
\qquad
\qquad
\qquad

Today 2/21
"
\qquad

- Review HMMs
- EM Example
- Syntax
- Context-Free Grammars

Review
- Parts of Speech
- Basic syntactic/morphological categories that
words belong to
- Part of Speech tagging
- Assigning parts of speech to all the words in a
sentence

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Urns and Balls

- Let's assume the input (observables) is Blue Blue Red (BBR)
- Since both urns contain red and blue balls any path through this machine could produce this output

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Urns and Balls

Viterbi: Says 111 is the most likely state sequence	
111	$(0.9 * 0.3)^{*}(0.6 * 0.3) *(0.6 * 0.7)=0.0204$
112	$(0.9 * 0.3)^{*}(0.6 * 0.3)^{*}(0.4 * 0.4)=0.0077$
121	$\left(0.9^{*} 0.3\right)^{*}\left(0.4^{*} 0.6\right) *\left(0.3^{*} 0.7\right)=0.0136$
122	$(0.9 * 0.3)^{*}(0.4 * 0.6) *(0.7 * 0.4)=0.0181$
211	$(0.1 * 0.6)^{*}\left(0.3^{*} 0.7\right)^{*}(0.6 * 0.7)=0.0052$
212	$(0.1 * 0.6)^{*}\left(0.3^{*} 0.7\right)^{*}(0.4 * 0.4)=0.0020$
221	$(0.1 * 0.6) *(0.7 * 0.6) *(0.3 * 0.7)=0.0052$
222	$(0.1 * 0.6)^{*}(0.7 * 0.6)^{*}(0.7 * 0.4)=0.0070$

Urns and Balls	
Forward: $\mathrm{P}(\mathrm{BBR} \mid$ model $)=.0792 \quad \sum$	
111	$(0.9 * 0.3)^{*}(0.6 * 0.3) *(0.6 * 0.7)=0.0204$
112	$(0.9 * 0.3)^{*}(0.6 * 0.3)^{*}(0.4 * 0.4)=0.0077$
121	$(0.9 * 0.3)^{*}(0.4 * 0.6)^{*}(0.3 * 0.7)=0.0136$
122	$(0.9 * 0.3)^{*}(0.4 * 0.6)^{*}(0.7 * 0.4)=0.0181$
211	$(0.1 * 0.6)^{*}(0.3 * 0.7)^{*}(0.6 * 0.7)=0.0052$
212	$(0.1 * 0.6)^{*}(0.3 * 0.7)^{*}(0.4 * 0.4)=0.0020$
221	$(0.1 * 0.6)^{*}(0.7 * 0.6)^{*}(0.3 * 0.7)=0.0052$
222	$(0.1 * 0.6)^{*}(0.7 * 0.6)^{*}(0.7 * 0.4)=0.0070$
2/28/08	

UrnS and Balls
• EM
• What if I told you I lied about the numbers in
the model (Priors,A,B). I just made them up.
- Can I get better numbers just from the input
sequence?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Urns and Balls
- Yup
- Just count up and prorate the number of times
a given transition is traversed while
processing the observations inputs.
-Then use that count to re-estimate the
transition probability for that transition
2 22008

Urns and Balls

- But... we just saw that don't know the actual path the input took, its hidden!
- So prorate the counts from all the possible paths based on the path probabilities the model gives you
- But you said the numbers were wrong
- Doesn't matter; use the original numbers then replace the old ones with the new ones.

2a808

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Urns and Balls	
Blue Blue Red	
111	$(0.9 * 0.3)^{*}(0.6 * 0.3)^{*}\left(0.6^{*} 0.7\right)=0.0204$
112	$(0.9 * 0.3)^{*}\left(0.6^{*} 0.3\right)^{*}\left(0.4^{*} 0.4\right)=0.0077$
121	$\left(0.9^{*} 0.3\right)^{*}\left(0.4^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)=0.0136$
122	$(0.9 * 0.3)^{*}\left(0.4^{*} 0.6\right)^{*}\left(0.7^{*} 0.4\right)=0.0181$
211	$(0.1 * 0.6)^{*}\left(0.3^{*} 0.7\right)^{*}\left(0.6^{*} 0.7\right)=0.0052$
212	$(0.1 * 0.6)^{*}\left(0.3^{*} 0.7\right)^{*}\left(0.4^{*} 0.4\right)=0.0020$
221	$(0.1 * 0.6)^{*}\left(0.7^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)=0.0052$
222	$\left(0.1^{*} 0.6\right)^{*}\left(0.7^{*} 0.6\right)^{*}\left(0.7^{*} 0.4\right)=0.0070$
228808	

Urns and Balls

- That's
- (.0077*1)+(.0136*1)+(.0181*1)+(.0020*1) \qquad
$=.0414$
- Of course, that's not a probability, it needs to be divided by the probability of leaving Urn 1 total.
- There's only one other way out of Urn 1 (going back to urn1)
- So let's reestimate Urn1-> Urn1

2/28/08
Let's re-estimate the Urn1->Urn1 transition
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Urns and Balls	
Blue Blue Red	
111	$(0.9 * 0.3)^{*}\left(0.6^{*} 0.3\right)^{*}\left(0.6^{*} 0.7\right)=0.0204$
112	$(0.9 * 0.3)^{*}(0.6 * 0.3)^{*}\left(0.4^{*} 0.4\right)=0.0077$
121	$(0.9 * 0.3)^{*}\left(0.4^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)=0.0136$
122	$\left(0.9^{*} 0.3\right)^{*}\left(0.4^{*} 0.6\right)^{*}\left(0.7^{*} 0.4\right)=0.0181$
211	$\left(0.1^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)^{*}\left(0.6^{*} 0.7\right)=0.0052$
212	$(0.1 * 0.6)^{*}\left(0.3^{*} 0.7\right)^{*}\left(0.4^{*} 0.4\right)=0.0020$
221	$(0.1 * 0.6)^{*}\left(0.7^{*} 0.6\right)^{*}\left(0.3^{*} 0.7\right)=0.0052$
222	$\left(0.1^{*} 0.6\right)^{*}\left(0.7^{*} 0.6\right)^{*}\left(0.7^{*} 0.4\right)=0.0070$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Urns and Balls
- That's just
• (2*.0204)+(1*.0077)+(1*.0052) $=.0537$
- Again not what we need but we're closer...
we just need to normalize using those two
numbers.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Urns and Balls
- The $1->2$ transition probability is
$.0414 /(.0414+.0537)=0.435$
- The $1->1$ transition probability is
$.0537 /(.0414+.0537)=0.565$
- So in re-estimation the $1->2$ transition
went from .4 to .435 and the $1->1$
transition went from .6 to .565

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EM Re-estimation

- As with Problems 1 and 2, you wouldn't actually compute it this way. The ForwardBackward algorithm re-estimates these numbers in the same dynamic programming way that Viterbi and Forward do.

EM Re-estimation

- With a long enough training string, completely random initial model parameters will converge to the right parameters
- In real systems, you try to get the initial model parameters as close to correct as possible
- Then you use a small amount of training material to home in on the right parameters
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Syntax

\square
\qquad

- By syntax (or grammar) I mean the kind of implicit knowledge of your native language
\qquad that you had mastered by the time you were 2 or 3 years old without explicit instruction
- Not the kind of stuff you were later taught in school.

Syntax
• Why should you care?
• Grammar checkers
• Question answering
- Information extraction
• Machine translation
22808

\qquad
\qquad

\qquad

For a lot of things, keyword search works well, said Barney Pell, chief executive of Powerset. But I think we are going to look back in 10 years and say, remember when we used to search using keywords. \qquad
\qquad
\qquad
228/08

Search
In a November interview, Marissa Mayer, Google's vice president for search and user experience, said: "Natural language is really hard. I don't think it will happen in the next five years." 22908

Context-Free Grammars

\qquad
\square

- Capture constituency and ordering
- Ordering is easy

What are the rules that govern the ordering of words and bigger units in the language
\qquad
\qquad
\qquad
-What's constituency?
How words group into units and how the various kinds of units behave wrt one another
\qquad
\qquad
\qquad

CFG Examples

```
M,
```

- S -> NP VP
- NP -> Det NOMINAL
- NOMINAL -> Noun
- VP -> Verb
- Det -> a
- Noun -> flight
- Verb -> left

Generativity
- As with FSAs and FSTs you can view
these rules as either analysis or synthesis
machines
- Generate strings in the language
- Reject strings not in the language
langose structures (trees) on strings in the
language
22808

Derivations

- A derivation is a sequence of rules applied to a string that accounts for that string
- Covers all the elements in the string
- Covers only the elements in the string

Derivations as Trees

\qquad
\qquad

Other Options
• Regular languages (expressions)
- Too weak
• Context-sensitive or Turing equiv
• Too powerful (maybe)

| COntext? |
| :--- | :--- |
| - The notion of context in CFGs has nothing to do with the |
| ordinary meaning of the word context in language. |
| - All it really means is that the non-terminal on the left- |
| hand side of a rule is out there all by itself (free of |
| context) |
| A -> B C |
| Means that |
| - I can rewrite an A as a B followed by a C regardless of the |
| - context in which A is found |
| Or when I see a B followed by a C I can infer an A regardless of |
| the surrounding context |

Key Constituents (English)

- Sentences
- Noun phrases
- Verb phrases
- Prepositional phrases

Sentence-Types

\square

- Declaratives: A plane left S -> NP VP
- Imperatives: Leave! S-> VP
- Yes-No Questions: Did the plane leave? S-> Aux NP VP
- WH Questions: When did the plane leave? S -> WH Aux NP VP

Recursion

- We'll have to deal with rules such as the following where the non-terminal on the left also appears somewhere on the right (directly).
Nominal -> Nominal PP [[flight] [to Boston]] VP -> VP PP [[departed Miami] [at noon]]

| Recursion |
| :--- | :--- |
| - Of course, this is what makes syntax interesting |
| flights from Denver |
| Flights from Denver to Miami |
| Flights from Denver to Miami in February |
| Flights from Denver to Miami in February on a Friday |
| Flights from Denver to Miami in February on a Friday |
| under $\$ 300$ |
| Flights from Denver to Miami in February on a Friday |
| under $\$ 300$ with lunch |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Recursion

\qquad
\qquad

- Of course, this is what makes syntax \qquad interesting
[[flights] [from Denver]]
[[[Flights] [from Denver]] [to Miami]]
[[[[Flights] [from Denver]] [to Miami]] [in February]] [[[[[[Flights] [from Denver]] [to Miami]] [in February]] [on a Friday]]
\qquad
\qquad

Etc.

2/28/08

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conjunctive Constructions

- S-> S and S
- John went to NY and Mary followed him
- NP -> NP and NP
- VP -> VP and VP
- ...
- In fact the right rule for English is X-> X and X

Problems
- Agreement
- Subcategorization
- Movement (for want of a better term)
228108

Subcategorization

- Sneeze: John sneezed
- Find: Please find [a flight to NY] $]_{N P}$
- Give: Give [me] $]_{N P}[\text { a cheaper fare }]_{N P}$
- Help: Can you help $[m e]_{N P}[\text { with a flight }]_{P P}$
- Prefer: I prefer [to leave earlier] To-vp
- Told: I was told [United has a flight] $]_{S}$
- ..

28/0

Subcategorization

- *John sneezed the book
- *I prefer United has a flight
- *Give with a flight
- Subcat expresses the constraints that a predicate (verb for now) places on the number and syntactic types of arguments it wants to take (occur with).

2218108

So?
- So the various rules for VPs overgenerate.
- They permit the presence of strings containing
verbs and arguments that don't go together
- For example
- VP -> V NP therefore
Sneezed the book is a VP since "sneeze" is a
verb and "the book" is a valid NP
22808

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Next Time
- We're now into Chapters 12 and 13.
- Finish reading all of 12.
- Get through the CKY discussion in 13
228808

