there.

7

2/28/08
19

Bottom-Up Space

2/28/08
20

Bottom Up Space

2/28/08
21

Control

• Of course, in both cases we left out how to
keep track of the search space and how to
make choices
 Which node to try to expand next
 Which grammar rule to use to expand a node

8

2/28/08
22

Top-Down and Bottom-Up

• Top-down
 Only searches for trees that can be answers

(i.e. S’s)
 But also suggests trees that are not consistent

with any of the words
• Bottom-up

 Only forms trees consistent with the words
 But suggest trees that make no sense globally

2/28/08
23

Problems

• Even with the best filtering, backtracking
methods are doomed if they don’t
address certain problems
 Ambiguity
 Shared subproblems

2/28/08
24

Ambiguity

9

2/28/08
25

Shared Sub-Problems

• No matter what kind of search (top-down
or bottom-up or mixed) that we choose.
 We don’t want to unnecessarily redo work

we’ve already done.

2/28/08
26

Shared Sub-Problems

• Consider
 A flight from Indianapolis to Houston on TWA

2/28/08
27

Shared Sub-Problems

• Assume a top-down parse making bad
initial choices on the Nominal rule.

• In particular…
 Nominal -> Nominal Noun
 Nominal -> Nominal PP

10

2/28/08
28

Shared Sub-Problems

2/28/08
29

Shared Sub-Problems

2/28/08
30

Shared Sub-Problems

11

2/28/08
31

Shared Sub-Problems

2/28/08
32

Break

• Next quiz will be pushed back...
• Readings for this section will be from

 Chapters 12, 13, 14

2/28/08
33

Parsing

• We’re going to cover from Chapter 13
 CKY (today)
 Earley (Thursday)

• Both are dynamic programming solutions
that run in O(n**3) time.
 CKY is bottom-up
 Earley is top-down

12

2/28/08
34

Sample Grammar

2/28/08
35

Dynamic Programming

• DP methods fill tables with partial results
and
 Do not do too much avoidable repeated work
 Solve exponential problems in polynomial

time (sort of)
 Efficiently store ambiguous structures with

shared sub-parts.

2/28/08
36

CKY Parsing

• First we’ll limit our grammar to epsilon-
free, binary rules (more later)

• Consider the rule A -> BC
 If there is an A in the input then there must

be a B followed by a C in the input.
 If the A spans from i to j in the input then

there must be some k st. i<k<j
 Ie. The B splits from the C someplace.

13

2/28/08
37

CKY

• So let’s build a table so that an A spanning
from i to j in the input is placed in cell [i,j] in
the table.

• So a non-terminal spanning an entire
string will sit in cell [0, n]

• If we build the table bottom up we’ll know
that the parts of the A must go from i to k
and from k to j

2/28/08
38

CKY

• Meaning that for a rule like A -> B C we
should look for a B in [i,k] and a C in [k,j].

• In other words, if we think there might be
an A spanning i,j in the input… AND

• A -> B C is a rule in the grammar THEN
• There must be a B in [i,k] and a C in [k,j]

for some i<k<j

2/28/08
39

CKY

• So to fill the table loop over the cell[i,j]
values in some systematic way
 What constraint should we put on that?

 For each cell loop over the appropriate k
values to search for things to add.

14

2/28/08
40

CKY Table

2/28/08
41

CKY Algorithm

2/28/08
42

CKY Parsing

• Is that really a parser?

15

2/28/08
43

Note

• We arranged the loops to fill the table a
column at a time, from left to right, bottom
to top.
 This assures us that whenever we’re filling a

cell, the parts needed to fill it are already in
the table (to the left and below)

2/28/08
44

Example

2/28/08
45

Other Ways to Do It?

• Are there any other sensible ways to fill
the table that still guarantee that the cells
we need are already filled?

16

2/28/08
46

Other Ways to Do It?

2/28/08
47

Sample Grammar

2/28/08
48

Problem

• What if your grammar isn’t binary?
 As in the case of the TreeBank grammar?

• Convert it to binary… any arbitrary CFG can
be rewritten into Chomsky-Normal Form
automatically.

• What does this mean?
 The resulting grammar accepts (and rejects) the

same set of strings as the original grammar.
 But the resulting derivations (trees) are different.

17

2/28/08
49

Problem

• More specifically, rules have to be of the
form
A -> B C
Or
A -> w

That is rules can expand to either 2 non-
terminals or to a single terminal.

2/28/08
50

Binarization Intuition

• Eliminate chains of unit productions.
• Introduce new intermediate non-terminals into the

grammar that distribute rules with length > 2 over
several rules. So…
S -> A B C

 Turns into
S -> X C
X - A B

Where X is a symbol that doesn’t occur anywhere else in the the
grammar.

2/28/08
51

CNF Conversion

18

2/28/08
52

CKY Algorithm

2/28/08
53

Example

Filling column 5

2/28/08
54

Example

19

2/28/08
55

Example

2/28/08
56

Example

2/28/08
57

Example

