
\qquad
\qquad
\qquad
\qquad

Today 2/19 \qquad 2-

- Review HMMs for POS tagging
- Entropy intuition
- Statistical Sequence classifiers
\qquad
- HMMs
- MaxEnt
- MEMMs

Statistical Sequence

Classification

- Given an input sequence, assign a label (or tag) to each element of the tape \qquad
- Or... Given an input tape, write a tag out to an output tape for each cell on the input tape
- Can be viewed as a classification task if we view
- The individual cells on the input tape as things to be classified
- The tags written on the output tape as the class labels

2128/08
\qquad
\qquad
\qquad
\qquad

POS Tagging as Sequence

 Classification- We are given a sentence (an "observation" or "sequence of observations")
- Secretariat is expected to race tomorrow
- What is the best sequence of tags which corresponds to this sequence of observations?
- Probabilistic view:
- Consider all possible sequences of tags
- Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words $w 1 \ldots w n$.

2128108
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Statistical Sequence

 Classification

- We want, out of all sequences of n tags $t_{1} \ldots t_{n}$ the single tag sequence such that $P\left(t_{1} \ldots t_{n} \mid w_{1} \ldots w_{n}\right)$ is highest.

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- Hat ${ }^{\wedge}$ means "our estimate of the best one"
- $\operatorname{Argmax}_{x} f(x)$ means "the x such that $f(x)$ is maximized"

2/28/08

Road to HMMs

- This equation is guaranteed to give us the best tag sequence

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- But how to make it operational? How to compute this value?
- Intuition of Bayesian classification:
- Use Bayes rule to transform into a set of other probabilities that are easier to compute
$2128 / 108$

Using Bayes Rule
$P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}$
$\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)}{P\left(w_{1}^{n}\right)}$
$\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)$
28088

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Likelihood and Prior

Transition Probabilities

- Tag transition probabilities $\mathrm{p}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{t}_{\mathrm{i}-1}\right)$
- Determiners likely to precede adjs and nouns
- That/DT flight/NN
- The/DT yellow/JJ hat/NN
- So we expect $\mathrm{P}(\mathrm{NN} \mid \mathrm{DT})$ and $\mathrm{P}(\mathrm{JJ\mid DT})$ to be high
- Compute $\mathrm{P}(\mathrm{NN} \mid \mathrm{DT})$ by counting in a labeled corpus:

$$
P\left(t_{i} \mid t_{i-1}\right)=\frac{C\left(t_{i-1}, t_{i}\right)}{C\left(t_{i-1}\right)}
$$

$P(N N \mid D T)=\frac{C(D T, N N)}{C(D T)}=\frac{56,509}{116,454}=.49$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Observation Probabilities

- Word likelihood probabilities $p\left(w_{i} \mid t_{i}\right)$
- VBZ (3sg Pres verb) likely to be "is"
- Compute P (is \mid VBZ $)$ bv countina in a labeled corpus: $\quad P\left(w_{i} \mid t_{i}\right)=\frac{C\left(t_{i}, w_{i}\right)}{C\left(t_{i}\right)}$
$P(i s \mid V B Z)=\frac{C(V B Z, i s)}{C(V B Z)}=\frac{10,073}{21,627}=.47$
2/28/08
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

An Example: the verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag? \qquad
\qquad
\qquad

Example

- $\mathrm{P}($ NN|TO $)=.00047$
- $\mathrm{P}(\mathrm{VB} \mid \mathrm{TO})=.83$
- $\mathrm{P}($ race $\mid \mathrm{NN})=.00057$
- $\mathrm{P}($ race $\mid \mathrm{VB})=.00012$
- $\mathrm{P}(\mathrm{NR} \mid \mathrm{VB})=.0027$
- $P(N R \mid N N)=.0012$
- $P(V B \mid T O) P(N R \mid V B) P($ race|VB $)=.00000027$
- $P(N N \mid T O) P(N R \mid N N) P($ race $\mid N N)=.00000000032$
- So we (correctly) choose the verb reading,

2/28/08

Markov chain = "First-order

 Observable Markov Model"- A set of states
- $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{N}}$ the state at time t is q_{t}
- Transition probabilities:
- a set of probabilities $A=a_{01} a_{02} \ldots a_{n 1} \ldots a_{n n}$.
- Each a_{ij} represents the probability of transitioning from state i to state j
- The set of these is the transition probability matrix A
- Current state only depends on previous state

2128108

Hidden Markov Models

- States $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{N}}$;
- Observations $\mathrm{O}=\mathrm{o}_{1}, \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{N}}$;
- Each observation is a symbol from a vocabulary $\mathrm{V}=$ $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{v}}\right\}$
- Transition probabilities
- Transition probability matrix $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$

- Observation likelihoods
- Output probability matrix $\mathrm{B}=\left\{\mathrm{b}_{\mathrm{i}}(\mathrm{k})\right\}$

B observation likelihoods for POS HMM

The A matrix for the POS HMM

	VB	TO	NN	PPSS	
$<\mathbf{s}>$.019	.0043	.041	.067	
VB	.0038	.035	.047	.0070	
TO	.83	0	.00047	0	
NN	.0040	.016	.087	.0045	
PPSS	.23	.00079	.0012	.00014	

Figure 4.15 Tag transition probabilities (the a array, $p\left(t_{i} \mid t_{i-1}\right)$ computed from the 87-tag Brown corpus without smoothing. The rows are labeled with the conditioning event; thus $P(P P S S \mid V B)$ is .0070 . The symbol $\langle\mathrm{s}\rangle>$ is the start-of-sentence symbol.

The B matrix for the POS HMM

The Viterbi Algorithm

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Information Theory
- Who is going to win the World Series next
year?
- Well there are 30 teams. Each has a
chance, so there's a 1/30 chance for any
team...? No.
- Rockies? Big surprise, lots of information
- Yankees? No surprise, not much information
222808

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Entropy

\qquad
\qquad

- Let's start with a simple case, the probability of word sequences with a \qquad unigram model
- Example \qquad
- $\mathrm{S}=$ "One fish two fish red fish blue fish"
- $\mathrm{P}(\mathrm{S})=$ $\mathrm{P}($ One $) \mathrm{P}$ (fish) P (two) P (fish) P (red) P (fish) P (blue) P (fish)
- $\log \mathrm{P}(\mathrm{S})=\log \mathrm{P}($ One $)+\log \mathrm{P}($ fish $)+\ldots \log \mathrm{P}($ fish $)$

2/28/08

\qquad
\qquad

Entropy cont.

- Now let's divide both sides by N , the length of the sequence: \qquad

- That's basically an average of the logprobs
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Model Evaluation

- Remember the name of the game is to come up with statistical models that capture something useful in some body of text or speech.
- There are precisely a gazzilion ways to do this
- N-grams of various sizes
- Smoothing
- Backoff...

2128108

\qquad
\qquad

Model Evaluation
- The more you're surprised at some event
that actually happens, the worse your
model was.
- We want models that minimize your
surprise at observed outcomes.
- Given two models and some training data
and some withheld test data... which is
better?
2 22a008

Three HMM Problems

\qquad

Who cares?
- Suppose I have two different HMM models
extracted from some training data.
- And suppose I have a good-sized set of
held-out data (not used to produce the
above models).
- How can I tell which model is the better
model?
2 22808

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Generative vs. Discriminative Models

- For POS tagging we start with the
question... P (tags \| words) but we end up
via Bayes at
- P (words\| tags) P (tags)
- That's called a generative model
- We're reasoning backwards from the models
that could have produced such an output
22808

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Discriminative Models

- What if we went back to the start to
- Argmax P(tags|words) and didn't use Bayes?
- Can we get a handle on this directly?
- First let's generalize to P (tags|evidence)
- Let's make some independence assumptions and consider the previous state and the current word as the evidence. How does that look as a graphical model?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

